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REMARKS 

Bioinformatics is the study of collecting, 
managing, interpreting, and disseminating 
biological data and knowledge. Various genome 
projects have contributed to an exponential 
growth in DNA and protein sequence databases. 
Advances in high-throughput technology such as 
microarrays and mass spectrometry have further 
created the fields of functional genomics and 
proteomics, in which one can monitor 
quantitatively the presence of multiple genes, 
proteins, metabolites, and compounds in a given 
biological state. The ongoing influx of these data, 
the presence of biological answers to data 
observed despite noises, and the gap between 
data collection and knowledge curation have 
collectively created new and exciting 
opportunities for data mining researchers in the 
post-genome era. While tremendous progress has 
been made over the years, many of the 
fundamental problems in bioinformatics, such as 
protein structure prediction, gene-environment 
interaction, and molecular pathway mapping, are 
still open.  

Data mining approaches seem ideally suited for 
bioinformatics, because it can help researchers 
sift through large amounts of data to develop 
novel biological insights not obvious from 
conventional data analysis. The extensive 
databases of biological information create both 
challenges and opportunities for developing 
novel KDD methods. To highlight these avenues 

we organized the Workshops on Data Mining in 
Bioinformatics (BIOKDD 2001-2007), held 
annually in conjunction with the ACM SIGKDD 
Conference. This will be the 8th year for the 
workshop. 

The goal of this year’s workshop call for papers 
(CFP) was to encourage KDD researchers to take 
on the numerous research challenges that post-
genomics biology offers. In our call for papers, 
we promoted a theme “integrating complex 
biological systems and knowledge discovery”. 
Different from analyzing single molecules, 
complex biological systems consist of 
components that are in themselves complex and 
interacting with each other. Understanding how 
the various components work in concert, using 
modern high-throughput biology and data mining 
methods, is crucial to the ultimate goal of 
genome-based economy such as genome 
medicine and new agricultural and energy 
solutions: 

• Phylogenetics and comparative Genomics 
• DNA microarray data analysis 
• RNAi and microRNA Analysis 
• Protein/RNA structure prediction 
• Sequence and structural motif finding 
• Modeling of biological networks and 

pathways 
• Statistical learning methods in 

bioinformatics 
• Computational proteomics 
• Computational biomarker discoveries 
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• Computational drug discoveries 
• Biomedical text mining 
• Biological data management techniques 
• Semantic webs and ontology-driven 

biological data integration methods 
 

PROGRAM 
The workshop is a half day event in conjunction 
with the 14th ACM SIGKDD International 
Conference on Knowledge Discovery and Data 
Mining, Las Vegas, NV, August 24-27, 2008. It 
is accepted into the full conference program after 
the SIGKDD conference organization committee 
reviewed the competitive proposal submitted by 
the workshop co-chairs. To promote this year’s 
program, we established an Internet web site at 
http://bio.informatics.iupui.edu/biokdd08. 
This year, we accepted 8 papers out of 24 
submissions into the workshop program and 
proceedings due to the exceptionally high quality 
of the submissions. All of the papers are accepted 
as full presentations each with 20 minutes. Each 
paper was peer reviewed by three members of the 
program committee and papers with declared 
conflict of interest were reviewed blindly to 
ensure impartiality. All papers, whether accepted 
or rejected, were given detailed review forms as a 
feedback.  
Our specially invited keynote talk speaker for this 
year’s program is Philip Yu, Ph.D. Professor and 
Wexler Chair in Information Technology, 
Department of Computer Science, University of 
Illinois at Chicago, Chicago, IL, USA. His talk’s 
title is "Link Mining: exploring the power of 
links". 
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ABSTRACT
The recent advent of high throughput methods has generated large
amounts of protein interaction data. This has allowed the construc-
tion of genome-wide networks. A significant number of proteins in
such networks remain uncharacterized and predicting the function
of these proteins remains a major challenge. A number of existing
techniques assume that proteins with similar functions are topo-
logically close in the network. Our hypothesis is that proteins with
similar functions observe similar annotation patterns in their neigh-
borhood, regardless of the distance between them in the interac-
tion network. We thus predict functions of uncharacterized proteins
by comparing their functional neighborhoods to proteins of known
function. We propose a two-phase approach. First we extract func-
tional neighborhood features of a protein usingRandom Walks with
Restarts. We then employ a kNN classifier to predict the function of
uncharacterized proteins based on the computed neighborhood fea-
tures. We perform leave-one-out validation experiments on twoS.
cerevisiaeinteraction networks revealing significant improvements
over previous techniques. Our technique also provides a natural
control of the trade-off between accuracy and coverage of predic-
tion.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Applications

General Terms
Methodology

∗Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
BIOKDD ’08, August 24, 2008, Las Vegas, Nevada, USA.
Copyright 2007 ACM 978-1-60558-302-0 ...$5.00.
†Corresponding author.

Keywords
Protein Function Prediction, Feature Extraction, Classification, Pro-
tein Interaction Network

1. INTRODUCTION
The rapid development of genomics and proteomics has gener-
ated an unprecedented amount of data for multiple model organ-
isms. As has been commonly realized, the acquisition of data is
but a preliminary step, and a true challenge lies in developing ef-
fective means to analyze such data and endow them with physical
or functional meaning [24]. The problem of function prediction of
newly discovered genes has traditionally been approached using se-
quence/structure homology coupled with manual verification in the
wet lab. The first step, referred to as computational function pre-
diction, facilitates the functional annotation by directing the exper-
imental design to a narrow set of possible annotations for unstudied
proteins.

Significant amount of data used for computational function pre-
diction is produced by high-throughput techniques. Methods like
Microarray co-expression analysis and Yeast2Hybrid experiments
have allowed the construction of large interaction networks. A pro-
tein interaction network (PIN) consists of nodes representing pro-
teins, and edges representing interactions between proteins. Such
networks are stochastic as edges are weighted with the probability
of interaction. There is more information in a PIN compared to se-
quence or structure alone. A network provides a global view of the
context of each gene/protein. Hence, the next stage of computa-
tional function prediction is characterized by the use of a protein’s
interaction context within the network to predict its functions.

A node in a PIN is annotated with one or more functional terms.
Multiple and sometimes unrelated annotations can occur due to
multiple active binding sites or possibly multiple stable tertiary
conformations of a protein. The annotation terms are commonly
based on an ontology. A major effort in this direction is the Gene
Ontology (GO) project [11]. GO characterizes proteins in three
major aspects:molecular function, biological processandcellular
localization. Molecular functions describe activities performed by
individual gene products and sometimes by a group of gene prod-
ucts. Biological processes organize groups of interactions into “or-
dered assemblies.” They are easier to predict since they localize in
the network. In this paper, we seek to predict the GO molecular
functions for uncharacterized (target) proteins.

The main idea behind our function prediction technique is that
function inference using only local network analysis but without
the examination of global patterns is not general enough to cover all
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possible annotation trends that emerge in a PIN. Accordingly, we
divide the task of prediction into the following sequence of steps:
extraction of neighborhood features, accumulation and categoriza-
tion of the neighborhood features from the entire network, and pre-
diction of the function of a target protein based on a classifier. We
summarize the neighborhood of a protein usingRandom Walks with
Restarts. Coupled with annotations on proteins, this allows the ex-
traction of histograms (on annotations) that serve as our features.
We perform a comprehensive set of experiments that reveal a sig-
nificant improvement of prediction accuracy compared to existing
techniques.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 presents our methods. In Section 4, we
present experimental results on twoS. cerevisiaeinteraction net-
works, and conclude in Section 5.

2. RELATED WORK
According to a recent survey [22], most existing network-based
function prediction methods can be classified in two groups:mod-
ule assistedanddirect methods. Module assisted methods detect
network modules and then perform a module-wide annotation en-
richment [16]. The methods in this group differ in the manner they
identify modules. Some use graph clustering [23, 10] while oth-
ers use hierarchical clustering based on network distance [16, 2, 4],
common interactors [20] and Markov random fields [15].

Direct methods assume that neighboring proteins in the network
have similar functional annotations. TheMajority method [21]
predicts the three prevailing annotations among the direct inter-
actors of a target protein. This idea has later been generalized
to higher levels in the network [13]. Another approach,Indirect
Neighbor[7], distinguishes between direct and indirect functional
associations, considering level 1 and level 2 associations. TheFunc-
tional Flow method [19] simulates a network flow of annotations
from annotated proteins to target ones. Karaoz et al. [14] propose
an annotation technique that maximizes edges between proteins
with the same function.

A common drawback of both the direct and module-assisted meth-
ods is their hypothesis that proteins with similar functions are al-
ways topologically close in the network. As we show, not all pro-
teins in actual protein networks corroborate this hypothesis. The di-
rect methods are further limited to utilize information about neigh-
bors up to a certain level. Thus, they are unable to predict the func-
tions of proteins surrounded by unannotated interaction partners.

A recent approach by Barutcuoglu et al. [3] formulates the function
prediction as a classification problem with classes from the GO bi-
ological process hierarchy. The authors build a Bayesian frame-
work to combine the scores from multiple Support Vector Machine
(SVM) classifiers.

A technique calledLaMoFinder [6] predicts annotations based on
network motifs. An unannotated network is first mined for con-
served and unique structural patterns called motifs. The motifs are
next labeled with functions. Pairs of corresponding proteins in dif-
ferent motif occurrences are expected to have similar annotations.
The method is restricted to target proteins that are part of unique
and frequent structural motifs. A less conservative approach for
pattern extraction (that is robust to noise in network topology) is
needed for the task of whole genome annotation.

Figure 1: Proteins sharing annotations do not always interact
in the Filtered Yeast Interactome (FYI) [12]. Similar functions
are sometimes at large network distances.

We hypothesize that the simultaneous activity of sometimes func-
tionally diverse functional agents comprise higher level processes
in different regions of the PIN. We refer to this hypothesis asSim-
ilar Neighborhood, and to the central idea in all direct methods as
Function Clustering. Our hypothesis is more general, since a clique
of similar function proteins can be equivalently treated as a set of
nodes that observe the same functional neighborhood. HenceSim-
ilar Neighborhoodis a natural generalization ofFunction Cluster-
ing. A justification for our approach is provided by Figure 1 which
shows that proteins of similar function may occur at large network
distances.

3. METHOD
Our approach divides function prediction into two steps: extrac-
tion of neighborhood features, and prediction based on the features.
According to ourSimilar Neighborhoodhypothesis, we summarize
the functional network context of a target protein in the neighbor-
hood features extraction step. We compute the steady state distri-
bution of aRandom Walk with Restarts (RWR)from the protein.
The steady state is then transformed into a functional profile. In the
second step, we employ ak-Nearest-Neighbors (kNN)classifier to
predict the function of a target protein based on its functional pro-
file. As confirmed by the experimental results, the desired trade-
off between accuracy of prediction and coverage of our algorithm
can be controlled byk, the only parameter of the kNN classifica-
tion scheme. Such a decoupled approach allows for the possibility
that other kinds of neighborhood features can be extracted, and that
other kinds of classifiers can be used.

3.1 Extraction of functional profiles
The extraction of features is performed in two steps. First, we char-
acterize the neighborhood of a target node with respect to all other
nodes in the network. Second, we transform this node-based char-
acterization to a function-based one.

We summarize a protein’s neighborhood by computing the steady
state distribution of aRandom Walk with Restarts (RWR). We sim-
ulate the trajectory of a random walker that starts from the target
protein and moves to its neighbors with a probability proportional
to the weight of each connecting edge. We keep the random walker
close to the original node in order to explore its local neighborhood,
by allowing transitions to the original node with a probability ofr,
the restart probability [5].
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The PIN graph is represented by its adjacency matrixMn,n. Each
elementmi,j of M encodes the probability of interaction between
proteinsi and j. The outgoing edge probabilities of a each pro-
tein are normalized, i.e. M is row-normalized. We use the power
method to compute the steady state vector with respect to each
node. We term the steady state distribution of nodej as theneigh-
borhood profileof proteinj, and denote it asSj , j ∈ [1, n]. The
neighborhood profile is a vector of probabilitiesS

j
i , i 6= j, i, j ∈

[1, n]. ComponentSj
i is proportional to the frequency of visits to

nodei in the RWR fromj. More formally, the power method is
defined as follows:

S
j(t + 1) = (1 − r)MT

S
j(t) + rX. (1)

In the above equation,X is a size-n vector defining the initial state
of the random walk. In the above scenario,X has only one non-
zero element corresponding to the target node.Sj(t) is the neigh-
borhood profile aftert time steps. The final neighborhood profile
is the vectorSj when the process converges. A possible interpre-
tation of the neighborhood profile is an affinity vector of the target
node to all other nodes based solely on the network structure.

Figure 2: Transformation of the neighborhood profile of node
1 into a functional profile. Node 2 is annotated with functions
A and B and node 3 is annotated with functions B and C. The
neighborhood profile of node 1 is computed and transformed
using the annotations on the nodes into a functional profile.

As our goal is to capture the functional context of a protein, the
next step in our feature extraction is the transformation of a neigh-
borhood profile into a functional profile. The valueS

j
i of nodej

to nodei can be treated as affinity to the annotations ofi. Figure 2
illustrates the transformation of a neighborhood profile to a func-
tional profile. Assume that RWR performed from node 1 results in
the neighborhood profile(0.7, 0.3), where0.7 corresponds to node
2, and0.3 to node 3. Annotations on these two nodes are weighted
by the corresponding values, resulting in the vector(0.7, 1.0, 0.3)
over functions A, B, and C, respectively. This vector is then nor-
malized, resulting into the functional profile(0.35, 0.5, 0.15).

More formally, based on the annotations of a protein, we define
an annotation flageia that equals1 if protein i is annotated with
functiona and0 otherwise. The affinity to each functiona in the
neighborhood profile is computed as:

S
j

f (a) =

n
X

i=1,i6=j

S
j
i eia. (2)

VectorSj

f is normalized to yield the functional profile for nodej.

3.2 Function prediction by nearest neighbor
classification

The second step in our approach is predicting the annotations of
a given protein based on itsfunctional profile. According to our
Similar Neighborhoodhypothesis, proteins with similar functional
profiles are expected to have similar annotations. An intuitive ap-
proach in this setting is to annotate a target protein with the annota-
tions of the protein with most similar neighborhood. Alternatively,
we can explore the topk similar proteins to a target protein and
compute a consensus set of candidate functions.

We formulate function prediction as a multi-class classification prob-
lem. Each protein’s profile is an instance (feature vector). Each
instance can belong to one or more classes as some proteins have
multiple functions. We choose a distance based classification ap-
proach to the problem, namely the k-Nearest-Neighbor (kNN) clas-
sifier. The classifier uses the L1 distance between the instances and
classifies an instance based on the distributions of classes in itsk

nearest L1 neighbors.

The consensus set of predicted labels is computed using weighted
voting. Annotations of a more similar neighborhood are weighted
higher. The result is a set of scores for each function where a func-
tion’s score is computed as follows:

F
j
a =

k
X

i=1

f(d(i, j))eia, (3)

whereeia is an indicator value set to 1 if proteini is annotated with
a, d(j, i) is the distance between functional profiles of proteinsi

and j andf(d(i, j)) is a function that transforms the distance to
score. We use a distance-decreasing function of the formf(d) =

1

1+αd
, α = 1. It has the desirable property of a finite maximum

at 1 for d = 0, and anti-monotonicity with respect to d. As our
experiments show, the accuracy did not change significantly when
alternative distance transform functions are used.

It is worth mentioning that since the two steps of our approach are
completely independent, different approaches can be adopted for
feature extraction and classification. Additionally, it is possible to
exploit possible dependencies between the dimensions of the func-
tional profile for the purposes of dimensionality reduction.

4. EXPERIMENTAL RESULTS
4.1 Interaction and annotation data
We measure the performance of our method on two yeast protein
interaction networks. As a high confidence interaction network,
we use theFiltered Yeast Interactome (FYI)from [12]. This net-
work is created by using a collection of interaction data sources,
including high throughput yeast two-hybrid, affinity purification
and mass spectrometry,in silico computational predictions of in-
teractions, and interaction complexes from MIPS [18]. The net-
work contains1379 proteins and1450 interactions.FYI is an un-
weighted network, since every edge is added if it exists in more
than two sources [12]. When performing the random walk on this
network, the walker follows a uniformly chosen edge among the
outgoing edges.

The second yeast interaction network is constructed by combin-
ing 9 interaction data sources from theBioGRID [1] repository.
The method of construction is similar to the ones used in [7, 19,
17]. The network consists of4914 proteins and17815 interac-
tions among them. TheBioGRIDnetwork contains weighted edges
based on scoring that takes into account the confidence in each data
source and the magnitude of the interaction.
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Figure 3: TP/FP ratio for the BioGRID network. All genes are
labeled with exactly one annotation and the value of the fre-
quency threshold isT = 30.

The protein GO annotations forS. cerevisiaegene products were
obtained from the Yeast Genome Repository [9].

4.2 Existing techniques
We compare ourKNN technique toMajority (MAJ) [21], Func-
tional Flow (FF) [19] andIndirect Neighbors (Indirect)[7]. Major-
ity scores each candidate function based on the number of its occur-
rences in the direct interactors. The scores of candidate functions
in edge-weighted networks can be weighted by the probabilities of
the connecting edges. Functional Flow [19] simulates a discrete-
time flow of annotations from all nodes. At every time step, the
annotation weight transferred along an edge is proportional to the
edge’s weight and the direction of transfer is determined by the
difference of the annotation’s weight in the adjacent nodes. The
Indirect [7] method exploits both indirect and direct function asso-
ciations. It computesFunctional Similarityscore based onlevel 1
and level 2 interaction partners of a protein. We used the imple-
mentation of the method as supplied by the authors, with weight
function: FSWEIGHT and with minor changes related to the selec-
tion of informative functional annotations.

4.3 Experimental setup
The frequency of a functional annotation (class) is the number of
proteins that are annotated with it. We call functions whose fre-
quency exceeds a given thresholdT asinformative. An informative
instance is a protein (represented by its functional profile) anno-
tated with at least one informative class. For a givenT , our train-
ing instance set contains all informative instances in the network.
We exploit all available annotation information and predict func-
tions at different levels of specificity. Unlike the approach in [8],
we predict informative functions, even if their descendants are also
informative.

We compare the accuracy of the techniques by performing leave-
one-out validation experiments. We use leave-one-out validation
because many annotations in the actual network are of relatively
low frequency, and thus limiting the training set. Our classifier
is working with actual networks, containing significant number of
uncharacterized proteins and hence this is a realistic measure of the
accuracy. Moreover, since the competing techniques implicitly use
all available annoatations, leave-one-out provides a fair comparison
to our method. In this setup, a target protein is held out (i.e. its
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Figure 4: TP versus FP for the (a)BioGRID and (b) FYI net-
works. All genes are labeled with exactly one annotation and
the frequency thresholds are set respectively to30 and 20.

annotations are considered unknown) and a prediction is computed
using the rest of the annotation information in the network. All
competing methods compute a score distribution for every class.
We use the scores to rank the candidate functions and then analyze
the accuracy for different ranks. An ideal technique would rank
the true (held-out) annotation(s) as the top-most one. We penalize
a technique for ranking false annotations above the actual ones.
Additionally, we do not consider functions of zero score as actual
predictions of the techniques.

A true positive (TP) prediction is a protein predicted as its actual
label or any of the label’s ontological descendants. This is also
known as thetrue pathprediction criterion and has been used in
previous ontology-aware prediction studies [8]. The motivation for
the true path criterion is the gradual characterization of a given pro-
tein with more specific terms as more wet-lab experiments are per-
formed. We analogously define a false positive (FP) prediction as a
prediction of a function that is not part of the annotation of a target
protein.

Though we pose the annotation prediction as a classification prob-
lem, it is not a general classification task. A domain scientist would
be more interested in the TP and FP predictions, than in the number
of True Negatives (TN) and False Negatives (FN). TNs in the pre-
diction setting cannot facilitate the wet-lab experiments since the
space of all possible functions is large, hence characterizing a pro-
tein using positive predictions is more tractable compared to using
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negative ones.

The Receiver Operating Characteristic (ROC) is a commonly used
metric for comparison of competing classification techniques. In
an ROC setting, the True Positive Rate (TPR = TP/P) is plotted as
a function of the False Positive Rate (FPR = FP/N). We show a
variation of the ROC that skips the normalization terms, so that the
actual number of false predictions is explicit in the plots.

4.4 Effect of parametersk, r, T and the dis-
tance conversion functionf(d)

We first analyze the effect of the number of neighborsk in our
kNN technique on the accuracy of the method. Figure 3 presents
the ratio of TP/FP (accuracy ratio) as a function of the rank up to
which labels are considered as predictions. We analyze this statistic
for four different values ofk and all competing techniques. We also
examine the performance of a random predictor (Random) that uses
solely the prior probabilities of the annotations.

The highest rank prediction for most of the methods produces roughly
equal number of TP and FP. Compared to a random model, this ac-
curacy is significantly higher as there are 18 candidate labels in this
specific experiment (T = 30). The average number of classes for
which 1NN gives predictions, i.e. classes that score greater than
0, is 1.2, hence the accuracy ratio of 1NN remains fairly stable for
increasing ranks. The number of predictions increases withk and
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Figure 7: Effect of the distance to score conversion functionon
the accuracy of kNN. Our method is not sensitive to the exact
form of the function (FYI, T = 20, k = 10).

more TP are discovered at the price of more FP.

A good predictor needs to be balanced with respect to its accuracy
ratio and coverage, where the coverage is defined as the number of
TP for increasing ranks, regardless of the FP introduced. According
to this definition, kNN for small values of k can be regarded as
high accuracy and low coverage method, and with increasing k, the
coverage is increased at the price of lower accuracy. This effect can
be observed in Figure 4(a). As k increases, the curves become less
steep, however coverage improves. This effect of k is even more
evident for the high confidence FYI network (Figure 4(b)). Traces
for the FF and Random predictor are omitted for the FYI network
for clarity since their performance is significantly dominated by the
rest of the techniques.

We next study the effect of the restart probability of the Random
Walks on the quality of the functional neighborhoods. As evi-
dent from Figure 5, the classification accuracy is not sensitive to
the value of restart, as long as it is not chosen extremely low or
extremely high. Values of 0.5 and 0.33 result in identical perfor-
mance. Hence for all experiments we use a restart value of 0.33.

The overall relative performance of the techniques for varying in-
formative thresholdT is presented in Figure 6. We varyT from 20
to 50 for theBioGRIDnetwork and compare the average accuracy
ratio of the first four ranks. Our technique dominates for all val-
ues ofT . Note that when predicting low frequency classes, a lower
value fork would result in a better prediction accuracy. However,
for this specific experiment, we use a uniform value ofk = 10 for
all T .

We experiment with different distance conversion functionsf(d)
in order to assess the sensitivity of our method to this parameter.
The accuracy for three versions of our fractional functionf(d) =

1

1+αd
, α = 0.1, 1, 10 as well as two exponential functionse−d and

e−d2

are presented in Figure 7. Our method is not sensitive to the
exact form of function, however we do not exclude the possibility
of learning the optimal function for a given dataset.

4.5 Prediction accuracy
The prediction accuracy for single-labeled proteins is presented in
Figures 4(a) and 4(b). As we already discussed, kNN outperforms
the competing techniques when predicting single classes.
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Figure 8: Performance comparison on theBioGRID network
for (a) 2-, (b) 3-, (c) 4- and (d) 5-labeled proteins,T = 30.
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Figure 9: Performance comparison on theFYI network for (a)
2- and (b) 3-labeled proteins,T = 20.

A significant number of proteins in most genomes perform several
functions, and hence have multiple annotations. We thus would like
to analyze the performance of our technique on multi-labeled pro-
teins. In this experiment, we group the proteins by the cardinality of
their label set and perform leave-one-out validation. In this case ev-
ery TP label is counted as a TP/C fraction of a true positive, where
C is the cardinality of the label set. We take a similar approach
when counting the false positives. In this set of experiments, we
vary the rank up to which a label is considered predicted starting
from C. Figures 8(a)-8(d) present the accuracy curves for proteins
labeled with two and more annotations in theBioGRID network.
The difference in performance between our method and competing
methods is preserved when predicting more than one label. Similar
plots are shown for the smallFYI network in Figures 9(a), 9(b).

4.6 Discussion
The semantics of both GOprocessandlocalizationimply that same
terms would interact and hence cluster in a PIN. According to its
definition, a GOprocessis a conglomerate of GOfunctionsper-
formed in a sequence. Genes localized in the same compartment
of the cell, i.e. share GOlocalization terms, are also expected to

Figure 10: An example of two Kinases KIC1 and NRP1 that
both interact with GTPases (RHO3 and RAS2) andUnfolded
Protein Binding genes (HSC82 and HSP82)

interact more than ones of different localization. On the contrary,
a GO function describes a molecular activity without specifying
where, when or in what context this activity takes place. An exam-
ple of twoKinasesinteracting withGTPasesandUnfolded Protein
Bindinggenes is presented in Figure 10. They share a functionally
diverse pattern in their neighborhood, which could be captured by
our feature extraction step.

We further analyzed the annotations of the three GO components
in the high confidenceFYI network. We call a labelrelated to a
target label if it is the same or any of the target’s ontological ances-
tors. More than 73% of thelocalizationand 64.2% of theprocess
annotations interact with more related annotations than unrelated
ones. This percentage for thefunctionhierarchy is only 58%. The
semantic uniqueness of the GO function hierarchy makes it harder
for Direct methodsto infer uncharacterized proteins and this is why
we concentrate on this specific part of GO. Our experiments onpro-
cessand localizationdid not reveal a significant advantage of our
method over existing ones.

Our method is robust to the density of the interaction network. This
is demonstrated by the consistent accuracy dominance of our tech-
nique over the competing ones on two yeast interaction networks
of different size, density and origin. A possible explanation for the
robustness is the preservation of the neighborhood pattens in net-
works of diverse size and origin, which we think is a promising
further direction for exploration.

5. CONCLUSION
We proposed a novel framework for predicting functional annota-
tion in the context of protein interaction network. It is comprised
of two independent components: extraction of neighborhood fea-
tures and prediction (formulated as classification) based on these
features. The only parameterk to which our approach is sensitive
provides an intuitive interface for control of the trade-off between
accuracy and coverage of our method. Our method is robust to the
density and size of a PIN and its prediction accuracy is higher than
that of previous methods.

The predictive power of our method gives further insight about the
topological structure of functional annotations in a genome-wide
network. The commonly adopted idea that similar functions are
network neighbors does not hold for all annotations. A different
structural annotation trend emerges, namely functions that observe
similar (but sometimes heterogeneous) functional neighborhoods.
Our approach incorporates this idea and has a better predictive
power.
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ABSTRACT
The overwhelming amount of published literature in the
biomedical domain and the growing number of collabora-
tions across scientific disciplines results in an increasing top-
ical complexity of research articles. This represents an im-
mense challenge for efficient biomedical knowledge discov-
ery from text. We present a new graphical model, the so-
called Topic-Concept Model, which extends the basic La-
tent Dirichlet Allocation framework and reflects the gener-
ative process of indexing a PubMed abstract with termino-
logical concepts from an ontology. The generative model
captures the latent topic structure of documents by learn-
ing the statistical dependencies between words, topics and
MeSH (Medical Subject Headings) concepts. A number of
important tasks for biomedical knowledge discovery can be
solved with the here introduced model. We provide results
for the extraction of the hidden topic-concept structure from
a large medical text collection, the identification of the most
likely topics given a specific MeSH concept, and the extrac-
tion of statistical relationships between MeSH concepts and
words. Moreover, we apply the introduced generative model
to a challenging multi-label classification task. A benchmark
with several classification methods on two independent data
sets proves our method to be competitive.

Keywords
Document Modeling, topic modeling, multi-label classifica-
tion, ontologies
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1. INTRODUCTION
In the last decade, powerful new biomedical research tools

and methods have been developed, resulting in an unprece-
dented increase of biomedical data and literature. High-
throughput experiments, such as DNA microarrays or pro-
tein arrays, produce large quantities of high-quality data,
leading to an explosion of scientific articles published in this
field. Thus, automated extraction of useful information from
large document collections has become an increasingly im-
portant research area [12, 11]. To ensure an efficient ac-
cess to this steadily increasing source of bibliographic infor-
mation, it is required to efficiently index incoming articles,
i. e. to label unstructured free text with a structured ma-
chine readable annotation. Articles selected for inclusion in
PubMed1, for example, are indexed with concepts from the
Medical Subject Headings2 (MeSH) thesaurus to facilitate
later retrieval. This additional meta information provides a
rich source of knowledge, which can be exploited for biomed-
ical knowledge discovery and data mining tasks and this is
the focus of this work.

Recently, powerful techniques such as Probabilistic Latent
Semantic Analysis (PLSA) [15] or Latent Dirichlet Alloca-
tion (LDA) [7] have been proposed for automated extraction
of useful information from large document collections. Ap-
plications include automatic topic extraction, query answer-
ing, document summarization, and trend analysis. Gener-
ative statistical models such as the above mentioned ones,
have been proven effective in addressing these problems. In
general, the following advantages of topic models are high-
lighted in the context of document modeling: First, topics
can be extracted in a complete unsupervised fashion, requir-
ing no initial labeling of the topics. Second, the resulting
representation of topics for a document collection is inter-
pretable and last but not least, each document is usually
expressed by a mixture of topics, thus capturing the topic
combinations that arise in documents [15, 7, 14]. In the

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.nlm.nih.gov/mesh/

11



biomedical domain, the classical LDA model has been ap-
plied to the task of finding life span related genes from the
Caenorhabditis Genetic Center Bibliography [5] and to the
task of identifying biological concepts from a protein-related
corpus [33]. Depending on the addressed generative process,
the LDA framework has been extended e. g. to model the de-
pendencies between authors, topics and documents [30] or
the dependencies between author and recipients [20]. Fur-
ther approaches include the modeling of images and their
corresponding captions [6] as well as the modeling of depen-
dencies between topics and named entities [25].

In this paper, we introduce another extension of the LDA
framework, the so-called Topic-Concept (TC) model, to re-
semble the generative process of creating an indexed PubMed
abstract. The approach simultaneously models the way how
the document is generated as well as the way how the docu-
ment is subsequently indexed with MeSH concepts (see fig-
ure 1 for a comparison with the classical LDA approach).
We refer to MeSH as a terminological ontology, where rela-
tions are partially described as subtype-supertype relations
and where the concepts are described by concept labels or
synonyms [2].

By modeling the indexing process of PubMed abstracts,
we can answer a range of important queries for knowledge
discovery about the content of biomedical text collections.
With such a model, we can provide a bird’s eye view of
biomedical topics discussed in a large document collection
associated with prominent MeSH concepts (i. e. uncovering
the hidden topic-concept structure in a biomedical text col-
lection). In contrast to the classical LDA, this results in
a richer representation of topics, since topics are not solely
represented by their most likely words. Instead, topics in the
TC model are, in addition to the words, associated with their
most likely MeSH terms (see section 3.2.1). Furthermore, we
can identify several types of statistical relationships between
different classes of document entities (i. e. words, MeSH con-
cepts and topics). We provide results for identifying statis-
tical relationships between concepts and words based on the
topics (see section 3.2.2). Another interesting use case we
consider, is the estimation of the most likely topics given
a MeSH concept. This results in a fast overview over the
topics in which a specific MeSH term is most likely to be
involved (see section 3.2.2). Last but not least, we can use
the TC model for multi-label classification. To validate the
predictive power of the here presented model, we apply our
generative method to a challenging multi-label classification
problem with 108 classes. A benchmark on two independent
corpora against (1) a multi-label naive Bayes classifier, (2) a
method currently used by the National Library of Medicine
(NLM) and (3) a state-of-the-art multi-label support vector
machine (SVM) shows encouraging results.

The remainder of the paper is organized as follows: In
Section 2 we describe the extension of the classical LDA to-
wards the TC model. Section 3.1 describes the experimental
setup. Afterwards results are presented and a concluding
discussion is given.

2. METHODS
In the following we will describe two generative mod-

els, the first simulating the process of document generation
alone and the second simulating both the process of docu-
ment generation and the process of document indexing. Let

Figure 1: Graphical model for a) LDA and b)
Concept-LDA in plate notation. Shaded nodes rep-
resent observed random variables, unshaded nodes
represent latent random variables.

D = {d1, d2, ..., dD} be a set of documents, where D denotes
the number of documents in the corpus. A document d is
represented by a vector of Nd words, wd, where each word
wi is chosen from a vocabulary of size N . In the second
model, a document d is additionally described by a vector
of Md MeSH concepts cd, where each concept ci is chosen
from a set of MeSH concepts of size M . The collection of D
documents is defined by D = {(w1, c1), ..., (wD, cD)}.

2.1 Classical Latent Dirichlet Allocation (LDA)
model

The Latent Dirichlet Allocation model (LDA) is based
upon the idea that the probability distribution over words
in a document can be expressed as a mixture of topics, where
each topic is expressed as a mixture of words [7]. In LDA,
the generation of a document collection is modeled as a three
step process. First, for each document, a distribution over
topics is sampled from a Dirichlet distribution. Second, for
each word in the document, a single topic is chosen accord-
ing to this distribution. Finally, a word is sampled from
a multinomial distribution over words specific to the sam-
pled topic. The hierarchical Bayesian model shown (using
plate notation) in Figure 1(a) depicts this generative pro-
cess. θ represents the document-specific multinomial distri-
bution over T topics, each being drawn independently from
a symmetric Dirichlet prior α. Φ denotes the multinomial
distribution over N vocabulary items for each of T topics be-
ing drawn independently from a symmetric Dirichlet prior
β. For each of the Nd words w in document d, z denotes the
topic responsible for generating that word, drawn from θ,
and w is the word itself, drawn from the topic distribution
Φ conditioned on z. According to the graphical model rep-
resentation, the probability distribution over N vocabulary
items for the generation of word wi within a given document
is specified as

p(wi) =

T∑
t=1

p(wi|zi = t)p(zi = t) (1)

where zi = t represents the assignment of topic t to the ith
word, p(wi|zi = t) is given by the topic-word distribution Φ
and p(zi = t) by the document-topic distribution θ.
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Table 1: Corpora statistics for the two data sets used in this paper.

random 50K genetics-related

Documents 50.000 84.076
Unique Words 22.531 31.684
Total Words 2.369.616 4.293.992
Unique MeSH Main Headings 17.716 18.350
Total MeSH Main Headings 470.101 912.231

2.2 Extension to the Topic-Concept (TC) Model
The Topic-Concept model extends the LDA framework by

simultaneously modeling the generative process of document
generation and the process of document indexing. In addi-
tion to the three steps mentioned above, two further steps
are introduced to model the process of document indexing.
For each of the Md concepts in the document a topic z̃ is
uniformly drawn based on the topic assignments for each
word in the document. Finally, each concept c is sampled
from a multinomial distribution over concepts specific to the
sampled topic. This generative process corresponds to the
hierarchical Bayesian model shown in Figure 1(b). In this
model, Γ denotes the vector of multinomial distribution over
M concepts for each of T topics being drawn independently
from a symmetric Dirichlet prior γ. After the generation
of words, a topic z̃ is drawn from the document specific
distribution, and a concept c is drawn from the z̃ specific
distribution Γ. The probability distribution over M MeSH
concepts for the generation of a concept ci within a docu-
ment is specified as:

p(ci) =

T∑
t=1

p(ci|z̃i = t)p(z̃i = t|z) (2)

where z̃i = t represents the assignment of topic t to the ith
concept, p(ci|z̃i = t) is given by the concept-topic distri-
bution Γ. The topic for the concept is selected uniformly
out off the assignments of topics in the document model,
i.e., p(z̃i = t|z) = Unif(z1, z2, . . . , zNd) leading to a coupling
between both generative components.

The generative process of the Topic-Concept model is es-
sentially the same as the Correspondence LDA model pro-
posed in [6] with the difference that the Topic-Concept model
imitates the generation of documents and their subsequent
annotation, while [7] models the dependency between image
regions and captions.

2.3 Learning the Topic-Concept Model from
Text Collections

Estimating Φ, θ and Γ provides information about the
underlying topic distribution in a corpus and the respective
word and MeSH concept distributions in each document.
Given the observed documents, the learning task is to in-
fer these parameters for each document. Instead of esti-
mating the parameters directly [16, 6] we follow the idea
of [14] and estimate Φ and θ from the posterior distribu-
tion over the assignments of words to topics p(w|z). As
the posterior cannot computed directly we resort to a Gibbs
sampling strategy generating samples from the posterior by
repeatedly drawing a topic for each observed word from its
probability conditioned on all other variables. In the LDA
model, the algorithm goes over all documents word by word.
For each word wi, a topic zi is assigned by drawing from its

distribution conditioned on all other variables

p(zi = t|wi = n, z−i,w−i) ∝
p(wi = n|zi = t)p(zi = t) ∝

CWT
nt + β∑

n′ CWT
n′t +Nβ

CDT
dt + α∑

t′ C
DT
dt′ + Tα

(3)

where zi = t represents the assignments of the ith word in
a document to topic t, wi = n represents the observation
that the ith word is the nth word in the lexicon, and z−i

represents all topic assignments not including the ith word.
Furthermore, CWT

nt is the number of times word n is as-
signed to topic t, not including the current instance, and
CDT

dt is the number of times topic t has occurred in doc-
ument d, not including the current instance. Additionally,
in the Topic-Concept model, the posterior p(c|z̃) is approx-
imated by assigning for each concept ci, a topic z̃i from the
following distribution

p(z̃i = t|ci = m, z̃i, z−i,w−i) ∝
p(ci = m|z̃i = t)p(z̃i = t|z) ∝

CCT
mt + γ∑

m′ CCT
m′t +Mγ

CTD
td

Nd
(4)

where z̃i = t represents the assignments of the ith concept
in a document to topic t, ci = m represents the observation
that the ith concept in the document is the mth concept
in the lexicon, and z−i represents all topic assignments not
including the ith concept. Furthermore, CCT

mt is the number
of times concept m is assigned to topic t, not including the
current instance, and CTD

td is the number of times topic t has
occurred in document d, not including the current instance.

For any single sample we can estimate Φ, θ and Γ using

Φ̂nt =
CWT

nt + β∑
n′ CWT

n′t +Nβ
(5)

θ̂dt =
CDT

dt + α∑
t′ C

WT
dt′ + Tα

(6)

Γ̂mt =
CCT

mt + γ∑
m′ CCT

m′t +Mγ
(7)

Instead of estimating the hyperparameters α, β and γ, we
fix them to 50/T , 0.001 and 1/M respectively in each of the
experiments. The values were chosen according to [30, 14].

3. EXPERIMENTS AND RESULTS

3.1 Experimental setting
Two large PubMed corpora previously generated by [23,

24] were used in the experiments. The first data set is a
collection of PubMed abstracts randomly selected from the
MEDLINE 2006 baseline database provided by the NLM.
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Table 2: Selected topics, learned from the genetics-related corpus (T = 300). For each topic the fifteen most
probably words and MeSH terms are listed with their corresponding probabilities.

Topic 6

Word Prob. Mesh Term Prob.

ethic 0.043 Humans 0.150
research 0.039 United States 0.038
issu 0.023 Informed Consent 0.017
public 0.014 Ethics, Medical 0.011
medic 0.013 Personal Autonomy 0.001
health 0.013 Decision Making 0.001
moral 0.013 Ethics, Research 0.008
consent 0.012 Great Britain 0.008
practic 0.012 Human Experimentation 0.007
concern 0.011 Public Policy 0.007
polici 0.001 Morals 0.007
conflict 0.008 Biomedical Research 0.006
right 0.008 Research Subjects 0.006
articl 0.008 Social Justice 0.006
accept 0.008 Confidentiality 0.006

Topic 17

Word Prob. Mesh Term Prob.

viru 0.118 Humans 0.06
viral 0.064 HIV-1 0.06
infect 0.058 HIV Infections 0.059
hiv-1 0.047 Virus Replication 0.045
virus 0.035 RNA, Viral 0.042
hiv 0.033 Animals 0.027
replic 0.033 DNA, Viral 0.027
immunodef. 0.025 Cell-Line 0.023
envelop 0.012 Genome, Viral 0.022
aids 0.012 Viral Proteins 0.020
particl 0.011 Molecular Sequence Data 0.017
capsid 0.011 Anti-HIV Agents 0.016
host 0.011 Viral Envelope Proteins 0.013
infecti 0.010 Drug Resistance, Viral 0.012
antiretrovir 0.001 Acquired Immunodef. Synd. 0.011

Topic 16

Word Prob. Mesh Term Prob.

phosphoryl 0.130 Phosphorylation 0.123
kinas 0.118 Prot.-Serine-Threonine Kin. 0.075
activ 0.060 Proto-Oncogene Prot. 0.060
akt 0.060 Proto-Oncogene Proteins c-akt 0.047
tyrosin 0.036 1-Phosphatidylinositol 3-Kin. 0.047
protein 0.029 Humans 0.043
phosphatas 0.025 Signal Transduction 0.038
signal 0.025 Animals 0.028
pten 0.024 Protein Kinases 0.021
pi3k 0.022 Tumor Suppressor Proteins 0.016
pathwai 0.020 Phosphoric Monoester Hydrol. 0.016
regul 0.018 Enzyme Activation 0.015
serin 0.015 Cell Line, Tumor 0.014
inhibit 0.015 Enzyme Activation 0.001
src 0.015 Mice 0.013

Topic 26

Word Prob. Mesh Term Prob.

breast 0.372 Breast Neoplasms 0.319
cancer 0.323 Humans 0.120
women 0.032 Middle Aged 0.024
tamoxifen 0.028 Receptors, Estrogen 0.023
mcf-7 0.026 Tamoxifen 0.022
estrogen 0.012 Antineopl. Agents, Hormon. 0.017
mda-mb-231 0.007 Aged 0.016
adjuv 0.007 Carcinoma, Ductal, Breast 0.013
statu 0.007 Chemotherapy, Adjuvant 0.013
hormon 0.007 Mammography 0.012
tam 0.006 Breast 0.012
aromatas 0.006 Adult 0.011
ductal 0.006 Neoplasm Staging 0.010
mammari 0.006 Aromatase Inhibitors 0.009
postmenop. 0.005 Receptors, Progesterone 0.009

The collection consists of D = 50.000 abstracts, M = 17.716
unique MeSH main headings and N = 22.531 unique word
stems. Word tokens from title and abstract were stemmed
with a standard Porter stemmer [27] and stop words were
removed using the PubMed stop word list 3. Additionally,
word stems occurring less than five times in the corpus were
filtered out. Note that no filter criterion was defined for the
MeSH vocabulary.

The second data set contains D = 84.076 PubMed ab-
stracts, with M = 18.350 unique MeSH main headings and
a total of N = 31.684 unique word stems. The same fil-
tering steps were applied as described above. This corpus
is composed of genetics-related abstracts from the MED-
LINE 2005 baseline corpus. The here introduced bias to-
wards genetics-related abstracts resulted from using NLM’s
Journal Descriptor Indexing Tool by applying some genetics-
related filtering strategies [23]. See [23, 24] for more infor-
mation about both corpora. In the following, the data sets
are referred to as random 50K data set and genetics-related
data set respectively. For the extraction of statistical rela-
tionships between the various document entities and for un-
covering the hidden-topic concept structure, we decided to
use the larger genetics-related corpus with all 18.350 MeSH
main headings (see section 3.2.1 and section 3.2.2), while for

3http://www.ncbi.nlm.nih.gov/entrez/
query/static/help/pmhelp.html#Stopwords

the multi-label classification task, we used both corpora in
a pruned setting (see next section 3.1.1).

Parameters for the Topic-Concept model were estimated
by averaging samples from ten randomly-seeded runs, each
running over 100 iterations, with an initial burn-in phase of
500 iterations (resulting in a total of 1.500 iterations). We
found 500 iterations to be a convenient choice by observing
a flattening of the log likelihood. The training time ranged
from ten to fifteen hours depending on the size of the data
set, the number of used MeSH concepts as well as on the
predefined number of topics (run on a standard Linux PC
with Opteron Dual Core processor, 2.4 GHz).

3.1.1 Multi-label classification task
In this setting, we prune each MeSH descriptor to the first

level of each taxonomy-subbranch resulting in 108 unique
MeSH concepts (M = 108). For example, if a document is
indexed with Muscular Disorders, Atrophic [C10.668.550],
the concept is pruned to Nervous System Diseases [C10].
Therefore, the task is to assign at least one of the 108 classes
to an unseen PubMed abstract. Note that from a machine
learning point of view, this is a challenging 108 multi-label
classification problem and corresponds to other state-of-the-
art text classification problems such as the Reuters text clas-
sification task [19], where the number of classes is approxi-
mately the same. In the pruned setting of our task, we have
on average 9.6/10.5 (random 50K/genetics-related) pruned
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Table 3: Selected MeSH concepts from the Disease and the Drug & Chemicals subbranch with the 20 most
probable word stems estimated based on a topic-concept model learned from the genetics-related corpus
(T = 300). The font size of each word stem encodes its probability given the corresponding MeSH concept.
The number in brackets is euqal to the number of times, the MeSH terms occurs in the corpus

Diseases

Myelodysplastic Syndromes (208)

acut aml bcr-abl blast chronic cml flt3
hematolog imatinib leukaemia leukem

leukemia lymphoblast marrow

mds myelodysplast myeloid patient relaps
syndrom

Pulmonary Embolism (39)

activ associ case clinic diagnos

diagnosi diagnost factor incid men

mortal patient platelet preval

protein rate risk studi women year

Drugs & Chemicals

Erythropoietin (85)
abnorm anaemia anemia caus cell defect

defici disord epo erythrocyt erythroid
erythropoietin g6pd hemoglobin increas model

normal patient sever studi

Paclitaxel (309)

advanc agent anticanc cancer

chemotherapi cisplatin combin cytotox

drug effect median paclitaxel

patient phase regimen respons sensit

surviv toxic treatment

MeSH labels per document. Parameter estimation remains
the same as mentioned in the previous paragraph.

In particular, we are interested in evaluating the classi-
fication task in a user-centered or semi-automatic scenario,
where we want to recommend a set of classes for a specific
document (e. g. a human indexer gets recommendations of
MeSH terms for a document). Thus, we decided to follow
the evaluation of [13] and average the effectiveness of the
classifiers over documents rather than over categories. In
addition, we weight recall over precision and use the F2-
macro measure, because it reflects that human indexers will
accept some inappropriate recommendations as long as the
major fraction of recommended index terms will be correct
[13].

3.2 Results

3.2.1 Uncovering the hidden topic-concept structure

Table 2 illustrates several different topics (out of 300)
from the genetics-related corpus, obtained from a partic-
ular Gibbs sampler run after the 1.500th iteration. Each
table shows the fifteen most likely word stems assigned to a
specific topic and its corresponding most likely MeSH main
headings. To show the descriptive power of our learned
model, we chose four topics describing different aspects of
biomedical research. Topic 6 is ethics-related, topic 16 is re-
lated to a special biochemical process, namely signal trans-
duction, and the last two topics represent aspects of specific
disease classes. Topic 26 represents a topic centered around
breast cancer, while topic 17 refers to HIV. The model in-
cludes several other topics related to specific diseases, bio-
chemical processes, organs and other aspects of biomedical
research like e. g. Magnetic Resonance Spectroscopy. Recall
that the here investigated corpus is biased towards genetics-
related topics, thus, some topics can describe quite specific
aspects of genetics research. More generic topics in the cor-
pus are related to terms, common to almost all biomedical

research areas including terminology, describing experimen-
tal setups or methods. In general, the extracted topics are,
of course, dependent on the corpus seed. The full list of top-
ics with corresponding word and MeSH distributions is avail-
able at www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/
TC_structure.txt.

It can be seen that the word stems already provide an intu-
itive description of specific aspects. Furthermore, the topics
gain more descriptive power by their associated MeSH con-
cepts, providing an accurate description in structured from.
Note that the standard topic models are only able to rep-
resent topics with the single word descriptions. In contrast,
the TC model provides a richer representation of topics by
additionally linking topics to concepts from a terminological
ontology. We found that the topics obtained from different
Gibbs sampling runs were relatively stable. A variability in
terms of ranking of the words and MeSH terms in the topics
can be observed, but overall the topics match very closely.
For studies about topic stability in aspect models, please
refer to [29].

3.2.2 Extraction of statistical relationships
Besides uncovering the hidden topic-concept structure,

we apply the model to derive statistical relations between
MeSH concepts and word stems, thus bridging the gap be-
tween natural free text and the structured semantic anno-
tation. The derived relations could be e. g. used for im-
proving word sense disambiguation [18]. In Table 3, four
MeSH concepts from the Disease and the Drug & Chemi-
cals subbranch and their twenty most probable word stems
are shown. For each MeSH concept, the distribution over
words is graphically represented by varying the font size for
each word stem with respect to the probability. Given a con-
cept c, the conditional probability for each word is estimated
by p(w|c) ∝

∑
t p(w|t)p(t|c), which is computed from the

learned model parameters. The word distributions describe
the corresponding MeSH concept in an intuitive way, cap-
turing the topical diversity of certain MeSH concepts. Note
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Table 4: Selected MeSH concepts from the Disease and the Drug & Chemicals subbranch with the three most
probable topics estimated based on a topic-concept model learned from the genetics-related corpus (T = 300).
Topics are illustrated here by the twenty most probable word stems.

MeSH term Topic Word stems

Myelodysplastic Syndromes (208)

Topic 46 (p = 0.20) leukemia acut myeloid aml mds lymphoblast
leukaemia blast leukem patient myelodysplast marrow
syndrom malign flt3 bone promyelocyt hematolog mll
granulocyt

Topic 75 (p = 0.02) transplant donor recipi graft stem allogen reject au-
tolog cell immunosuppress allograft marrow surviv
hematopoiet condit receiv acut gvhd engraft diseas

Topic 25 (p = 0.01) chromosom aberr transloc cytogenet delet abnorm re-
arrang genom karyotyp gain loss region arm break-
point trisomi mosaic duplic cgh case imbal

Erythropoietin (85)

Topic 177 (p = 0.30) defici adren anemia malaria parasit plasmodium
mosquito falciparum erythrocyt cortisol erythropoi-
etin caus g6pd insuffici adrenocort acth anaemia epo
anophel develop

Topic 14 (p = 0.14) cell stem progenitor hematopoiet differenti embryon
lineag hsc adult marrow bone erythroid cd34+ precur-
sor potenti cd34 marker hematopoiesi msc self-renew

Topic 140 (p = 0.07) activ nf-kappab factor nuclear transcript express cell
induc inhibit constitut ap-1 regul c-jun suppress p65
kappa curcumin transloc nfkappab c-fo

that there are many other opportunities to access statisti-
cal relations between MeSH concepts and words. One could
e. g. use measurements like relative frequency or χ2 statis-
tics. It may be that the TC model captures relationships
that can’t be captured in a simpler way, but this evalua-
tion is out of scope of the here presented work. We provide
all word clouds for all MeSH terms occurring in the cor-
pus from the Disease and the Drug & Chemicals subbranch
as supplementary data (www.dbs.ifi.lmu.de/~bundschu/
TCmodel_supplementary/).

Another important use case we consider, is the task of es-
timating the most likely topics given a specific MeSH term
with respect to a seed corpus. This results in a fast overview
over the topics in which a specific MeSH term is most likely
to be involved. Table 4 shows two such examples extracted
from the genetics-related corpus. Because of lack of space,
we only represent the topics by the most likely word stems
(the associated MeSH terms for the topics can be investi-
gated in the supplementary file, mentioned in section 3.2.1).
The first example shows the three most likely topics for
the MeSH term myelodysplastic syndromes. Myelodysplastic
syndromes, also called pre-leukemia or ‘smoldering’ leukemia,
are diseases in which the bone marrow does not function nor-
mally and not enough blood cells are produced [26]. This
fact is reflected by the most likely topic for this MeSH term
(Table 4, Topic 46). Furthermore, a state-of-the-art treat-
ment of this disease, is bone marrow transplantation. First,
all of the bone marrow in the body is going to be destroyed
by high-doses of chemotherapy and/or radiation therapy.
Then healthy marrow is taken from a donor (i. e. another
person) and is given to the patient [26]. This is described
by the second most likely topic (Table 4, Topic 75). Topic
25 constitutes that Myleodysplastic syndromes have a ge-
netic origin and that gene and chromosome aberrations are
a likely cause of this disease [26].

The second MeSH term in table 4, Erythropoietin (EPO),

is a hormone which is produced by the kidney and liver.
It is known to regulate red blood cell production. In the
mined genetics-related corpus, the most likely topic (Table
4, Topic 177) states that erythropoietin could be used as a
treatment during malaria infection [9] and this is a current
issue of ongoing research [3, 31]. Erythropoietin is known to
directly promote the generation of neuronal stem cells from
progenitors, which is reflected by Topic 14. Last but not
least, Topic 140 provides information about the gene regu-
latory context of EPO. NF-kappaB, e. g. , regulates EPO [8],
while EPO in turn regulates expression of c-jun and AP-1
[28].

A full list of all MeSH terms and its most likely associated
topics is available online. (www.dbs.ifi.lmu.de/~bundschu/
TCmodel_supplementary/mesh_associated_topics.pdf).

3.2.3 Multi-label classification

In what follows, we will first describe the used bench-
mark methods and then present the results for the multi-
label classification problem with 108 classes for the genetics-
related corpus and the random 50K corpus. The prediction
results of the Topic-Concept model are benchmarked against
a method currently used by the NLM [17], which we refer
to as centroid profiling, a multi-label naive Bayes classifier
and a multi-label SVM. For both data sets and all methods,
5-fold cross-validation was conducted.

In [17] classification is tackled by computing for each word
token wi and each class label ym, in a training corpus, a
term frequency measure TFi,m = wi,ym/

∑M
m=1 wi,ym with

M equals to the total number of classes. Thus, TFi,m mea-
sures the number of times a specific word wi co-occurs with
the class label ym, normalized by the total number of times
the word wi occurs. As a consequence, each word token in
the training can be represented by a profile consisting of the
term frequency distribution over all M classes. When index-
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(a) random 50K corpus
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(b) genetics-related corpus

Figure 2: F2-macro, recall and precision plots for discipline-based indexing. Results are plotted according to
the number of top n recommended MeSH terms. In average every document has 9.6 such assignments in our
experimental setting. (a) Plots for the randomly selected data set. (b) Plots for the genetics-related data set

ing a new unseen document, the centroid over all profiles for
the word tokens in the test document is computed. This
centroid represents the ranking of all class labels for the test
document. This method was chosen, because it is currently
used by the NLM in a classification task to predict so-called
journal descriptors [17].

According to [22], naive Bayes classifiers are a very suc-
cessful class of algorithms for learning to classify text doc-
uments. For the multi-label naive Bayes classifier, we as-
sumed a bag of words representation like for the Topic-
Concept model and trained it for each of the 108 labels. We
used the popular multinomial model for naive Bayes [21].

The multi-label SVM setting was implemented according
to [19]. In this setting, a linear kernel is used and the pop-
ular so-called binary method is used to adapt the SVM to
a multi-label setting. It has been shown that this setting
produced very competitive results on a large-scale text clas-
sification task on the RCV1 Reuters corpus [19]. LIBLIN-
EAR, a part of the LIBSVM package [10] is used for the
implementation. Two different weighting schemes are eval-
uated: Term frequency (Tf) as well as cosine-normalized
Term frequency-inverse document frequency (Tf-Idf).

In the TC-model, the prediction of concept terms for un-
seen documents can be formulated as follows: Based on the
word-topic and concept-topic count matrices learned from
an independent data set, the likelihood of a concept c given
the test document d is p(c|d) =

∑
t p(c|t)p(t|d). The first

probability in the sum, p(c|t), is given by the learned topic-

concept distribution (see Equation 7). The mixture of top-
ics for the document p(t|d) is estimated by drawing for each
word token in the test document a topic based on the learned
word-topic distribution p(w|t) (see Equation 5). Therefore,
the TC model directly predicts a ranked list of class recom-
mendations, in contrast to the classical task of topic models
in text classification problems, where they are usually used
for dimensionality reduction and afterwards standard clas-
sifiers are applied [7].

We now discuss experimental results using 5-fold cross-
validation. Figure 2 plots F2-macro measure, recall and
precision against the number of recommended MeSH terms.
Figure 2(a) shows results for the random 50K data set and
Figure 2(b) for the genetics-related data set respectively.
Our TC model and the centroid profiling method provide
as output a ranked list of recommendations. In order to
be able to compare these two methods with the other clas-
sifiers, a thresholding strategy is needed [32]. We decided
to use the simple rank-based thresholding (Rcut) [32] and
evaluate the results until a cut-off value of 30 (Recall that
each document has in average 9.6 (random 50K) and 10.5
(genetics-related) MeSH entries in our experimental setting.
The Topic-Concept model was trained with two different
number of topics on both data sets (T = 300, T = 600
for the 50K random corpus and T = 300, T = 600 for the
genetics-related corpus). For clarity, we only show the re-
sults for T = 600 here, since experimental validation showed
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that the number of topics is not very sensitive to the overall
performance. We also exclude the NB classifier from the fig-
ure for clarity (F-measure 0.58 and 0.60 for random 50K and
genetics-related). In terms of F2-macro, recall and precision,
the Topic-Concept model clearly outperforms the centroid
profiling. The naive Bayes classifier already yields quite
competitive results. Regarding F2-macro, the TC models
reach their optimum at 15 returned recommendations for
both data sets (0.61 (random 50K)/0.635 (genetics-related)).
At a cut-off value of 15 recommendations, centroid profiling
reaches a F2-macro of 0.558 for the random 50K data set
(optimum at 17 recommendations with 0.562) and 0.562 for
the genetics-related corpus (optimum at 13 recommenda-
tions with 0.564). Using a cut-off value which equals to the
number of average MeSH assignments (rounded-up) in the
two training corpora the F2-macro is for the best TC mod-
els 0.59 (random 50K) and 0.61 (genetics-related), while the
centroid profiling reaches only 0.517 (random 50K) and 0.55
(genetics-related) at this cut-off value. Note that using the
average number of MeSH assignments is the most simple
way to determine an appropriate cut-off value. A more ana-
lytical way of determining the threshold would be to set up
an independent development set for the given corpus and
to maximize the F2-macro measure according to the num-
ber of recommendations. Other approaches e. g. use a de-
fault length of 25 recommended index terms [1] for unpruned
MeSH recommendation. The evaluation of the multi-label
SVM shows that the performance is very sensitive to the
used term weighting scheme (see Figure 2). When using Tf-
Idf, the SVM is approximately on par with the TC model in
terms of F2-macro on both data sets (F2-macro SVM, Tf-
Idf is 0.60 (random 50K) and 0.645 (genetics-related)). The
SVM is clearly superior in terms of precision due to its dis-
criminative nature. When considering recall, the TC model
outperforms the SVM with Tf-Idf, effective from a cut-off
value of recommended MeSH terms, which is the average
number of MeSH terms in the training corpora.

4. CONCLUSION AND OUTLOOK
This study presents a new probabilistic topic model for

modeling medical text indexing processes. The so-called
Topic-Concept model automatically learns the relation be-
tween words, MeSH terms, documents and topics from large
text corpora of PubMed abstracts. The method uses a gen-
erative probabilistic process to learn the just mentioned re-
lationships by extracting the latent topic structure. Gibbs
sampling is used to learn the Topic-Concept model.

The TC model uncovers novel information from a biomed-
ical text corpus, including the extraction of the hidden topic-
concept structure, using all occurring unique MeSH terms
in the corpus (18.350 distinct MeSH terms). In contrast to
standard topic models, where topics are solely represented
by their most likely words, the here extracted topic-concept
structure can be interpreted as a richer representation of
topics by additionally linking to concepts from the MeSH
thesaurus. Thus, the enriched topic representation provides
important additional information from a terminological on-
tology. Other use cases we explore, are the extraction of
statistical relationships between words and MeSH terms as
well as between topics and MeSH terms. The just mentioned
applications can have impact on several other closely related
areas such as information retrieval or information extraction
(see e. g. [25]).

The Topic-Concept model can be easily applied to text
classification tasks. Even though the here proposed method
is generative, the experimental evaluation on a challenging
multi-label classification problem on two independent data
sets with 108 class labels against discriminative methods
proves our method to be competitive in terms of F2-macro
and even superior in terms of recall. In contrast to most text
categorization algorithms, the here proposed model provides
a ranking of recommended index terms for prediction tasks.
Up to now, the choice of the number of returned recom-
mended index terms is user-defined. Using a simple cut-off
value which is equal to the number of average index terms
assigned in a training collection, already yields competitive
results.

In the current setting, our model neglects the hierarchi-
cal property of the MeSH thesaurus. The extension of the
underlying generative process for capturing the hierarchy of
terminological ontologies is a matter of ongoing research. To
further tune prediction performance, we are also considering
an expansion of the generative Topic-Concept model to a su-
pervised topic model for multi-label classification as lately
proposed by [4] for multi-class classification problems.
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ABSTRACT 
Gene-gene interactions play important roles in the etiology of 
complex multi-factorial diseases. With the advancements in 
genotyping technology, large genetic association studies based on 
hundreds of thousands of single-nucleotide polymorphisms are a 
popular option for the study of complex diseases. Association 
studies using locus by locus analyses till remains the primary 
method although the study of gene-gene interactions has become 
more common using regression based methods. However, 
regression based methods are computationally heavy and model 
complexity increases rapidly with the increase in number of loci 
and also with the number of possible allelic states at each locus. 
Information theoretic approaches offer many potent capabilities 
and advantages for the analyses of gene-gene interactions. In this 
paper, we develop and explore the effectiveness of two 
information theoretic metrics in identifying gene-gene 
interactions using extensive simulations on four different gene-
gene interaction models. We propose a forward selection 
algorithm using the metrics and evaluate its performance using 
the rheumatoid arthritis dataset from Genetic Analysis Workshop-
15. We demonstrate that our metrics are capable of analyzing a 
diverse range of epidemiological data sets containing evidences 
for gene-gene interactions.   

Keywords 
Gene-gene interaction, information theory, entropy, complex 
diseases. 

1. INTRODUCTION 
 

Complex interactions involving a number of genes and multiple 
single nucleotide polymorphisms (SNP) and environmental 
factors are known to be associated with the risk of developing 
diseases such as cancer, autoimmune disease and cardiovascular 
disease. Advances in high throughput genotyping methods and the 
completion of human genome project have made generating large 

scale dense genetic maps of the human genome for 
epidemiological studies feasible [1, 2]. The successful 
identification of critical gene-gene and gene-environment 
interactions can provide the scientific basis for preventative and 
curative measures to help individuals with particular genetic 
susceptibilities. The additional information from these methods 
improves the prospects for uncovering potentially undiscovered 
genes involved in complex interactions underlying the genetic 
etiology of multi-factorial diseases.  

Single-locus based association analysis methods fail to detect all 
the loci affecting the disease susceptibility when observable 
marginal effects at each locus are small [3, 4]. Analysis of two-
locus models modeling the interaction involving a pair of locus 
and the disease phenotype have been studied by several 
researchers and shown to be computationally feasible when 
involving hundreds of thousands of loci [1, 2, 5, 6]. Traditionally, 
regression based methods such as multiple and logistic regression 
has been used for analysis of genetic models in which two 
susceptibility loci jointly influence the risk of developing a 
disease [7-10]. These methods involve the comparison of 
likelihoods of models incorporating different sets of disease 
model parameters that allows inferences to be drawn regarding 
the nature of the joint effect of the loci. However, regression 
based methods are computationally intensive and model 
complexity increases rapidly with the increase in number of loci 
and also with the number of possible allelic states at each locus.  

Information theoretic methods are among the most promising 
approaches for genetic disease association studies [11, 12]. 
Information-theoretic methods are not only based on strong 
theoretical backgrounds but are also versatile and are independent 
of the underlying genetic models. But only limited research has 
been done on leveraging these strengths for analysis of multi-
locus disease association studies. Several reports have used the 
Kullback-Leibler divergence (KLD) for genetic analysis. The 
KLD being a measure of the ‘distance’ between two distributions, 
it has been applied for 2-group comparisons such as those used to 
evaluate ancestry informative markers [11, 13, 14], as multi-locus 
linkage disequilibrium (LD) measure to identify of tag SNPs [11] 
and for analytical visualization [15-17]. Information theory based 
statistics have been proposed for genome-wide data analysis to 
test for allelic associations [18] and in identifying and visualizing 
gene-gene and gene-environment interactions [17].  

In this paper, we critically evaluate the effectiveness of two 
information theoretic metrics in detecting statistical gene-gene 
and gene-environment interactions in complex disease models. 
We choose some well-studied two-locus models of statistical 
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interactions and present their simulation studies to evaluate the 
power of information theoretic methods in identifying gene-gene 
incorporated in these models for numerous settings of the 
parameters (e.g. allele frequencies, linkage disequilibrium) 
involved. Using the metrics, we propose a simple forward 
selection algorithm to effectively scan data sets containing large 
number of loci and additional environmental variables 
(covariates). Finally, we assess the performance of the algorithm 
using the simulated rheumatoid arthritis dataset from Genetic 
Analysis Workshop 15 (GAW15) [19]. 

2. METHODS 
 

In this section, we define the information theoretic metrics that we 
shall use for detecting gene-gene interactions. Then we describe 
in details several two-locus disease models we have used to 
evaluate the effectiveness of the information theoretic measures in 
detecting the interactions incorporated in the disease models.  

2.1 Terminology and Representation 
 

Let S = {X1, X2,…, Xn} be the set of genetic variables to be 
analyzed where Xi denotes the random variable representing the 
genotypes at locus Li. We assume Li is biallelic (with alleles A and 
a) with three possible genotypes (AA, Aa, aa). The uncertainty of 
Xi is given by Shannon’s entropy [20] as, 

∑
∈
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Let C be the random variable representing the disease status 
(phenotype variable). The mutual information between each Xi 
and C is denoted by I(Xi;C) measures the mutual dependence of 
the two variables. It quantifies the distance between the true joint 
distribution of Xi and C and the joint distribution when Xi and C 
are independent. The m-way total correlation involving variables 
{ } SmXXX ⊆,,2,1 K  is defined as [21] , 
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The TC is the amount of information shared among the variables 
in the set. A TC value that is zero indicates independence, i.e. 
knowing the value of one variable tells you nothing about the 
others. The maximal value of TC occurs when one variable is 
completely redundant with the others; i.e., knowing one variable 
provides complete knowledge regarding all the others.  

Phenotype associated information: Given a set of genetic 
variables{ } SmXXX ⊆,,2,1 K , since we are interested in 
learning the information shared among the genetic variables with 
the phenotype variable, the informative part of TC over all the 
variables (including the phenotype variable) is obtained by 
subtracting from it the TC representing the interdependencies 
among the genetic variables in the absence of the phenotype 
variable C. Therefore, 
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Thus the information shared among the genetic variables with the 
phenotype variable C is given by the mutual information between 
C and the joint distribution of the m genetic variables.  We call 
this measure of information phenotype associated information 
(PAI). In terms of the probabilities of the variables, it can be 
represented as, 
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where V represents the set of possible values the set {X1, X2,…, 
Xm, C} takes. 

Pooled phenotype associated information: Let {X1, X2,…,Xm} 
be a set of genetic variables taking on genotypes values from the 
set G. Let g be any genotype in G. Denote the set of genotypes 
G\{g} by G~ . We pool the genotypes in set G~  into a single 

genotype g~  such that ∑
∈

=
Gx

xpgp ~ )()~( . Let X be a binary 

random variable on the set {g, g~ }.  

Then the pooled PAI is given by    
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Here, for each genotype Gg ∈ , we pool the remaining 
genotypes into one genotype group for the purpose of calculating 
the contribution of g to the PAIpooled. Thus this metric consists of 
the average contribution from each genotype in explaining the 
disease phenotype when the phenotype information in the 
remaining genotypes are pooled into one single block of genotype 

 

2.2 Forward Selection Algorithm 
 

The above two metrics can be used to design a simple stepwise 
forward selection algorithm. The algorithm takes as input the set 
of genetic variables, the phenotype variable, the metric to use M, 
and algorithm parameters ω and τ, which represent the number of 
combinations retained in each iteration of the search and the 
number of iterations to execute, respectively. At each iteration, 
the algorithm greedily tries to search for ω combinations of 
genetic variables of increasing sizes that has the highest values of 
M. It starts by calculating niCiXM K1);( ∈∀ . Top 

ω  combinations with the highest values of M are retained. Let 
this set of variables be denoted by S1. In the next step, 

);;( CjXiXM  1SiX ∈∀  , nj K1∈∀ , )( ij ≠  is calculated. 
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Again the top ω combinations with the highest values of M in are 
retained in the set S2. The above steps are repeated τ  times.  To 
assess the computation complexity involved, let m be the sample 
size of the data and n be the number of variables (excluding the 
phenotype variable). Lines 2-4 take O(nm2) computations because 
computation of the metric consumes O(m2) computations. Lines 
7-19 take O(τ n ω m2

 + τ nω2) computations since computations of 
M are repeated for τ  (for loop in Line 7) times n (for loop in Line 
9) times ω (for loop in Line 10) computations, and line 17 take 
O(nω2) computations. We recommend setting τ  to a value in the 
range 2-5 since we very rarely find gene-gene statistical 
interactions involving more than 5 variables at a time. The value 
of ω can be chosen according to the size of the data and the 
amount of time the researcher is willing to spend for the search. 
For example, with 100,000 markers we recommend setting it to 
50 to successfully capture the interactions within a reasonable 
timeframe. 
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2.3 Disease Models 
 

We focus on two-locus gene-gene interaction models that 
attempts to mimic biological interactions. In an effort to classify 
the types of interaction in the case of two biallelic loci, Li and 
Reich [6] have enumerated 512 possible two-locus models and 
identified a fewer number of non-redundant two-locus models. 
Four widely used models are selected in this paper for 
demonstrating the effectiveness of the information theoretic 
metrics in detecting gene-gene interactions. Each model specifies 
the penetrance of the disease given the genotypes of the two 
interacting loci. Let the two loci be denoted by L1 and L2. We 
assume each loci is biallelic with three possible genotypes. Let 
the two alleles at loci L1 be A and a and the genotypes are aa, Aa 
and AA. Let the two alleles at loci L2 be B and b and the 
genotypes are bb, Bb and BB. Let λaa , λAa , λAA be the marginal 
penetrances at L1 and λbb , λBb , λBB be the marginal penetrances at 
L2. Denote the joint penetrances for each genotype of the two loci 
by µaabb, µaaBb, µaaBB, µAabb, µAaBb, µAaBB, µAAbb, µAABb, and µAABB. 
Then, 
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The marginal penetrances at each locus is given by,  
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And, the overall population prevalence of the disease is given by, 
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The genotype frequencies can be calculated using the allele 
frequencies at each loci under Hardy Weinberg equilibrium 
assumptions. The four models are summarized below. Model 1 is 
an additive model that has a baseline penetrance for genotype 
aabb and it increases in an additive fashion with each copy of the 
disease causing allele in the genotype. Model 2 incorporates a 
multiplicative interaction with a baseline value that increases the 
chance of disease multiplicatively when at least one disease 
causing allele from each locus is present [2]. Model 3 is similar to 
Model 2 but specifies a threshold of disease probabilities and 
requires at least one copy of the disease causing allele from each 
locus of the corresponding genotype to have higher penetrance [2, 

Locus L1 

Locus L2 
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6]. However, increase in the number of disease causing alleles 
does not increase the chances of disease. Model 4 incorporates 
epistatic effects such that chances of disease increases from 
baseline value only for the genotypes containing two or three 
disease associated alleles from both the loci.  

 

Model 2: Multiplicative Model 4 : Epistasis 

 
Table 1. Penetrances for the four models across the genotypes of 
the two loci. 
 
Given fixed values of the disease prevalence and the allele 
frequencies at each locus, for each model, the marginal effects at 
each locus are bounded by some maximum value ξ and the 
interaction effects (θ and α) are solved for by working backwards 
using the above equations. For example, consider Model 2. Let 
allele frequencies at locus L1 and L2 be PA and Pa, and PB and Pb, 
respectively. Then the marginal penetrances and the disease 
prevalence are given by the following equations:-  
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The bounds on the marginal effect sizes at each locus are 
specified as 
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From these equations, once PA, PB, P(Disease), and ξ are known, 
we can solve for the interaction effects (θ and α) using iterative 
numerical methods such that the bounded marginal effects are 
maximized at each locus.  

2.4 Effects of Linkage Disequilibrium   
In large scale disease association studies, often markers that are in 
LD with the disease loci are genotyped instead of the causative 
loci. To evaluate the performance of the information theoretic 
metrics under such situations, in a manner similar to [2] we 
consider specifying different values of LD between an observed 
marker 1

~L  and the corresponding unobserved causative locus L1 

and, similarly the observed marker 2
~L  and the corresponding 

unobserved causative locus L2. By doing so, we evaluate the 
metrics only on the two observed markers that are in correlation 
individually with the unobserved disease associated markers.  

2.5 Logistic Regression  
Logistic Regression based association analysis is commonly 
employed to search for both single and multi-locus disease 
associations [9, 10]. The full single locus model under logistic 
regression modeling is [7, 8], 
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where r is the probability of each individual being a case, μ 
corresponds to the mean effect, the terms a and d correspond to 
the additive and dominance coefficient effects of the tested SNP 
variable, x and z are dummy variables with x = 1, z = -0.5 for one 
homozygote genotype (AA), x = 0, z = 0.5 for the heterozygote 
genotypes (Aa), and x = -1, z = -0.5 for the other homozygote type 
(aa). The log-likelihood ratio test is used to compare the full 
single locus model with the null model given by 0 values for both 
a and d and Bonferroni correction is commonly used to adjust the 
overall significance level. 

Logistic Regression is also used to model the effect of genotypes 
and SNP × SNP interactions on the disease risk. We construct a 
fully saturated model by including terms that allow for the 
estimation of additive effects and dominance effects for each SNP 
locus, along with the inter-SNP additive and dominance 
interactions. The full interaction model, following Cordell's 
notation [8] is: 
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where r is the probability of each individual being a case, μ 
corresponds to the mean effect, the terms a1, d1, a2, d2 are the 
dominance and additive effect coefficients of the two SNPs, iaa, 
iad, ida, idd represent their interaction coefficients and xi and zi are 
dummy variables with xi = 1, zi = -0.5 for one homozygote 

 

Model 1 : Additive Model 3 : Threshold 
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Figure 1-4: Power comparisons of the SNP combinations {1,C}, {2,C} and {1,2,C} for PAI (grey bars), PAIpooled(black bars) and 
Logistic Regression (white bars) methods assuming that the typed loci are the causative loci for each of the four models. The 
powers are plotted against the allele frequencies at both the loci.  

genotype (AA or BB), xi = 0, zi = 0.5 for the heterozygote 
genotypes (Aa or Bb), and xi = -1, zi = -0.5 for the other 
homozygote (aa or bb).  

3. EXPERIMENTAL RESULTS 
 

We have done detailed simulation of the four models with 
100,000 loci, the two loci associated with the disease were SNPs 
1 and 2 while the disease phenotype is denoted by C. For each 
gene-gene interaction model, a population of 100,000 individuals 
with genotypes in Hardy-Weinberg equilibrium and given allele 
frequencies was generated and a case-control study design was 
assumed. From the population, 1000 cases and 1000 controls were 
randomly selected. For convenience, the values 1, 2, and 3 were 
used to represent the homozygous for the major allele, the 
heterozygous genotypes and the homozygous for the minor allele, 
respectively. The value 1 was used to represent cases and 0 was 
used for controls. The disease prevalence was fixed at 0.01, the 
maximum marginal effect size (ξ) was varied as 1.5, 1.8 and 2.0, 
and the disease allele frequencies at each locus are varied as 0.05, 
0.1, 0.2 and 0.5. We compare the power achieved by the 

information theoretic metrics PAI and PAIpooled with that obtained 
using logistic regression based analysis. Specifically, we are 
interested in the power achieved by the PAI (and PAIpooled) values 
for the SNP combinations {1,C}, {2,C} and {1,2,C} since these 
are the combinations containing the implicated SNPs and the 
disease phenotype and their values are expected to be 
significantly higher than that of the combinations containing 
SNPs not involved in the disease process. High values for the 
combinations {1,C} and {2,C} shall enable the detection of  the 
marginal effects at either loci while high values for the 
combination {1,2,C} denotes the presence of marginal effects at 
either loci or an interaction involving the two loci. Power 
calculations are performed using strategies similar to that 
described in [17]. We conducted 1000 independent simulations 
for each of the maximum marginal effect sizes and different allele 
frequencies at the two loci. The magnitudes of the maximum 
marginal effect sizes are chosen based on known results about 
complex diseases and previous works [2]. For each experiment 
with given allele frequencies the null distribution of the PAI and 
PAIpooled for each combination were obtained by calculating them 
on genotypes simulated with a marginal effect size of unity at 
each locus (θ=0) and their 95th percentile values were computed. 
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Figure 5-8: Power comparisons of the SNP combinations {1,C}, {2,C} and {1,2,C} for PAI (grey bars), PAIpooled(black bars) and 
Logistic Regression (white bars) methods for LD of 0.5,0.7 and 0.9 between the each unobserved disease loci and the observed 
marker for each of the four models and assuming same allele frequency at either loci. The powers are plotted against the allele 
frequencies at both the loci. 

A one-sided analysis was assumed since PAI and PAIpooled are 
both positive and non-zero values indicate the presence of an 
interaction. The power was defined as the fraction of PAI (or 
PAIpooled) values in the test distribution that were ≥ 95th percentile 
of the values in the corresponding null distribution. Similarly, a 
significance level of 0.05 was used for logistic regression.  

A subset of the results for a low marginal effect size of 1.5 is 
presented in Figures 1 through 8 from our analysis such that not 
all of the three methods (PAI, PAIpooled and logistic regression) 
compared head to head achieve high power for different values of 
the parameters considered. In each figure, the white, grey and 
black bars represent the powers of logistic regression, PAI and 
PAIpooled metrics respectively for the combinations mentioned 
above. The x-axis enumerates the allele frequencies at both loci 
while the y-axis shows the powers achieved by each method. 
Figures 1-4 compares the powers for the information theoretic 
metrics and logistic regression for LD r2 = 1.0 between each pair 
of the unobserved disease loci and the observed marker. We 
observed that the information theoretic methods achieve power 
comparable with the complex logistic regression based analysis 
(for both one and two loci models) and successfully catch both the 
marginal effects at individual loci and the interactions effects 
between the two loci. In particular, for many of the parameter 
settings, PAIpooled achieves improved power than the other two 
methods in detecting the marginal effects in the Additive, 
Threshold and Epistasis models and interaction effects in the 
Additive and Epistasis models at lower allele frequencies. For all 
three methods, the power of the combination {1,2,C} is higher 

than that of the  individual loci {1,C} or {2,C} since it detects the 
marginal effects at either loci or an interaction involving the two 
loci. Note that the power is near zero for all three methods for 
Epistasis model at allele frequencies of 0.5. This is because the 
marginal effect sizes remain very close to unity at each disease 
locus for this setting of the parameter values. 

The effect of LD on the power was demonstrated in Figures 5-8 
for r2 = 0.5, 0.7 and 0.9. Since both the loci are simulated to have 
the same allele frequency, we show only one of the two loci 
(combination {1,C}) and the interaction combination {1,2,C}. As 
expected, the power of each of the combinations for all three 
methods increases with increase in LD between the observed 
marker and the unobserved disease loci. The effect of the allele 
frequencies is also pronounced for Additive and Multiplicative 
methods (Figures 5 and 6): increase in allele frequency increases 
power for both these methods, whereas for the other two models, 
power drops at the highest allele frequencies (Figures 7 and 8). 
Even at very low allele frequencies, information theoretic 
methods achieve better power than logistic regression for different 
values of LD, particularly in Additive, Threshold and Epistasis 
models. These results demonstrate the effectiveness of 
information theoretic methods in detecting various patterns of 
gene-gene interaction across a diverse range of simulation 
parameter settings.  

We further evaluate performance of the information theoretic 
metrics using the data corresponding to problem 3 of the Genetic 
Analysis Workshop 15 (GAW15) . The data consist of 100 
replicates simulated after the epidemiology and familial pattern of 
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Rheumatoid Arthritis (RA), a complex genetic disease in which it 
is hypothesized that several loci contribute to disease 
susceptibility. These data consist of 100 replicates of simulated 
data that are modeled after the rheumatoid arthritis data and 
contains: i) 730 microsatellite markers with an average spacing of 
5 cM; ii) 9,187 SNPs distributed on the genome to mimic a 10K 
SNP chip set, and iii) 17,820 SNPs on chromosome 6. In addition 
RA affectation status, sex, age, smoking status, AntiCCP (anti-
cyclic citrullinated peptide antibody)measure, IgM 
(immunoglobulin M) measure, severity, DR allele from father, 
DR allele from mother, age at onset, age at death are included as 
covariates (environmental variables). The AntiCCP and IgM 
measures are defined for the RA cases only. 

We have used the 9187 SNPs distributed on all the chromosomes 
from the first of the replicates to evaluate the PAI and PAIpooled 
metrics using the proposed forward selection algorithm, and the 
remaining replicates were used to obtain the 95% confidence 
intervals for metrics for each combination of variables found by 
the algorithm. Three separate analyses was done:(i) with 9187 
SNPs and Sex, Age, Smoking status as covariates and RA status 
as  the  phenotype  variable,  (ii)  with 9187 SNPs  and Sex,  Age,  

 

  

Smoking status as covariates and AntiCCP measure as the 
phenotype variable, and (ii) with 9187 SNPs and Sex, Age, 
Smoking status as covariates and IgM measure as the phenotype 
variable. Although phase information was provided, we chose to 
not include it and treated the data as unphased genotype data. All 

the analyses were performed with algorithm input parameters ω = 
50 and τ = 2. The Age, AntiCCP and IgM variables, which are 
continuous measures, were discretized by simple binning into five 
intervals of equal width.  

Figure 9-10 present the results for three analyses using the 
information theoretic metrics. The combinations in the figures 
were deemed  significant since their confidence  intervals  did  not  

 

  

span zero (zero indicates absence of an interaction). We find that 
both PAI and PAIpooled detects the SNPs and covariates that were 
simulated to have associations with the RA disease. In the figures, 
C{chromosome no.}_{SNP no.} is used as the naming convention 
for the markers. In figures 9A and 10A, the combinations consist 
of Locus DR and C (both SNPs C6_152-C6_155), Locus D 
(C6_162), Locus F (C11_387-C11_389) and the environmental 
variables Age, Sex and Smoking that had associations with the 
RA affection status in the simulated data set [22]. The simulation 
contained pronounced effects of DR on RA affection status and 
this was confirmed by the high values of PAI and PAIpooled which 
correspond to the DR locus. Locus D also has a direct effect on 
RA risk. Although it has a very low disease allele frequency (only 

Figure 9: Results of the Forward Selection Algorithm using the 
PAIpooled metric as the search criterion using the three 
phenotypes. The x-axis shows the combinations obtained and 
the phenotypes are implicit in each combination. The 
confidence intervals are shown on each the metric values for 
each combination.  

Figure 10: Results of the Forward Selection Algorithm using 
the PAI metric as the search criterion using the three 
phenotypes. The x-axis shows the combinations obtained and 
the phenotypes are implicit in each combination. The 
confidence intervals are shown on each the metric values for 
each combination. 

26



0.0083, making minor allele homozygotes very rare), both the 
information theoretic metrics detected it successfully. Figure 9-10 
B and C shows the combinations obtained with AntiCCP and IgM 
as phenotype variables, respectively. We successfully detect 
Locus DR and C (SNPs C6_152-C6_155) and Locus E (C18_269) 
with AntiCCP in figures 9B and 10B and the effects of Locus F 
(C11_387-C11_389) and Smoking on IgM in figures 9C and 10C 
using both the metrics. 

These results demonstrate that our metrics are capable of 
analyzing a diverse range of epidemiological data sets containing 
evidences for gene-gene as well as gene-environment interactions. 

4. DISCUSSION 
 

We have presented two information theoretic measures and 
critically evaluated their performances using extensive simulation 
strategies that uses four different models of gene-gene statistical 
interaction. Detecting genes and environmental; factors 
interacting to increase the susceptibility to disease risk is a very 
challenging task due to many reasons, particularly due to the large 
size of the data and presence of confounding factors like linkage 
disequilibrium, presence of phenocopies and locus heterogeneity. 
Although regression based analyses can detect disease associated 
loci, they are computationally very intensive that grows 
exponentially with the number of loci considered in the model. 
Information theoretic methods have high power in detecting gene-
gene interactions and have the advantage of being simpler and 
computationally faster. We do not intend to claim that our 
proposed metrics are the best since the properties of each method 
depends greatly on the factors like sample size, type of the 
interactions involved, density of the genetic maps, availability of 
phase information etc. However the metrics are appealing not 
only because they performed well in the experiments and the 
GAW15 data, but also because they are flexible and can be used 
when the genetic and environmental variables have different 
numbers of classes or when the phenotype has more than two 
classes. This means that SNP and microsatellite markers can be 
analyzed together if necessary. Also they are  naturally extensible 
to study models with more than two loci and environmental 
variables.     

We have used simulated data modeled after real disease data. The 
GAW15 data set was sufficiently rich and complex because it was 
modeled based on a real rheumatoid arthritis data set and the 
simulation details were available. The major advantage of using 
such data is that the ground truth is established during the 
simulation. For future work, we would like to test our metrics on 
several publicly available SNP data sets and also using more 
interaction models, particularly with models containing complex 
gene-gene and gene-environment interactions involving 3 or more 
loci in a manner similar to our simulations in [17]. Also given a 
large number of markers in large scale studies, some filtering 
approaches can be used as a preprocessing step to remove 
confounders caused by effects such as linkage disequilibrium. 
Additional biological knowledge e.g. gene expression and 
biological pathway information can also be incorporated along 
with the proposed metrics to make the search in the forward 
selection algorithm more biologically oriented.  
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ABSTRACT

Motivation: Establishing structural and functional rela-
tionships between sequences in the presence of only the pri-
mary sequence information is a key task in biological se-
quence analysis. This ability can be critical for tasks such
as making inferences of the structural class of unannotated
proteins when no secondary or tertiary structure is avail-
able. Recent computational methods based on profile and
mismatch neighborhood kernels have significantly improved
one’s ability to elucidate such relationships. However, the
need for additional reduction in computational complexity
and improvement in predictive accuracy hinders the widespread
use of these powerful computational tools.
Results: We present a new general approach for sequence
analysis based on a class of efficient string-based kernels,
sparse spatial sample kernels (SSSK). The approach offers
state-of-the-art accuracy for sequence classification, low com-
putational cost, and scales well with the size of sequence
databases, in both supervised and semi-supervised learning
settings. Application of the proposed methods to a remote
homology detection and a fold recognition problems yields
performance equal to or better than existing state-of-the-art
algorithms. We also demonstrate the benefit of the spatial
information and multi-resolution sampling for achieving this
accuracy and for discriminative sequence motif discovery.
The proposed methods can be applied to very large partially-
labeled databases of protein sequences because of low com-
putational complexity and show substantial improvements
in computing time over the existing methods.
Availability: Supplementary data and Matlab/C codes are
available at http://seqam.rutgers.edu/spatial-kernels/
Contact: vladimir@cs.rutgers.edu
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1. INTRODUCTION
Classification of protein sequences into structural or func-

tional classes is a fundamental problem in computational
biology. With the advent of large-scale sequencing tech-
niques, experimental elucidation of an unknown protein se-
quence function becomes an expensive and tedious task.
Currently, there are more than 61 million DNA sequences
in GenBank [3], and approximately 349,480 annotated and
5.3 million unannotated sequences in UNIPROT [2], making
development of computational aids for sequence annotation
a critical and timely task. In this work we focus on pro-
tein sequence classification problems using only the primary
sequence information. While additional sources of informa-
tion, such as the secondary or tertiary structure, may lessen
the burden of establishing the homology, they may often be
unavailable or difficult to acquire for new putative proteins.

Early approaches to computationally-aided homology de-
tection, such as BLAST [1] and FASTA [22], rely on aligning
the query sequence to a database of known sequences (pair-
wise alignment). Later methods, such as profiles [7] and
profile hidden Markov models (profile HMM) [6], collect ag-
gregate statistics from a group of sequences known to belong
to the same family. Such generative approaches only make
use of positive training examples, while the discriminative
approaches attempt to capture the distinction between dif-
ferent classes by considering both positive and negative ex-
amples. In many sequence analysis tasks, the discriminative
methods such as kernel-based [25] machine learning meth-
ods provide the most accurate results [4, 13, 17, 24]. Several
types of kernels for protein homology detection have been
proposed over the last decade. In [11], Jaakkola et al. pro-
posed SVMFisher, derived from probabilistic models. Leslie
et al. in [17] proposed a class of kernels that operate directly
on strings and derive features from the sequence content.
Both classes of kernels demonstrated improved discrimina-
tive power over methods that operate under generative set-
tings.
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Remote homology detection and fold recognition problems
are typically characterized by few positive training sequences
accompanied by a large number of negative training exam-
ples. Lack of positive training examples may lead to sub-
optimal classifier performance, therefore making training set
expansion necessary. However, enlarging the training set
by experimentally labeling the sequences is costly leading
to the need for leveraging unlabeled data to refine the de-
cision boundary. The profile kernel [14] and the mismatch
neighborhood kernel [26] both use large unlabeled datasets
and show significant improvements over the sequence classi-
fiers trained under the supervised setting. Nevertheless, the
promising results can be offset by a significant increase in
computational complexity, thus hindering use of such pow-
erful computational tools on very large sequence data sets.

In this study, we present a general approach for efficient
classification of biological sequences, based on a class of
string kernels, the sparse spatial sampling kernels (SSSK).
The proposed method effectively models sequences under
complex biological transformations such as multiple muta-
tions, insertions, and deletions by multi-resolutional sam-
pling. Under the SSSK, feature matching is independent of
the size of the alphabet set, which ensures low computational
cost. Such characteristics open the possibility of analyzing
very large unlabeled datasets under the semi-supervised set-
ting with modest computational resources. Compared to the
existing string kernels, the SSSK provide a richer representa-
tion for sequences by explicitly encoding the information on
spatial configuration of features within the sequences, lead-
ing to discovery of sequence motifs. The proposed methods
perform better and run substantially faster than existing
state-of-the-art kernel-based algorithms [14, 13, 26].

2. BACKGROUND
In this section, we briefly review previously published state-

of-the-art methods for protein homology detection. We de-
note the alphabet set as Σ in the whole study. Given a se-
quence X the spectrum-k kernel [16] and the mismatch(k,m)
kernel [17] induce the following |Σ|k-dimensional represen-
tation for the sequence:

Φ(X) =

 

X

α∈X

I(α, γ)

!

γ∈Σk

, (1)

where under the spectrum-k kernel, I(α, γ) = 1 if α = γ and
under the mismatch(k,m) kernel, I(α, γ) = 1 if α ∈ N(γ, m),
where N(γ, m) denotes the mutational neighborhood induced
by the k-mer γ for up to m mismatches.

Both the spectrum-k and the mismatch(k,m) kernel di-
rectly extract string features based on the observed sequence,
X. On the other hand, the profile kernel, proposed by Kuang
et al. in [13], builds a profile [7] PX and uses a similar |Σ|k-
dimensional representation, derived from the profile:

Φprofile(k,σ)(X)=

0

@

X

i=1···(TPX
−k+1)

I(PX(i, γ) < σ)

1

A

γ∈Σk

,(2)

where PX(i, γ) denotes the cost of locally aligning the k-
mer γ to the k-length segment starting at the ith position
of PX , σ a pre-defined threshold and TPX

the length of the
profile. Explicit inclusion of the amino acid substitution
process allows both the mismatch and the profile kernels

to significantly outperform the spectrum kernel and demon-
strate state-of-the-art performance under both supervised
and semi-supervised settings [26, 13] for the protein sequence
classification tasks. However, such method of modeling sub-
stitution process induces a k-mer mutational neighborhood
that is exponential in the size of the alphabet set during the
matching step for kernel evaluation; for the mismatch(k,m)
kernel, the size of the induced k-mer neighborhood is km|Σ|m

and for the profile(k,σ) kernel, the maximum size of the
mutational neighborhood is dependent on the threshold pa-
rameter σ and the shape of the profile. Increasing m or σ

to model multiple mutations will incur high complexity for
computing the kernel matrix hence hindering the use of such
powerful tools.

The promising results of the profile kernel shown in [13]
rely on the usage of a large unlabeled sequence database,
such as the non-redundant (NR) data set, for estimation of
profiles. On the other hand, for the mismatch string ker-
nel, Weston et al. propose to use the sequence neighborhood
kernel to leverage the unlabeled sequences in [26].

2.1 The sequence neighborhood kernel
The sequence neighborhood kernels take advantage of the

unlabeled data using the process of neighborhood induced
regularization. Let Φorig(X) be the original representation
of sequence X. Also, let N(X)1 denote the sequence neigh-
borhood of X (a set of sequences neighboring X). Weston et
al. proposed in [26] to re-represent X using:

Φnew(X) =
1

|N(X)|

X

X′∈N(X)

Φorig(X ′). (3)

Under the new representation, the kernel value between the
two sequences X and Y becomes:

K
nbhd(X, Y ) =

X

X′∈N(X),Y ′∈N(Y )

K(X ′, Y ′)

|N(X)||N(Y )|
. (4)

Note that under such settings, all training and testing se-
quences will assume a new representation, whereas in a tra-
ditional semi-supervised setting, unlabeled data are used
during the training phase only. The authors choose the
mismatch representation for the sequences and show that
the discriminative power of the classifiers improves signifi-
cantly once information regarding the neighborhood of each
sequence is available. Both the profile kernel and the mis-
match neighborhood kernel show very promising results and
demonstrate state-of-the-art performance in various protein
sequence classification tasks. However, the exponential size
of the incurred k-mer mutational neighborhood makes large-
scale semi-supervised learning under the mismatch represen-
tation very computationally demanding.

3. THE SPARSE SPATIAL SAMPLE KER-

NELS
In this section, we present a new class of string kernels, the

sparse spatial sample kernels (SSSK), that effectively model
complex biological transformations (such as highly diverse
mutation, insertion and deletion processes) and can be effi-
ciently computed. The SSSK family of kernels, parametrized

1We will discuss how to construct N(X) in Section 4.1.
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by three positive integers, assumes the following form:

K
(t,k,d)(X, Y ) =

X

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, · · · , at−1, dt−1, at|X)·
C(a1, d1, · · · , at−1, dt−1, at|Y )

,(5)

where C(a1, d1, · · · , at−1, dt−1, at|X) denotes the number of

times we observe substring a1

d1

↔ a2,
d2

↔, · · · ,
dt−1

←→ at (a1 sep-
arated by d1 characters from a2, a2 separated by d2 charac-
ters from a3, etc.) in the sequence X. This is illustrated in
Figure 1.

Figure 1: Contiguous k-mer feature α of a tradi-
tional spectrum/mismatch kernel (top) contrasted
with the sparse spatial samples of the proposed ker-
nel (bottom).

The new kernel implements the idea of sampling the se-
quences at different resolutions and comparing the resulting
spectra; similar sequences will have similar spectrum at one
or more resolutions. This takes into account possible muta-
tions, as well as insertions/deletions2. Each sample consists
of t spatially-constrained probes of size k, each of which lie
no more than d positions away from its neighboring probes.
In the proposed kernels, the parameter k controls the indi-
vidual probe size, d controls the locality of the sample, and
t controls the cardinality of the sampling neighborhood. In
this work, we use short samples of size 1 (i.e., k = 1), and
set t to 2 (i.e. features are pairs of monomers) or 3 (i.e.
features are triples.)

The proposed sample string kernels not only take into ac-
count the feature counts (as in the family of spectrum ker-
nels [16, 17] and gapped/subsequence kernels [15]), but also
include spatial configuration information, i.e. how the fea-
tures are positioned in the sequence. This is in contrast
to the gapped or subsequence kernels where such informa-
tion is not present. The spatial information can be critical
in establishing similarity of sequences under complex trans-
formations such as the evolutionary processes in protein se-
quences. The addition of the spatial information experimen-
tally demonstrates very good performance, even with very
short sequence features (i.e. k=1), as we will show in Sec-
tion 4.

The use of short features can also lead to significantly
lower computational complexity of the kernel evaluations.
The dimensionality of the features induced by the proposed
kernel is |Σ|tdt−1 for our choice of k = 1. As a result,
for triple-(1,3) (k = 1, t = 3, d = 3) and double-(1,5)
(k = 1,t = 2,d = 5) feature sets, the dimensionalities are
72, 000 and 2, 000, respectively, compared to 3, 200, 000 for

2We discuss how insertions and deletions are modeled in
Section 5.

the spectrum-(k) [16], mismatch-(k,m) [17], and profile(k,σ)
kernels with the common choice of k = 5. The low dimen-
sionality of the feature sets ensures efficient computation.
The proposed kernels can be efficiently computed using sort-
ing and counting. To compute the kernel values, we first
extract the features from the sequences and sort the ex-
tracted features in linear time using counting sort. Finally
we count the number of distinct features and update the ker-
nel matrix. For N sequences with the longest length n and
u distinct features, computing the NxN kernel matrix takes
linear O(dnN + min(u, dn)N2) time. Similar to the gapped
kernels [15], the complexity for kernel evaluation is also in-
dependent of the size of the alphabet set. We provide a
comprehensive comparison of the computational complexity
and running times with other kernel methods in Section 5.

3.1 SSSK under Semi-supervised learning set-
ting

The SSSK can also be extended to accommodate unla-
beled data, similar to the approach presented by Weston et
al. in [26]. Under the semi-supervised setting with unlabeled
sequences, direct use of Equation 4 for computation of the
refined kernel values between sequences X and Y requires
|N(X)| × |N(Y )| kernel evaluations, i.e. quadratic running
time in the size of the neighborhood. On the other hand,
use of Equation 3 requires explicit representation of the se-
quences which can be problematic when the dimensionality
of the feature space is high. As a result, performing such
smoothing operation over the mismatch kernel representa-
tion is computationally intensive, as noted in [26, 14].

Equation 3 lends a useful insight into the complexity of the
smoothing operation. For any explicit representation Φ(X),
its smoothed version can be computed in time linear in the
size of the neighborhood |N(X)|, therefore the smoothed
kernel can also be evaluated in time linear in the neighbor-
hood size. However, the smoothed representation in case of
the mismatch kernel cannot be computed explicitly due to
its exponential length. On the other hand, for the proposed
kernels (doubles and triples) the smoothed representations
can be computed explicitly, if desired.

In our experiments, we do not compute the explicit rep-
resentation and instead use implicit computations over in-
duced representations. For each neighborhood N(X), a set
of sequences neighboring X, we first sort the features (e.g.
doubles of characters) and then obtain counts for distinct
features to evaluate the kernel. This leads to a low space
and time complexity for the kernel computations. The pres-
ence of mismatches, however, prevents one from applying
the same approach under the mismatch representation.

4. EXPERIMENTAL RESULTS
We present experimental results for the remote homology

detection under the supervised setting on the SCOP dataset
in Section 4.2 and the results for large-scale semi-supervised
homology detection in Section 4.3. In Section 4.4, we com-
pare iterative (PSI-BLAST) and non-iterative (BLAST) meth-
ods for neighborhood construction. Finally, we present ex-
perimental results for remote fold recognition in Section 4.5.

4.1 Settings, parameters and performance mea-
sures

We evaluate all methods using the Receiver Operating
Characteristic (ROC) and ROC-50 [8] scores. The ROC-50
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score is the (normalized) area under the ROC curve com-
puted for up to 50 false positives. With a small number of
positive testing sequences and a large number of negative
testing sequences, the ROC-50 score is typically more in-
dicative of the prediction accuracy of a homology detection
method than the ROC score.

In all experiments, we normalize kernel values K(X, Y )
using

K
′(X, Y ) =

K(X, Y )
p

K(X, X)K(Y, Y )
(6)

to remove the dependency between the kernel value and
the sequence length. To perform our experiments, we use
an existing SVM implementation from a standard machine
learning package SPIDER3 with the default parameters. In
the semi-supervised experiments, we use kernel smoothing
(Equation 4) as in [26]. For each sequence X, to construct
the sequence neighborhood N(X) we query the unlabeled
dataset using 2 iterations of PSI-BLAST and recruit the se-
quences with e-values≤ 0.05 as neighbors of X (i.e. N(X) =
{X ′ : eV alue(X, X ′) ≤ 0.05}). To adhere to the true semi-
supervised setting, we remove all sequences in the unlabeled
datasets that are identical to any test sequence.

For all experiments, we compare with the state-of-the-art
classifiers using the triple(1,3) (k = 1,t = 3,d = 3) and the
double(1,5) (k = 1,t = 2,d = 5) feature sets.

4.2 SCOP Dataset
We use the dataset published in [26] to perform our exper-

iments. The dataset contains 54 target families from SCOP
1.59 [19] with 7, 329 isolated domains. Our experimental
setup is the same as that of Jaakkola [11, 13]. In each of the
54 experiments, to simulate the remote homology problem
one of the families is completely held out for testing (i.e.
the classifiers are tested on the the sequences from unseen
families). Different instances of this dataset have been used
as a gold standard for protein remote homology detection in
various studies [10, 18, 16, 17, 13].

We compare the performance of our proposed methods
with previously published state-of-the-art methods [18, 17]
under the supervised learning setting in Table 1. We also
show the dimensionality of the induced features and the ob-
served experimental running times, measured on a 2.8GHz
CPU, for constructing the 7329x7329 kernel matrix4. It is
clear from the table that the proposed kernels (doubles and
triples) not only show significantly better performance than
existing methods, but also require substantially less compu-
tational time. Also, as can be seen from the comparison with
the gapped kernels, the addition of the spatial information
substantially improves the classification performance. We
also show the ROC-50 plot in Figure 2. In the plot, the
horizontal axis corresponds to the ROC-50 scores and the
vertical axis denotes the number of experiments, out of 54,
with an equivalent or higher ROC-50 score. For clarity, we
do not display the plot for every method. Our results clearly
indicate that both double and triple kernels outperform all
other methods.

3http://www.kyb.tuebingen.mpg.de/bs/people/spider
4The code used for evaluation of the competing methods has
been highly optimized to perform on par or better than the
published spectrum/mismatch code. We also used the code
provided by the authors of the competing methods.
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Figure 2: Comparison of the performance (ROC50)
in the supervised setting. Spatial kernels (triples
and doubles) outperform other supervised methods.

Table 1: Comparison of the performance on the
SCOP 1.59 dataset under the supervised setting.
Method ROC ROC50 # dim. Time (s)

(5, 1)-mismatch 0.8749 0.4167 3200000 938
SVM-pairwise† 0.8930 0.4340 - -
gapped(6,2)[15] 0.8296 0.3316 400 55
gapped(7,3) 0.8540 0.3953 8000 297
(1,5) double 0.8901 0.4629 2000 54
(1,3) triple 0.9148 0.5118 72000 112
†: directly quoted from [18]

4.3 Large-Scale semi-supervised experiments
In this section, we perform the semi-supervised experi-

ments on three unlabeled datasets:the non-redundant (NR)
dataset, Swiss-Prot5, and PDB6. Table 2 summarizes the
main characteristics of the unlabeled datasets used in this
study. The second column shows the size of the unlabeled
datasets and the third column shows the mean, median and
maximum number of neighbors per sequence recruited using
PSI-BLAST with the corresponding unlabeled dataset.

Table 2: Number of neighboring sequence re-
cruited using PSI-BLAST with various unlabeled
datasets(mean/median/max).

Dataset # Seq # Neighbors

Swiss-Prot 101602 56/28.5/385
PDB 116697 16/5/334
NR 534936 114/86/490

We perform all semi-supervised experiments on a 2.8GHz
processor with 2GB of memory. Computation of the mis-
match neighborhood kernels is computationally demanding
and typically cannot be accomplished on a single machine for
anything but relatively small unlabeled datasets. Therefore,
the results for the mismatch neighborhood kernel can only

5We use the same version as the one employed in [26] for
comparative analysis of performance.
6As of Dec. 2007.
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Figure 3: In the upper panel, we show the ROC-50 plots of three different features using PDB, Swiss-Prot
and NR databases as unlabeled datasets, respectively. In the lower panel, we show the scatter-plot of ROC-
50 scores of the triple-(1,3) kernel (vertical) and the profile(5,7.5) kernel (horizontal). Any point above the
diagonal line in the figures (d),(e),(f) indicates better performance for the triple-(1,3) kernel.

Table 3: Statistical significance (p-values of the
Wilcoxon signed rank test) of the observed differ-
ences between pairs of methods (ROC-50 scores) on
unlabeled datasets. Triple denotes the triple-(1,3)
neighborhood kernel, double denotes the double-
(1,5) neighborhood kernel, mismatch denotes the
mismatch(5,1) neighborhood kernel, and profile de-
notes the profile(5,7.5) kernel.

PDB
double triple profile

double - 1.017e-01 4.762e-02
triple 1.017e-01 - 7.666e-06
profile 4.762e-02 7.666e-06 -

Swiss-Prot
double triple profile

double - 9.242e-05 4.992e-01
triple 9.242e-05 - 2.419e-04
profile 4.992e-01 2.419e-04 -

NR
double triple profile

double - 8.782e-06 9.762e-01
triple 8.782e-06 - 7.017e-06
profile 9.762e-01 7.017e-06 -

be shown using the previously published summary statis-
tics [26] on Swiss-Prot, a moderately populated sequence
database. In the upper panel of Figure 3, we show the ROC-
50 plots of the double-(1,5) neighborhood, triple-(1,3) neigh-
borhood, and profile(5,7.5) kernels using PDB (first col-
umn), Swiss-Prot (second column), and NR (third column)
sequence databases as the unlabeled datasets. The ROC-50
curves of the triple-(1,3) neighborhood kernel on all unla-
beled datasets consistently outperform the other two kernels.
Furthermore, the performance of the double-(1,5) neighbor-
hood kernel is on par with that of the profile(5,7.5) kernel.
In the lower panel, we show the scatterplots of the ROC-50
scores of the triple-(1,3) kernel and the profile(5,7.5) ker-
nel. Any point falling above the diagonal line in the figures
indicates better performance of the triple-(1,3) kernel over
the profile(5,7.5) kernel. As can be seen from these plots,
the triple kernel outperforms the profile kernel on all three
datasets (43/37/34 wins and 4/5/10 ties on PDB, Swiss-
Prot, and NR datasets, respectively).

We also show the statistical significance of the observed
differences between pairs of methods on various unlabeled
datasets in Table 3. All the entries in the table are the p-
values of the Wilcoxon signed rank test using the ROC-50
scores. For each unlabeled dataset, we highlight the method
that has the best overall performance. The triple-(1,3) ker-
nel consistently outperforms all other kernels, with high sta-
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Table 4: The overall prediction performance of all
compared methods over various unlabeled datasets.

PDB ROC ROC50
double-(1,5) neighborhood .9599 .7466
triple-(1,3) neighborhood .9717 .8240
profile(5,7.5) .9511 .7205

Swiss-Prot
double-(1,5) neighborhood .9582 .7701
triple-(1,3) neighborhood .9732 .8605
profile(5,7.5) .9709 .7914
mismatch nbhd† .955 .810

NR
double-(1,5) neighborhood .9720 .8076
triple-(1,3) neighborhood .9861 .8944
profile(5,7.5)-2 iterations .9734 .8151
profile(5,7.5)-5 iterations‡ .984 .874
profile(5,7.5)-5 iter. with
secondary structure‡

.989 .883

†:directly quoted from [26]
‡:directly quoted from [14]

tistical significance.
Finally, we show the overall prediction performance of all

compared methods over various unlabeled datasets in Ta-
ble 4. For each unlabeled dataset, we highlight the best ROC
and ROC-50 scores; on all datasets, the triple-(1,3) neigh-
borhood kernel achieves the best performance. Furthermore,
we achieve such performance by only 2 PSI-BLAST iter-
ations. For example, the triple-(1,3) neighborhood kernel
with 2 PSI-BLAST iterations outperforms the profile(5,7.5)
kernel with 5 PSI-BLAST iterations. We also note that
the performance of our kernels is achieved using primary
sequence information only. However, as shown in the table,
the triple-(1,3) kernel still outperforms the profile(5,7.5) ker-
nel with the added secondary structure information. Such
higher order information (e.g. secondary structure), if avail-
able and desirable, can be easily included in our feature set.

4.4 Non-iterative neighborhood construction
Performing the iterative search using PSI-BLAST for neigh-

borhood construction is computationally demanding and con-
sumes large portion of the overall running time of the meth-
ods. In this section, we present the results obtained using
BLAST search only. The use of BLAST only requires a sin-
gle pass over the unlabeled sequence database and therefore
requires substantially less computational time and resources
compared to the iterative multi-pass PSI-BLAST search.
We use the same threshold on e-value (≤ .05) to recruit the
neighboring sequences to form the neighborhood sets N(X),
for each query sequence X. We compare the performance
of the classifiers estimated using iterative (PSI-BLAST) and
non-iterative (BLAST) sequence neighborhood construction
in Table 5. First, we observe that, as the size of the un-
labeled sequence database increases, the margins between
the performance of the iterative and non-iterative sequence
neighborhood construction procedures narrows. Second, we
observe that, using only BLAST, the triple(1,3) neighbor-
hood kernel already outperforms the profile(5,7.5) kernel,
constructed with 2 PSI-BLAST iterations, and also shows
comparable performance with the profile(5,7.5) kernel, con-
structed with 5 PSI-BLAST iterations on the non-redundant

Table 5: Comparison of performance using iterative
(PSI-BLAST) and non-iterative (BLAST) sequence
neighborhood construction procedures. The perfor-
mance is measured using the triple(1,3) feature set.

Data set
PSI-BLAST BLAST

ROC ROC50 ROC ROC50
#neighbors
with BLAST

PDB 0.9691 0.8240 0.9557 0.7535 6/3/95
Swiss-Prot 0.9732 0.8605 0.9640 0.8144 16/9/177
NR 0.9861 0.8944 0.9787 0.8647 40/23/232

data set (Table 4). Finally, compared with the number of
neighbors recruited using PSI-BLAST in Table 2, we observe
a three-fold reduction when using non-iterative (BLAST)
neighborhood construction procedure. Such reduction in
neighborhood size enables faster training and classification
as well as reduces storage requirements for the support vec-
tors.

4.5 Preliminary results for fold prediction
For the fold recognition task, we use a challenging dataset

designed by Ding et al. 7 in [5], used as a benchmark in
many studies. The data set contains sequences from 27 folds
divided into two independent sets, such that the training and
test sequences share less than 35% sequence identities and
within the training set, no sequences share more than 40%
sequence identities.

We compare the performance of our methods under super-
vised and semi-supervised settings with previously published
methods on Ding and Dubchak benchmark data set in Ta-
ble 6. As can be seen from the table, our spatial kernels
achieve higher overall performance compared to the state-
of-the-art classifiers.

5. DISCUSSION
We next compare our family of kernels with other kernel

methods and discuss computational aspects of the methods.
We also demonstrate how our method discovers discrimina-
tive short sequence motifs.

5.1 Complexity Comparison
We first compare computational complexity of the meth-

ods in Table 7 and show the observed running times. Run-
ning time measurements for our methods are done on a
2.8GHz CPU. For supervised experiments, we compute the
full 7329x7329 kernel matrix for all methods. For the semi-
supervised setting (neighborhood kernels), we report aver-
age running time on the datasets used (i.e. PDB, Swiss-Prot,
and non-redundant (NR) databases.) Both the mismatch
neighborhood and the profile kernels have higher complex-
ity compared to the sample kernels due to the exponential
neighborhood size. The cardinalities of the mismatch and
profile neighborhoods are O(km|Σ|m), where k ≥ 5, and
|Σ| = 20, compared to a much smaller feature space size of
dt−1|Σ|t for the sample kernels, where t is 2 or 3, and d is 3 or
5, respectively. This complexity difference leads to order-of-
magnitude improvements in the running times of the sample
kernels over the mismatch and profile kernels. The difference
is even more pronounced when kernel smoothing is used un-
der a semi-supervised setting. The neighborhood mismatch

7http://ranger.uta.edu/∼chqding/bioinfo.html
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Table 6: Comparison on Ding and Dubchak benchmark data set

Method Error
Top 5
Error

Balanced
Error

Top 5
Balanced
Error

Recall
Top 5
Recall

Precision
Top 5
Precision

F1
Top5
F1

Supervised
SVM(D&D)† - - 56.5 - - - - - - -
Mismatch(5,1) 51.17 22.72 53.22 28.86 46.78 71.14 90.52 95.25 61.68 81.45
Double(1,5) 44.13 23.50 46.19 23.92 53.81 76.18 61.90 79.85 57.57 77.97
Triple (1,3) 41.51 18.54 44.99 21.09 55.01 78.91 80.42 89.19 65.33 83.74
Semi-supervised (Non-redundant data set)
Profile(5,7.5) 31.85 15.14 32.17 16.73 67.83 83.27 89.49 94.9 77.16 88.71
Double(1,5) 28.72 14.99 24.74 11.6 75.26 88.4 76.02 86.86 75.63 87.62
Triple(1,3) 24.28 12.79 22.38 11.79 77.62 88.21 84.02 91.45 80.69 89.8
Profile NR(Perceptron)‡ - - 26.5 - - - - - - -
All measures are presented as percentages.
†: quoted from [5]; ‡: quoted from [21]

kernel becomes substantially more expensive to compute for
large datasets as indicated in [14, 26] by Weston et al. .

Table 7: Complexity of computations.

Method Time complexity
Running
time (s)

Supervised setting

Triple kernel O(d2nN + d2|Σ|3N2) 112
Double kernel O(dnN + d|Σ|2N2) 54
Mismatch O(km+1|Σ|mnN + |Σ|kN2) 948
Gapped kernel O(

`

g

k

´

knN + |Σ|kN2) 176
Semi-supervised setting

Triple kernel O(d2HnN + d2|Σ|3N2) 327
Double kernel O(dHnN + d|Σ|2N2) 67
Mismatch O(km+1|Σ|mHnN + |Σk|N2) -
Profile kernel O(kMσnN + |Σ|kN2) 10 hours†

†
the running time is quoted from [14]

Notations used in the table: N-number of sequences,
n-sequence length,
H is the sequence neighborhood size,
|Σ| is the alphabet size
k, m are mismatch kernel parameters (k = 5, 6 and
m = 1, 2 in most cases)

Mσ is the profile neighborhood size, Mσ ≤ |Σk|

In previous studies [14, 26], to achieve good accuracy the
number of the PSI-BLAST iterations needs to be at least 5,
while our performance is achieved with only 2 iterations. We
also note that the results reported in [23] are not directly
comparable since an older SCOP 1.53 benchmark is used
and the results are optimized on testing sequences; also,
the obtained similarity measures in the corresponding study
do not satisfy positive semi-definiteness condition (are not
Mercer kernels).

5.2 Biological motivation
The feature sets induced by our kernels cover segments

of variable length (e.g., 2 − 6 residues in the case of the
double-(1, 5) kernel). On the other hand, the mismatch and
profile kernels cover segments of fixed length (e.g., 5 or 6
residues long) as illustrated in Figure 1. Sampling at dif-
ferent resolutions also allows one to capture similarity in
the presence of more complex substitution, insertion, and
deletion processes, whereas sampling at a fixed resolution,

the approach used in mismatch and spectrum kernels, limits
the sensitivity in the case of multiple insertions/deletions
or substitutions. Increasing the parameter m (number of
mismatches allowed) to accommodate the multiple substi-
tutions, in the case of mismatch/spectrum kernels, leads to
an exponential growth in the neighborhood size, and results
in high computational complexity.

The proposed features also capture short-term dependen-
cies and interactions between local sequence features by ex-
plicitly encoding the spatial information. In contrast, such
information is not present in the gapped/subsequence ker-
nels [15, 20]. In a weighted version of the subsequence kernel,
where each instance (subsequence) of a particular k-mer is
weighted inversely proportional to the length of the subse-
quence, the count for a particular k-mer is the sum of such
weights. When sequences are matched under the weighted
subsequence kernel, the final counts (the sum of weights) are
compared and no distinction is made as to how the features
were positioned in the sequences, i.e. the information on the
spatial configuration of the features within the sequence is
not retained.

We further illustrate differences between the proposed ker-
nels and gapped/subsequence kernels for the case when the
basic features (individual samples) of the spatial sample ker-
nels are single characters in Equations 7 (spatial kernels)
and 8 (gapped/subsequence kernels) below:

K(X, Y ) =
X

(a1,...,at)

ai∈Σ

X

(d1,...,dt−1)

0≤di<d

c((a1, d1, . . . , dt−1, at)|X)·
c((a1, d1, . . . , dt−1, at)|Y )

(7)

Kg(X, Y ) =
X

(a1,a2,...,at)

“

X

d1,d2,...,dt−1

c((a1,d1,...,dt−1,at)|X)

”

·

“

X

d1,d2,...,dt−1

c((a1,d1,...,dt−1,at)|Y )

” (8)

where c(·|X) is the (weighted) count and
Pt−1

i=1
di = g−t for

the gapped (g, t) kernels. Note that the spatial configuration
information is integrated out in the gapped/subsequence
kernels, but still maintained in SSSK.

5.3 Discovering short sequence motifs with spa-
tial information

Previous biological studies (e.g. [12]) suggested that the
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spatial information such as distances between some con-
served key positions can play a key role in capturing inherent
characteristics of superfamilies. Our method indirectly iden-
tifies meaningful features in the protein data using the Scor-
pion toxin-like superfamily as an example. Several families
in this superfamily are characterized by a number of disul-
phide bridges formed by conserved cysteine (C) residues.
The relative positions (distances) of some neighboring key
residues are also conserved as shown in Figure 4 (obtained
from PROSITE [9]) for the short-chain scorpion toxin fam-
ily. In the experiment, this family is held out for testing
and all other families under the superfamily are used for
training (16 positive training sequences). Among the pos-
itive sequences, 16 are selected as positive support vectors
and 88 out of 1067 negative sequences are selected as nega-
tive support vectors. Under the double(1,5) representation,
the pattern ’C C’ (3 residues between the two conserved
cysteines residues) has the highest weight, consistent with
the schematic representation shown in Figure 4. This fea-
ture is present in all positive support vectors, with the aver-
age count of 1.81 and in the negative support vectors with
the average count of 0.43. The corresponding feature ’CC’
under the gapped(2,4) representation has been suppressed
(ranked 38 out of 400 features) due to over-representation
of such feature in the negative support vectors: 39 out of
43 negative support vectors contain the feature, compared
to 25 out of 88 negative support vectors with the similar
feature using the double kernel. Integrating out the spatial
information suppresses such feature due to its presence in
the negative sequences (the average counts in the positive
and negative support vectors are very close: 8.33 and 7.61).
Lack of spatial information also leads to lower performance
for the gapped kernel: the ROC50 score for the gapped ker-
nel is 28.35, compared to 76.61 for the double kernel.
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Figure 4: The schematic representation of the
short-chain scorpion toxins family (obtained from
PROSITE)

6. CONCLUSION
We present a computationally efficient approach for pro-

tein sequence analysis that scales well with very large se-
quence databases and shows state-of-the-art performance on
two difficult tasks in protein sequence classification: remote
homology detection and remote fold recognition. The key
component of the method is the spatially-constrained sam-
ple kernel for efficient sequence comparison, which, when
combined with kernel smoothing using unlabeled sequence
databases, leads to rapid and accurate semi-supervised re-
mote homology detection and fold recognition. The pro-
posed methodology can be readily applied to other challeng-
ing problems in biological sequence analysis such as motif
elucidation, ranking and clustering.
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ABSTRACT
We have developed a novel Markov model which models
the genetic distance between viruses based on the Hemag-
glutinin (HA) gene, a major surface antigen of the avian
influenza virus. Using this model we estimate the prob-
ability of finding highly similar virus sequences separated
by long time gaps. Our biological assumption is based on
neutral evolutionary theory, which has been applied previ-
ously to study this virus [Gojobori, Moriyama, and Kimura.
PNAS Vol 87. 1990]. Our working hypothesis is that after
a long enough time gap and with the high mutation rate
usually found in RNA viruses, many site mutations should
accumulate, leading to distinct modern variants. We ob-
tained 3439 HA protein sequences isolated through years
1918 to 2006 from around the globe, aligned them to a con-
sensus sequence using the NCBI alignment tool, and used
a Hamming distance metric on the aligned sequences. We
tested our hypothesis by combining a standard Poisson pro-
cess with a Markov model. The Poisson process models the
occurrences of mutations in a given time interval, and the
Markov model estimates the probabilities of changes to the
genetic distances due to mutations. By coalescing all se-
quences at a given genetic distance to a single state, we
obtain a tractable Markov chain with a number of states
equal to the length of the base peptide sequence. The model
predicts that the probability of finding highly similar virus
after several decades is extremely small. The existence of re-
cent viruses which are very similar to older viruses suggests
that potentially there exists some reservoir which preserves
viruses over long periods.

Keywords
Influenza virus, Poisson process, Markov Model

1. INTRODUCTION
For the past century researchers have been studying in-

fluenza viruses (IV). Belonging to the viral family Orthomyx-
oviridae, influenza viruses have eight unique RNA segments
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[20] that encode 10 different gene products (PB1 polymerase,
PB2 polymerase, PA polymerases, Hemagglutinin (HA), Nu-
cleoprotein (NP), Neuraminidase (NA), Matrix M1 and M2
proteins, and Nonstructural NS1 and NS2 proteins). The
target of our study is the Hemagglutinin HA gene product.
We have developed a novel Markov model which models the
genetic distance between viruses based on the Hemagglu-
tinin (HA) gene, a major surface antigen of the avian in-
fluenza virus. Our working hypothesis is that after a long
enough time gap, many site mutations should accumulate
in the virus due to a lack of a proofreading function [6],
leading to distinct modern variants. We based our biolog-
ical assumption on neutral theory of evolution [7, 12, 17,
8] and that each amino acid site is under a neutral muta-
tion pressure. Previous studies have shown that subtypes
of influenza virus are subjected to higher silent substitution
rate [7, 24], which is consistent with the neutral theory of
molecular evolution. Although their studies were conducted
using nucleotide sequences, we believe that the same gen-
eral concept and framework can be applied to study protein
sequences of this virus under this evolutionary assumption.
We test our hypothesis by combining a standard Poisson
process with the Markov model. The Poisson process mod-
els the occurrences of mutations in a given time interval, and
the Markov model estimates the probabilities of changes to
the genetic distances due to mutations. We show that it
is highly unlikely that very similar sequences would arise
long after the original sequence. Given the observations of
several pairs of very similar sequences separated by several
decades, we conclude that there must be some reservoir or
evolutionary mechanism that is capable of preserving old
virus strains, allowing them to reappear after extended time
intervals.

2. MATERIALS AND METHODS

2.1 Protein Sequence Data and Processing
The HA protein is the major surface antigen of the in-

fluenza virus. Its role is to bind to host cell receptors pro-
moting fusion between the viron envelope and the host cell
[20]. Influenza A virus HA genes have been classified into
16 subtypes (H1-H16) according to their antigenic proper-
ties. This HA protein is cleaved into two peptide chains
HA1 and HA2 respectively when matured [19]. The HA2
chain has been found to vary less and is more conserved
compared to HA1 chain [10]. The HA1 chain is 329 residues
long and is the immunogenic part of HA protein. Past stud-
ies have shown that HA1 is undergoing continual diversify-
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ing change [5, 14] and is the most variable portion of the
influenza genome[16].

Using the NCBI Influenza database available online [23],
we have collected 3439 influenza virus type A protein se-
quences deposited before December, 2007 (excluding iden-
tical sequences and lab strains/NIAID FLU project). This
collection of protein sequences contains isolates from around
the globe and from a diverse range of hosts. We used pro-
tein sequences because they were known to give more re-
liable results than nucleotide sequences when constructing
evolutionary history [19]. Each of the 3439 sequences has
a unique annotation which contains the host organism, the
strain number, the year of isolation, subtype, and protein
name. We aligned all sequences to a consensus sequence
using the NCBI alignment tool. According to the study pre-
sented by [16], a uniform consensus strain tends to circulate
for some time, since the mutations that occur during repli-
cation do not become fixed in the early stages of circulating.
The aligned sequence data were then used with a genetic
distance function to determine the pairwise genetic distance
(including gaps) of the sequences.

The genetic distance between two sequences can be thought
of as the “edit” distance, which is the number of single letter
changes needed to transform one sequence to the other. This
yields a simple scoring function assigning a zero to a match-
ing amino acid base and a one to a mismatch. The sum
of all mismatches is usually called the Hamming distance
(k) or Hamming score for the pairwise sequence compari-
son. For comparison of very similar biological sequences,
this Hamming distance can be used under the assumption
that the observed difference between a pair of sites repre-
sents one mutation [3]. The present study could also be
carried out using BLAST or any alignment algorithm, but
as considerably greater expense. In [15], Hamming distance
was successfully used to find interesting clusters of IV HA
sequences and to predict vaccine strains with good results.
Hamming distance as genetic distance between viruses has
also been used effectively in modeling influenza viruses [18].
In our study, we compute the Hamming distance based on
a consensus alignment to account for the small number of
insertions and deletions. We then store the pairwise Ham-
ming distance scores of HA gene in a pairwise affinity matrix
and identify virus sequence pairs sharing high sequence sim-
ilarity (at least 90 percent) but separated by a long time
gap.

2.2 Markov model
We model all mutations as the combination of several sin-

gle point mutations and use a Poisson process to model the
mutation rate. The Poisson process naturally admits more
complex mutations, treating them as several single point
mutations occurring in rapid succession. Then we build a
compact Markov model to model the mutations themselves.
Markov models have proven to be a powerful tool for phy-
logenetic inference and hypothesis testing when modeling
transitions between amino acid states. Modeling amino acid
transitions is complex since proteins are made of twenty
amino acids. Because of this, we take a very different ap-
proach in building our Markov model. We are trying to avoid
a Markov chain where each sequence is a state because this
would give rise to an exponentially large number of states
(20n where n is the number of sites). In our Markov model,
we collect into a single state Hk all the protein sequences
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Figure 1: Markov transition matrix

at given Hamming distance k from the starting sequence
s0 ∈ H0. The starting sequence s0 can be chosen either as
the earliest isolated sequence or the most recent one as long
as a large time gap is observed when comparing to other
sequences. Our Markov model assigns the probability of an
arbitrary HA sequence s1 ∈ Hk mutating into a different HA
sequence s2 ∈ Hl through a single point mutation, where l

must be one of k − 1, k, k + 1.
Previous studies [4, 13] have shown that to better fit the

model, active sites should be excluded in the analysis under
the neutral theory framework. Here we have taken the same
approach where we have limited the mutations captured by
our Markov chain to the HA1 domain consisting of n = 329
sites, since this region is less conserved than the HA2 region
[15, 14]. Therefore, our Markov model has only n + 1 = 330
states instead of the 20n states it would have if we kept each
state and each possible transition separate.

Formally, consider a finite set of states labeled {H0, ..., Hn}.
In order to keep the Markov chain to a manageable size, we
group all the sequences within Hamming distance of k from
a start sequence into a single“super state”Hk. At each tran-
sition, we assume a single point mutation occurs, and that
this mutation of amino acid replacement exhibits uniform
rate of evolution throughout long periods of evolutionary
time [25]. This assumption is particularly consistent with
the concept of ”molecular evolutionary clock” and is central
to the neutral theory [1, 7, 22]. Because of the high rate at
which RNA viruses evolve, it has been observed that these
sequences show the typical pattern of neutral evolution [7].

We denote by a the size of the alphabet of amino acids,
in our case 20. For a sequence s1 ∈ Hk, there is a probabil-
ity k/n that the mutation occurs in one of the k positions
where s1 differs from s0, and if this change occurs, there is
a 1/(a − 1) chance that the new amino acid in this position
will match that in the same position of s0. Hence the prob-
ability xk of a transition from Hk to Hk−1 is xk = k

n
· 1

a−1
.

Similar reasoning yields the probability yk that a transition
will remain at the same Hamming distance: yk = k

n
· a−2

a−1
.

The probability that mutation will be in one of the n − k

sites that still match s0 is zk = 1 − k
n
, corresponding to

a transition from Hk to Hk+1. The resulting probabilities
xk, yk, zk are assembled into a Markov transition matrix M

shown in Figure 1. The entries in each row of M add up to
1.

Using this model, we can compute the probability qt that
a virus will have a Hamming distance at most k from the
initial source sequence after t mutations. We give the gen-
eral form of how to compute the above probability. We
let vt = (vt0, vt1, . . . , vtn) be the row vector of probabili-
ties of being in state H0, H1, . . . , Hn, respectively, after t

mutations. At t = 0 we are in state H0 consisting of just
the initial sequence. This is represented by the row vector
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Figure 2: H1 subtype pairwise Hamming distance
plot

Table 1: H1N1 subtype long time gap strains (Rate:
2×10−3 per site per year). H = Hamming distance,
Y = Year, EG = Expected number of mutations.

Strain H Y EG P-value

AAD17229: A/South
Carolina/1/1918 0 0 0

source
sequence

AAA91616: A/swine/St-
Hyacinthe/148/1990(H1N1) 20 72 47.3 6.3499e-06

v0 = (1, 0, 0, ..., 0). Then the vector of probabilities after
t + 1 mutations is related to the probabilities after t muta-
tions by vt+1 = vt ∗ M . The probability of being at most
distance k from s0 after t mutations is the sum of the first
k + 1 components of vt: qt(k) =

Pk

i=0
vti.

The above analysis counts events consisting of a single
mutation. The mutation rate is modeled by a Poisson pro-
cess [4, 11]. This includes the possibility that no mutation
or several mutations take place in a given time interval, as-
suming all sites undergo the same substitution rate. This
assumes that the probability of a mutation in a given time
interval depends only on the length of the interval but is
independent of the behavior outside the time interval. If
λ is the average number of mutations in a time interval of
1 year, then the probability that t mutations occur in any

time interval of length Y is given by pt(Y ) = (Y λ)
t

t!
e−Y λ.

The Poisson process models when mutations occur, and the
Markov model models the nature of the mutations. Combin-
ing these two models yields the probability Pκ(Y ) that after
Y years a sequence would appear with a genetic distance
from s0 of κ, namely Pκ(Y ) =

P∞

t=0
pt(Y ) · qt(κ).

3. RESULTS AND DISCUSSION
We first identified viruses having very close genetic dis-

tance but with large time gap. Figure 2 shows the H1 sub-
type HA1 domain pairwise sequence genetic distance plotted
against time of isolation in year. The genetic distance cor-
responds to the Hamming distance including gaps. Tables 1
and 2 show viruses sharing very high sequence similarity but
with large time gap. We used the amino acid substitution
rate of r = 2×10−3 per site per year for H1 and H2 subtype
viruses, estimated using the entire region of the HA gene and

Table 2: H2 subtype long time gap strains
Strain H Y EG P-value
AAY28987: A/Human/
Canada/720/2005(H2N2) 0 0 0 source

sequence
AAA64365: A/RI/5+/
1957(H2N2) 6 48 31.5 7.807e-09

AAA64363: A/RI/5-/
1957(H2N2) 3 48 31.5 1.206e-11

AAA64366: A/Singapore
/1/1957(H2N2) 5 48 31.5 1.155e-09

AAA43185:A/Human/
Japan/305/1957(H2N2) 5 48 31.5 1.155e-09

assuming that the molecular clock is followed [19] through-
out evolutionary history. This yields an annual mutation
rate of λ = nr = 329·2×10−3 = 0.658. We give two examples
of unlikely similarities over long time gaps in table 1 and 2.
Each table includes the accession number“Accession”, strain
name “Strain”, the Hamming distance “H” (calculated from
the first strain), expected number of mutations “EG”, the
year difference “Y”, and the P-value, the probability that
this Hamming distance (or less) would be observed after the
given time interval as predicted by our model. Using the
pandemic strain A/South Carolina/1/1918 and A/swine/St-
Hyacinthe/148/1990(H1N1) from Table 1, the interpretation
of the result is that after 72 years, the expected number
of mutations is 47.3 and the probability of being within a
Hamming distance of 20 of the original source sequence is
6.35×10−6. A very recent published research study [22] em-
ploying the state-of-the-art Bayesian Markov chain Monte
Carlo [2] which allows for substitution rate variation and
maximum likelihood phylogenetic methods indicates that
this A/swine/St-Hyacinthe/148/1990(H1N1) virus is a con-
taminant from the A/swine/1930 strain. The genetic dis-
tance of the pandemic strain to the A/swine/1930 strain is
22. The genetic distance of A/swine/1930 to A/swine/St-
Hyacinthe/148/1990(H1N1) is only 3 indicating that these
two strains are virtually identical. From table 2, we see that
A/Human/Canada/720/2005(H2N2) strain isolated in 2005
is exceptionally similar to the two asian pandemic strains
A/Singapore/1/1957(H2N2) and A/Human/Japan/305/
1957(H2N2) in terms of the genetic distance. These two
pandemic strains were human transmissible and currently
no influenza vaccines contained the H2N2 virus [21]. This
reappearance of the highly pathogenic H2N2 virus could
cause a potential pandemic as current population is not
immunized against this strain of virus. The origin of the
A/Human/Canada/720/ 2005(H2N2) strain was traced back
to human error at a laboratory distributing virus samples for
training purposes and the distributed strains were quickly
destroyed at all receiving laboratories [21].

To check how our model matches the data, we show the
predicted distribution of Hamming distances in Figure 3
based on a time interval of Y = 49 and annual mutation rate
of nr = 0.658 for the H2 subtype. The peak of the curve
indicates that with high probability, roughly 30-40 muta-
tion events would have taken place. This tells us that we
should expect to see the majority of H2 sequence pairs with
Hamming distances in the vicinity of 40 given the length
of time interval equals 49 years base on Poisson process as-
sumption. We compare this to the actual distribution of
Hamming distances found in the H2 subtype data shown in
Figure 4 over the range of data available (from 1957 through
2006 or a span of 49 years). Figure 4 shows that the majority
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Figure 3: Poisson process distribution plot
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Figure 4: H2 subtype histogram plot

of the H2 sequence pairs have Hamming distances around
35, which matches the Poisson process prediction. Figure
6 illustrates how the probability values of 3 H2 strains in
Table 2 are rapidly dropping against the expected number
of mutations from the Markov model calculation. Figure 5
shows the predicted distribution within the time interval of
70-85 years from the combined Poisson process and Markov
chain model using H1 subtype HA1 sequences. The curve
shows that with high probability most sequences should be
in states H60 to H70. This reflects what is observed in figure
2 and figure 7 where most sequences have Hamming distance
around 60-70. This suggests that our model is able to cap-
ture the overall evolutionary behavior of the influenza virus
according to a molecular clock, leading to a natural increase
in the genetic distance as time passes, consistent with [1].
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4. CONCLUSIONS
The extensive genetic diversity of influenza A viruses through

genetic drift and reassortment in the past century has re-
sulted in many new strains being produced. However, H1,
H2, and H3 subtypes strains have displayed cyclic behavior
resulting in influenza pandemics [6]. In the present study,
we applied neutral evolution theory to influenza virus HA
protein sequences to investigate the evolutionary dynamics
of the virus. Using the combination of a Poisson model with
a novel Markov model, we were able to calculate the proba-
bility values of finding a very similar sequence composition
separated by a large time gap. We have so far been able
to identify several anomalies due to laboratory artifacts or
human error. This finding is promising since we have yet
to apply it in a full scale comprehensive analysis of all 16
subtypes of the virus. However, judging by the extremely
low probability values obtained for some observed sample
strains, we conclude that there may be one or more sources
of various strains of the virus in which they are preserved
over long time periods. The existence of reservoirs preserv-
ing viruses for decades cannot be completely eliminated.
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5. FUTURE WORK
For future work, our immediate next steps are: (1) ap-

ply our model to nucleotide sequences which allows us to
compare our model with other existing models that study
nucleotide sequences of the virus, and (2) use a more robust
distance function in which we can incorporate antigenic dis-
tance information to the model. The evolutionary modeling
of influenza virus has primarily been based on models us-
ing nucleotides substitution models and phylogenetic analy-
sis. Our approach is different in that we demonstrated that
by applying the same theoretical concept, we can instead
model the differences between viral protein sequences. A
key advantage of modeling the differences between sequences
is that the distance function can be further refined so that
additional genetic information can be incorporated into the
model. However, it is imperative that we compare our model
to existing models where nucleotide sequences are used and
to provide a rigorous statistical framework in support of our
new Markov model.

Incorporating antigenic distance information is vital due
to the fact that vaccine strain selection is largely based on
the antigenic differences between circulating strains and in-
fluenza viruses are antigenically variable in each influenza
season. The antigenic distance map, originally proposed
by Lapedes and Farber [9], is a geometric interpretation of
Hemagglutination Inhibition (HI) binding assay data wheres
a point is assigned in a two dimensional grid between each
antigen and antiserum and this distance reflects the direct
HI measurement. The antigenic distance measurement can
be included in the genetic distance function to find a total
distance value. Further, HI binding assay data is generated
through the binding of individual viral protein to red blood
cells[6], this implies that a pairwise alignment scheme for se-
quence comparison can be used to capture each sequence’s
compositional characteristic.

6. ACKNOWLEDGEMENT
This work was partially supported by NSF grant 0534286.

7. REFERENCES
[1] R. Chen and E. C. Holmes. Avian influenza virus

exhibits rapid evolutionary dynamics. Mol. Biol.
Evol., 23:2336–2341, 2006.

[2] A. Drummond, G. Nicholls, A. Rodrigo, and
W. Solomon. Estimating mutation parameters,
population history and genealogy simultaneously from
temporally spaced sequence data. Genetics,
161:1307–1320, 2002.

[3] I. Eidhammer, I. Jonassen, and W. Taylor. Protein
Bioinformatics: An algorithmic approach to sequence
and structure analysis. John Wiley and Sons, 2004.

[4] W. Fitch and E. Margoliash. A method for estimating
the number of invariant amino acid coding positions in
a gene using cytochrome c as model case. Biochemical
Genetics, 1(1):65–71, June 1967.

[5] W. M. Fitch, J. M. E. Leiter, X. Li, and R. Palese.
Positive darwinian evolution in human influenza a
viruses. Proc. Natl. Acad. Sci. USA, 88:4270–4274,
1991.

[6] S. J. Flint, L. Enquist, V. Racaniello, and A. Skalka.
Principles of Virology. ASM press, 2004.

[7] T. Gojobori, E. Moriyama, and M. Kimura. Molecular
clock of viral evolution, and the neutral theory. Proc
Natl Acad. Sci. USA, 87:10015–10018, 1990.

[8] F. P. Kelly. Reversibility and Stochastic Networks.
John Wiley and Sons, 1979.

[9] A. Lapedes and R. Farber. The geometry of shape
space: Application to influenza. Journal of Theor.
Biol., 212(1):57–69, September 2001.

[10] W. Laver, G. Air, R. Webster, W. Gerhard, C. Ward,
and T. Dopheide. The antigenic sites on influenza
virus hemagglutinin. studies on their structure and
variation in influenza virus. Dev. Cell Biol, 5:295–307,
1980.

[11] M. Nei and S. Kumar. Molecular evolution and
phylogenetics. Oxford University Press, Oxford, New
York, 2000.

[12] T. Ohta and M. Kimura. On the constancy of the
evolutionary rate of cistrons. J Mol Evol, 1:18–25,
1971.

[13] M. Plass and E. Eyras. Differentiated evolutionary
rates in alternative exons and the implications for
splicing regulation. BMC Evol. Biol, 6(50), June 2006.

[14] J. B. Plotkin and J. Dushoff. Codon bias and
frequency-dependent selection on the hemagglutinin
epitopes of influenza a virus. Proc Natl Acad Sci USA,
100(12):7152–7157, June 2003.

[15] J. B. Plotkin, J. Dushoff, and S. A. Levin.
Hemagglutinin sequence clusters and the antigenic
evolution of influenza a virus. Proc Natl Acad Sci
USA, 99(9):6263–6268, April 2002.

[16] A. H. Reid, T. A. Janczewski, R. Lourens, A. J. Elliot,
R. Daniels, C. L. Berry, J. S. Oxford, and J. K.
Taubenberger. 1918 influenza pandemic caused by
highly conserved viruses with two receptor-binding
variants. Emerging Infectious Diseases, 9(10), 2003.

[17] S. A. Sawyer. On the past history of an allele now
known to have frequency p. J Appl Probab,
14:439–450, 1977.

[18] D. J. Smith, F. Forrest, D. H. Ackley, and A. S.
Perelson. Variable efficacy of repeated annual
influenza vaccination. Proc Natl Acad Sci USA,

42



96(24):14001–14006, November 1999.

[19] Y. Suzuki and M. Nei. Origin and evolution of
influenza virus hemagglutinin genes. Mol. Biol. Evol.,
19(4):501–509, 2002.

[20] R. Webster, W. Bean, O. Gorman, T. Chambers, and
Y. Kawaoka. Evolution and ecology of influenza a
viruses. Microbiological Reviews, pages 152–179,
March 1992.

[21] WHO. Epidemic and pandemic alert and response
(epr):international response to the distribution of a
h2n2 influenza virus for laboratory testing: Risk
considered low for laboratory workers and the public.
April 2005.

[22] M. Worobey. Phylogenetic evidence against
evolutionary stasis and natural abiotic reservoirs of
influenza a virus. J of Virology, 82(7):3769–3774, April
2008.

[23] P. B. Y. Bao, D. Dernovoy, B. Kiryutin, L. Zaslavsky,
T. Tatusova, J. Ostell, and D. Lipman. The influenza
virus resource at the national center for biotechnology
information. Journal of Virology, 82(2):596–601,
January 2008.

[24] S. Yoshiyuki. Natural selection on the influenza virus
genome. Mol. Biol. Evol, 23, June 2006.

[25] E. Zuckerkandl and L. Pauling. Molecular disease,
evolution, and genetic heterogeneity. Academic Press,
New York, 1962.

43



GPD: A Graph Pattern Diffusion Kernel for Accurate Graph
Classification with Applications in Cheminformatics

Aaron Smalter, Jun Huan, Jia Yi
Department of Electrical Engineering and

Computer Science
University of Kansas

Lawrence, KS, 66047-7621
{asmalter, jhuan, yjia}@eecs.ku.edu

Gerald H. Lushington
Molecular Graphics and Modeling Laboratory

University of Kansas
Lawrence, KS, USA

glushington@ku.edu

ABSTRACT
Graph data mining is an active research area. Graphs are
general modeling tools to organize information from het-
erogenous sources and have been applied in many scientific,
engineering, and business fields. With the fast accumulation
of graph data, building highly accurate predictive models for
graph data emerges as a new challenge that has not been
fully explored in the data mining community.

In this paper, we demonstrate a novel technique called
graph pattern diffusion kernel (GPD). Our idea is to leverage
existing frequent pattern discovery methods and to explore
the application of kernel classifier (e.g. support vector ma-
chine) in building highly accurate graph classification. In
our method, we first identify all frequent patterns from a
graph database. We then map subgraphs to graphs in the
graph database and use a process we call “pattern diffusion”
to label nodes in the graphs. Finally we designed a novel
graph alignment algorithm to compute the inner product of
two graphs. We have tested our algorithm using a number of
chemical structure data. The experimental results demon-
strate that our method is significantly better than compet-
ing methods such as those kernel functions based on paths,
cycles, and subgraphs.

Keywords
Graph Classification, Graph alignment, Frequent Subgraph
Mining

1. INTRODUCTION
Graphs are ubiquitous models that have been applied in

many scientific, engineering, and business fields. For exam-
ple, in finance data analysis, graphs are used to model dy-
namic stock price changes [17]. To analyze biological data,
graphs have been utilized in modeling chemical structures
[27], protein sequences [34], protein structures [13], and gene
regulation networks [14]. In web page classification, graphs
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are used to model the referencing relationship in HTML doc-
uments [40].

Due to the wide range of applications, development of
computational and statistical frameworks for analyzing graph
data has attracted significant research attention in the data
mining community. In the past a few years, various graph
pattern mining algorithms have been designed [10, 11, 28,
30, 36, 39]. There are also many research efforts dedicated to
efficiently searching graph databases [20, 26, 35, 37]. Most
of the existing work concentrates on analyzing graph data in
an unsupervised way, and making predictions about graphs
is usually not the goal. The research focus is well justified,
since in order to make predictions of graph data we must
have a large number of labeled training samples. Activi-
ties such as sample collection and sample labeling are time
consuming and expensive.

With the rapid development of powerful and sophisticated
data collection methods, there is a fast accumulation of la-
beled graph data. For example, many XML documents are
modeled as trees or graphs and it is important to build
classifiers for XML data [38]. As another example, natu-
ral language processing of sentences usually produces a tree
(parsing tree) representation of a sentence. In many social
science studies, building automated systems to classify sen-
tences into several groups [21] is an important task.

What is especially interesting to us is the chemical clas-
sification problem in cheminformatics. Chemical structures
have been studied using graph modeling for a long time [29].
With recently developed high throughput screening meth-
ods, the National Institute of Health has started an ambi-
tious project called the Molecular Library Initiative aiming
to determine and publicize the biological activity of at least
a million chemical compounds each year in the next 5 to 10
years[2].

With the fast accumulation of graph data including class
labels, graph classification, which we focus on in this paper,
is an emergent research topic in the data mining community.
Though classification has been studied for many years in
data mining, graph classification is undeveloped and brings
many new challenges. Below, we highlight a few of the new
challenges.

In many existing classification algorithms [4], samples and
their target values are organized into an object-feature ma-
trix X = (xi,j) where each row in the matrix represents a
sample and each column represents a measurement (or a fea-
ture) of the sample. Graphs are among a group of objects
called semi-structured data that cannot easily conform to a
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matrix representation. Other examples in the group include
sequences, cycles, and trees. Though many different features
have been proposed for graph data (e.g. paths, cycles, and
subgraphs), there is no universally accepted way to define
features for graph data.

Besides choosing the right feature representation, com-
putational efficiency is also a serious concern in analyzing
graph data. Many graph related operations, such as sub-
graph matching, clique identification, and hamiltonian cycle
discovery are NP-hard problems. For those that are not NP-
hard problems, e.g. all-by-all shortest distance, the compu-
tational cost could be prohibitive for large graphs.

In this paper, we aim to leverage existing frequent pat-
tern mining algorithms and explore the application of ker-
nel classifiers in building highly accurate graph classifica-
tion algorithms. Towards that end, we demonstrate a novel
technique called graph pattern diffusion kernel (GPD). In
our method, we first identify all frequent patterns from a
graph database. We then map subgraphs to graphs in the
graph database and project nodes of graphs to a high di-
mensional space with a specially designed function. Finally
we designed a novel graph alignment algorithm to compute
the inner product of two graphs. We have tested our algo-
rithm using a number of chemical structure data sets. The
experimental results demonstrate that our method is signif-
icantly better than competing methods such as those based
on paths, cycles, and other subgraphs.

In summary we present the following contributions in this
paper:

• We have designed a novel way to measure graph simi-
larity using graph kernel functions

• We prove that the exact computation of the kernel
function is an NP-hard problem and we have designed
an efficient algorithm to approximately compute the
graph kernel function.

• We have implemented our kernel function and tested it
with a series of cheminformatics data sets. Our exper-
imental study demonstrates that our algorithm per-
forms much better than existing state-of-the-art graph
classification algorithms.

The rest of the paper is organized as follows. In section
1.1, we discuss the research efforts that are closely related
to our current effort. In section 2, we define important con-
cepts such as labeled graphs and graph kernel function, and
clearly layout the graph classification problem. In section 3,
we present the details of our way of measuring graph simi-
larity with kernel functions. In section 4 we use real-world
data sets to evaluate our proposed methods and perform a
comparison of ours to the current state-of-the-art. Finally
we conclude and present our future plan in section 5.

1.1 Related Work
We survey the work related to graph classification meth-

ods by dividing them into two categories. The first cate-
gory of methods explicitly collect a set of features from the
graphs. Possible choices are paths, cycles, trees, and general
subgraphs [38]. Once a set of features is determined, a graph
is described by a feature vector, and any existing classifica-
tion methods such as CBA [4] and decision tree [24] that
work in an n-dimensional Euclidian space, may be applied
for graph classification.

The second approach is to implicitly collect a (possibly
infinite) set of features from graphs. Rather than comput-
ing the features, this approach computes the similarity of
graphs, using the framework of “kernel functions” [31]. The
advantage of a kernel method is that it has low chance of
over fitting, which is a serious concern in high dimensional
space with low sample size.

In what follows we first give a brief review of pattern dis-
covery algorithms from graphs. Those algorithms provide
features for graph classification. We then review the first
category algorithms, which explicitly utilize identified fea-
tures. We delay the discussion of graph kernel functions to
section 2 where we discuss kernel function in general and
graph kernel functions specifically.

1.1.1 Pattern Discovery
Algorithms that search for frequent patterns (e.g. trees,

paths, cyclic graphs) in graphs can be roughly divided into
three groups.

The first group uses a level-wise search strategy, includ-
ing AGM [15] and FSG [22]. The second category takes a
depth-first search strategy, including gSpan[36] and FFSM
[16]. Different from level-wise search algorithms AGM and
FSG, the depth-first search strategy utilizes a back-track
algorithm to mine frequent subgraphs. The advantage of a
depth-first search is a better memory utilization since depth-
first search keeps one frequent subgraph in memory and enu-
merates its supergraphs, in contrast to keeping all k-edge
frequent subgraph in memory.

The third category of frequent subgraph mining algorithms
does not work directly on a graph space to identify frequent
patterns. Instead, algorithms in this category first project
a graph space to another space such as that of trees, then
identify frequent patterns in the projected space, and finally
reconstruct all frequent patterns in the graph space. We call
this strategy progressive mining. Algorithms in this category
includes SPIN [12] and GASTON [23].

1.1.2 Graph Classification
Below we review two algorithms that use rule based meth-

ods for classifying graph data.
XRules [38] utilizes frequent tree-patterns to build a rule

based classifier for XML data. Specifically, XRules first iden-
tifies a set of frequent tree-patterns. An association rule:
G → ci is then formed where G is a tree pattern and ci

is a class label. The confidence of the rule is the condi-
tional probability p(ci|G) estimated from the training data.
XRules carefully selects a subset of rules with high confi-
dence values and uses those rules for classification.

Graph boosting [21] also utilizes substructures toward graph
classification. Similar to XRules, graph boosting uses rules
with the format of G → ci. Different from XRules, it uses
the boosting technique to assign weights to different rules.
The final classification result is computed as the weighted
majority.

In the following discussion, we present the necessary back-
ground for a formal introduction to the graph classification
problem, and introduce a suite of graph kernel functions for
graph classification.

2. BACKGROUND
In this section we discuss a few important definitions for

graph database mining: labeled graphs, subgraph isomor-
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Figure 1: A Database of three labeled graphs.

phic relation, graph kernel function, and graph classifica-
tion.

Definition 2.1. A labeled graph G is a quadruple G =
(V, E, Σ, λ) where V is a set of vertices or nodes and E ⊆
V × V is a set of undirected edges. Σ is a set of (disjoint)
vertex and edge labels, and λ: V ∪E → Σ is a function that
assigns labels to vertices and edges. We assume that a total
ordering is defined on the labels in Σ.

A graph database is a set of labeled graphs.

Definition 2.2. A graph G′ = (V ′, E′, Σ′, λ′) is sub-

graph isomorphic to G = (V, E,Σ, λ), denoted by G′ ⊆ G,
if there exists a 1-1 mapping f : V ′ → V such that

• ∀v ∈ V ′, λ′(v) = λ(f(v))

• ∀(u, v) ∈ E′, (f(u), f(v)) ∈ E, and

• ∀(u, v) ∈ E′, λ′(u, v) = λ(f(u), f(v))

.

The function f is a subgraph isomorphism from graph G′

to graph G. We say G′ occurs in G if G′ ⊆ G. Given a sub-
graph isomorphism f , the image of the domain V ′ (f(V ′))
is an embedding of G′ in G.

Example 2.1. Figure 1 shows a graph database of three
labeled graphs. The mapping (isomorphism) q1 → p3, q2 →
p1, and q3 → p2 demonstrates that graph Q is subgraph iso-
morphic to P and hence Q occurs in P . Set {p1, p2, p3} is
an embedding of Q in P . Similarly, graph S occurs in graph
P but not Q.

Problem Statement: Given a graph space G∗, a set
of n graphs sampled from G∗ and the related target values
of these graphs D = {(Gi, Ti, )}

n
i=1, the graph classifica-

tion problem is to estimate a function F : G∗ → T that
accurately map graphs to their target value.

By classification we assume all target values are discrete
values, otherwise it is a regression problem. Below, we re-
view several algorithms for graph classification that work
within a common framework called a kernel function. The
term kernel function refers to an operation of computing the
inner product between two points in a Hilbert space. Kernel
functions are widely used in classification of data in a high
dimensional feature space.

2.1 Kernel Functions for Graphs
Graph kernel functions are simply kernel functions that

have been defined to compute the inner product between two
graphs. In recent years a variety of graph kernel functions

have been developed, with promising application results as
described by Ralaviola et al. [25]. Among these methods,
some kernel functions draw on graph features such as walks
[19] or cycles [9], while others may use different approaches
such as genetic algorithms [3], frequent subgraphs [6], or
graph alignment [7]. We review two graph kernel functions
in details due to their close relationship to our algorithm.

Kashima et al. [19] proposed a kernel function called the
marginalized graph kernel. This kernel function is based
on the use of shared label sequences in the comparison of
graphs. Their marginalized graph kernel uses a Markov
model to randomly generate walks of a labeled graph, based
on a transition probability matrix combined with a walk ter-
mination probability. These collections of random walks are
then compared and the number of shared sequences is used
to determine the overall similarity between two graphs.

The optimal assignment kernel, proposed by Fröhlich et
al. [7], differs significantly from the marginalized graph ker-
nel in that it attempts to align two graphs, rather than com-
pare sets of linear substructures. This kernel function first
computes the similarity between all vertices in one graph and
those in another. The similarity between the two graphs is
then computed by finding the maximal weighted bipartite
graph between the two sets of vertices, called the optimal
assignment. The authors investigate an extension of this
method whereby certain structure patterns defined a priori
by expert knowledge, are collapsed into single vertices, and
this reduced graph is used as input to the optimal assign-
ment kernel.

3. GRAPH ALIGNMENT KERNELS
Here we present our design of a pattern diffusion kernel.

We start the section by first presenting a general framework.
We prove, through a reduction to the subgraph isomorphism
problem, that the computational cost of the general frame-
work can be prohibitive for large graphs. We then present
our pattern based graph alignment kernel. Finally we show
a technique we call “pattern diffusion” that can significantly
improve graph classification accuracy in practice.

3.1 Graph Similarity Measurement with Align-
ment

An alignment of two graphs G and G′ (assuming |V [G]| ≤
|V [G′]|) is a 1-1 mapping π : V [G] → V [G′]. Given an
alignment π, we define the similarity between two graphs,
as measured by a kernel function kA, below:

kA(G, G
′) = max

π

X

v

kn(v, π(v)) +
X

u,v

ke((u, v), (π(u), π(v)))

(1)
The function kn is a kernel function to measure the simi-

larity of node labels and the function ke is a kernel function
to measure the similarity of edge labels. Equation 1 uses
an additive model to compute the similarity between two
graphs. The maximal similarity among all possible map-
pings is defined as the similarity between two graphs.

3.2 NP-hardness of Graph Alignment Kernel
Function

It is no surprise that computing the graph alignment ker-
nel is an NP-hard problem. We prove this with a reduction
from the graph alignment kernel to the subgraph isomor-
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phism problem. In the following paragraphs, we assume we
have an efficient solver of the graph alignment kernel prob-
lem, we show that the same solver can be used to solve the
subgraph isomorphism problem efficiently. Since the sub-
graph isomorphism problem is an NP-hard problem, with
the reduction we mentioned before we prove that the graph
alignment kernel problem is therefore an NP-hard problem
as well. Note: this subsection is a stand-alone component of
our paper, and readers who choose to skip this section should
encounter no difficulty in reading the rest of the paper.

Given two graphs G and G′ (for simplicity, assume nodes
and edges in G and G′ are not labeled as usually studied in
the subgraph isomorphism problem), we use a node kernel
function that returns a constant 0. We define an edge kernel
function ke : V [G] × V [G] × V [G′] × V [G′] → R as

ke((u, v), (u′
, v

′)) =



1 if (u, v) ∈ E[G] and (u′, v′) ∈ E[G′]
0 otherwise

With the constant node function and the specialized edge
function, the kernel function of two graphs is simplified to
the following format:

kA(G, G
′) = max

π

X

u,v

ke((u, v), (π(u), π(v))) (2)

We establish the NP-hardness of the graph alignment ker-
nel with the following theorem.

Theorem 3.1. Given two (unlabeled) graphs G and G′

and the edge kernel function ke defined previously, G is sub-
graph isomorphic to G′ if and only if Ka(G, G′) = |E[G]|

Proof. If: We notice from the definition of ke that the
maximal value of Ka(G, G′) is |E[G]|. Given Ka(G, G′) =
|E[G]|, we claim that there exists an alignment function
π : V [G] → V [G′] such that for all (u, v) ∈ E[G] we have
(π(u), π(v)) ∈ E[G′]. The existence of such a function π

guarantees that graph G is a subgraph of G′.

Only if: Given G is a subgraph of G′, we have an align-
ment function π : V [G] → V [G′] such that for all (u, v) ∈
E[G] we have (π(u), π(v)) ∈ E[G′]. According to Equation
2, Ka(G, G′) = |E[G]|.

Theorem 3.1 shows that the graph alignment kernel prob-
lem is no easier than the subgraph isomorphism problem
and hence is at least NP-hard in complexity.

3.3 Graph Node Alignment Kernel
To derive an efficient algorithm scalable to large graphs,

our idea is that we use a function f to map nodes in a graph
to a high (possibly infinite) dimensional feature space that
captures not only the node label information but also the
neighborhood topological information around the node. If
we have such function f , we may simplify the graph kernel
function with the following formula:

kM (G, G
′) = max

π

X

v∈V [G]

kn(f(v), f(π(v))) (3)

Where π : V [G] → V [G′] denotes an alignment of graph
G and G′. f(v) is a set of “features” associated with a node.

With this modification, the optimization problem that
searches for the best alignment can be solved in polyno-
mial time. To derive a polynomial running time algorithm,

we construct a weighted complete bipartite graph by mak-
ing every node pair (u,v) ∈ V [G] × V [G′] incident on an
edge. The weight of the edge (u,v) is kn(f(v), f(u)). In
Figure 2, we show a weighted complete bipartite graph for
V [G] = {v1, v2, v3} and V [G′] = {u1, u2, u3}.

With the bipartite graph, a search for the best alignment
becomes a search for the maximum weighted bipartite sub-
graph from the complete bipartite graph. Many network
flow based algorithms (e.g. linear programming) can be used
to obtain the maximum weighted bipartite subgraph. We
use the Hungarian algorithm with complexity O(|V [G]|3).
For details of the Hungarian algorithm see [1].

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 2: The maximum weighted bipartite graph

for graph alignment. Highlighted edges (v1, u2), (v2, u1),

(v3, u3) have larger weights than the rest of the edges

(dashed).

Applying the Hungarian algorithm to graph alignment
was first explored by [7] for chemical compound classifica-
tion. In contrast to their algorithm, which utilized domain
knowledge of chemical compounds extensively and devel-
oped a complicated recursive function to compute the sim-
ilarity between nodes, we develop a new framework that
maps such nodes to a high dimensional space in order to
measure the similarity between two nodes without assum-
ing any domain knowledge. Even in cheminformatics, our
experiments shows that our technique generate similar and
sometimes better classification accuracies compared to the
method reported in [7].

Unfortunately, using the Hungarian algorithm for assign-
ment, as used by [7] is not a true Mercer kernel. Since our
proposed kernel function uses this algorithm as well, it is also
not a Mercer kernel. Like in [7], however, we have found that
practically our kernel still performs competitively.

3.4 Pattern Diffusion
In this section, we introduce a novel function “pattern

diffusion” to project nodes in a graph to a high dimensional
space that captures both node labeling information and local
topology information. Our design has the following advan-
tages as a kernel function:

• Our design is generic and does not assume any domain
knowledge from a specific application. The diffusion
process may be applied to graphs with dramatically
different characteristics.

• The diffusion process is straightforward to implement
and can be computed efficiently.

• We prove that the diffusion process is related to the
probability distribution of a graph random walk (in
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Appendix). This explains why the simple process may
be used to summarize local topological information.

Below, we outline the pattern diffusion kernel in three
steps.

In the first step, we identify a seed as a starting point
for the diffusion. In our design, a “seed” could be a single
node, or a set of connected nodes in the original graph. In
our experimental study, we use frequent subgraphs for seeds
since we can easily compare a seed from one graph to a seed
in another graph. However, there is no requirement that we
must use frequent subgraphs.

In the second step given a set of nodes S as seed, we
recursively define ft in the following way.

The base f0 is defined as:

f0(u) =



1/|S| if u ∈ S

0 otherwise

Given some time t, we define ft+1 (t ≥ 0) with ft in the
following way:

ft+1(v) = ft(v) × (1 −
λ

d(v)
) +

X

u∈N(v)

ft(u) ×
λ

d(u)
(4)

In the notation, N(v) is the set of nodes that connects to
v directly. d(v) is the node degree of v, or d(v) = |N(v)|. λ

is a parameter that controls the diffusion rate.
The formula 4 describes a process where each node dis-

tributes a λ fraction of its value to its neighbors evenly and
in the same way receives some value from its neighbors. We
call it “diffusion” because the process simulate the way a
value is spreading in a network. Our intuition is that the
distribution of such a value encodes information about the
local topology of the network.

To constrain the diffusion process to a local region, we use
one parameter called diffusion time, denoted by τ , to control
the diffusion process. Specifically we limit the diffusion pro-
cess to a local region of the original graph with nodes that
are at most τ hops away from a node in the seed S. For this
reason, the diffusion is referred to as “local diffusion”.

Finally, for the seed S, we define the mapping function fS

as the limit function of ft as t approaches to infinity, or

fS = lim
t→∞

ft (5)

3.5 Pattern Diffusion Kernel and Graph Clas-
sification

In this section, we summarize the discussion of kernel
function and show how the kernel function is utilized to con-
struct an efficient graph classification algorithm at both the
training and testing phases.

3.5.1 Training Phase
In the training phase, we divide graphs of the training

data set D = {(Gi, Ti, )}
n
i=1 into groups according to their

class labels. For example in binary classification, we have
two groups of graphs: positive or negative. For multi-class
classification, we have multiple groups of graphs where each
group contains graphs with the same class label. The train-
ing phase is composed of four steps:

• Obtain frequent subgraphs for seeds. We identify fre-
quent subgraphs from each graph group and union the
subgraph sets together as our seed set S .

• For each seed S ∈ S and for each graph G in the train-
ing data set, we use fS to label nodes in G. Thus the
feature vector of a node v is a vector LV = {fSi

(v)}m
i=1

with length m = |S|.

• For two graphs G, G′, we construct the complete weighted
bipartite graph as described in section 3.3 and compute
the kernel Ka(G, G′) using Equation 3.

• Train a predictive model using a kernel classifier.

3.5.2 Testing Phase
In the testing phase, we compute the kernel function for

graphs in the testing and training data sets. We use the
trained model to make predictions about graph in the testing
set.

• For each seed S ∈ S and for each graph G in the
testing data set, we use fS to label nodes in G and
create feature vectors as we did in the training phase.

• We use Equation 3 to compute the kernel function
Ka(G, G′) for each graph G in the testing data set
and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain pre-
diction accuracy of the testing data set

Below we present our empirical study of different kernel
functions including our pattern diffusion kernel.

4. EXPERIMENTAL STUDY
We have conducted classification experiments using ten

different biological activity data sets, and compared cross-
validation accuracies for different kernel functions. In the
following subsections, we describe the data sets and the clas-
sification methods in more detail along with the associated
results.

We performed all of our experiments on a desktop com-
puter with a 3Ghz Pertium 4 processor and 1 GB of RAM.
Generating a set of frequent subgraphs is efficient, generally
taking a few seconds. Computing alignment kernels some-
what takes more computation time, typically in the range of
a few minutes.

In all kernel classification experiments, we used the Lib-
SVM classifier [5] as our kernel classifier. We used nu-SVC
with nu = 0.5, the LibSVM default. To perform a fair com-
parison, we did not perform model selection and tune the
SVM parameters to favor any particular method, and used
default parameters in all cases. We download the classifiers
CBA and Xrule as instructed in the related papers, and used
default parameters for both. Our classification accuracy is
computed by averaging over ten trials of a 10-fold cross-
validation experiment. Standard deviation is computed sim-
ilarly.

4.1 Data Sets
We have selected ten data sets covering typical chemical

benchmarks in drug design to evaluate our classification al-
gorithm performance.
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The first five data sets are from drug virtual screening
experiments taken from [18]. In this data set, the target
values are drugs’ binding affinity to a particular protein.
Five proteins are used to in the data set including: CDK2,
COX2, FXa, PDE5, and A1A where each symbol represents
a specific protein. For each protein, the data provider care-
fully selected 50 chemical structures that clearly bind to the
protein (“active” ones). The data provider also deliberately
listed chemical structures that are very similar to the active
ones (judged with domain knowledge) but clearly do not
bind to the target protein. This list is known as the “decoy”
list. We randomly sampled 50 chemical structures from the
decoy list. Since our goal is to evaluate classifiers, we will
not further elaborate the nature of the data set. See [18] for
details.

The next data set, from Wessel et al.[33] includes com-
pounds classified by affinity for absorption through human
intestinal lining. More over, we included the Predictive Toxi-
cology Challenge[8] data sets, which contain a series of chem-
ical compounds classified according to their toxicity in male
rats, female rats, male mice, and female mice.

We use the same way as was done in [11] to transform
chemical structure data set to graphs. In Table 1 for each
data set, we list the total number of chemical compounds in
the data set, as well as the number of positive and negative
samples.

Table 1: Data set and class statistics. # G: number

of samples (chemical compounds) in the data set. # P:

positive samples. # N: negative samples

Dataset # G # P # N
CDK2 inhibitors 100 50 50
COX2 inhibitors 100 50 50
Fxa inhibitors 100 50 50

PDE5 inhibitors 100 50 50
A1A inhibitors 100 50 50

intestinal absorption 310 148 162
toxicity (female mice) 344 152 192
toxicity (female rats) 336 129 207
toxicity (male mice) 351 121 230
toxicity (male rats) 349 143 206

4.2 Feature Sets
We used frequent patterns from graph represented chem-

icals exclusively in our study. We generate such frequent
subgraphs from a data set using two different graph mining
approaches: that with exact matching [11] and that of ap-
proximate matching. In our approximate frequent subgraph
mining, we consider that a pattern matches with a graph
as long as there are up to k > 0 node label mismatches.
For chemical structures typical mismatch tolerance is small,
that is k values are 1, 2, etc. In our experiments we used
approximate graph mining with k = 1.

Once frequent subgraphs are mined, we generate three
feature sets: (i) general subgraphs (all of mined subgraphs),
(ii) tree subgraphs, and (iii) path subgraphs. We tried cycles
as well, but did not include them in this study since typically
less than two cyclic subgraphs were identified in a data set.
These feature sets are used for constructing kernel functions
as discussed below.

4.3 Classification Methods
We have evaluated the performance of the following clas-

sifiers.

• CBA. The first is a classifier that uses frequent itemset
mining, known as Classification Based on Association
(CBA) [4]. In CBA we treat mined frequent subgraphs
as item sets.

• Graph Convolution Kernels. This type of kernel in-
clude the mismatch kernel (MIS) and the min-max
(MNX) kernel. The former is based on the normal-
ized Hamming distance of two binary vectors, and the
latter is computed as the ratio between two sums: the
numerator is the sum of the minimum between each
feature pair in two binary vectors, and the denomina-
tor is the same except it sums the maximum. See [32]
for details about the min-max kernel.

• SVM built-in Kernels. We used linear kernel (Linear)
and radial basis function (RBF) kernel.

• GPD. We implemented the graph pattern diffusion ker-
nel as discussed in Section 3. The default parameter
for the GPD kernel is a diffusion rate of λ =20% and
the diffusion time τ = 5.

4.4 Experimental Results
Here we present the results of our graph classification ex-

periments. We perform one round of experiments to evaluate
the methods based on exact subgraph mining, and another
round of experiments with approximate subgraph mining.
For both of these two subgraph mining methods, we selected
patterns that were general graphs, tree graphs, and cycles.

We perform a simple feature selection in order to identify
the most discriminating frequent patterns. Using a simple
statistical formula, Pearson correlation coefficient (PCC),
we measure the correlation between a set of feature sam-
ples (in our case, the occurrences of a particular subgraph
in each of the data samples) and the corresponding class la-
bels. Frequent patterns are ranked according to correlation
strength, and the top 10% patterns are selected to construct
the feature set.

4.4.1 Comparison between classifiers
The results of the comparison of different graph kernel

functions are shown in Table 3. For this results, we used
frequent subgraph mined using exact matching. From the
table using general subgraphs (the first 10 rows in Table
3), we observe that for exact mining of general subgraphs,
in 4 of the 10 data sets, our GPD method provides mean
accuracy that is significantly better (at least two standard
deviations above the next best method). In another 4 data
sets GPD gives the best performance, but the difference is
less significant but is still more than 1 standard deviation).
In the last two data sets other methods perform better, but
not significantly better. The mismatch and min-max ker-
nels all give roughly the same performance and hence we
only show the results of the mismatch kernel. The GPD’s
superiority is also confirmed in classifications where tree and
path patterns are used.

In Table 2 we compare the performance of our GPD kernel
to the CBA method, or Classification Based on Association.
In general it shows comparable performance to the other
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methods. In one data set it does show a noticeable increase
over the other methods. This is expected since CBA is de-
signed specifically for discrete data such as the binary fea-
ture occurrences used here. Despite the strengths of CBA,
we can see that GDA method still gives the best perfor-
mance for 6 of the seven data sets. We also tested these
data sets using the recursive optimal-assignment kernel in-
cluded in the JOELib2 computational chemistry library. Its
results are comparable to those of the CBA method and
hence were not included as separate results here.

Table 2: Comparison of GPD and CBA.
Data set GPD CBA
CDK2 inhibitors 88.6* 80.46
COX2 inhibitors 82.7* 77.86
Fxa inhibitors 89.3* 86.87
PDE5 inhibitors 81.9 87.14*
A1A inhibitors 91.4* 87.76
intestinal absorption 63.14* 54.36
toxicity (male rats) 56.66* 55.95

In addition we tested a classifier called XRules. XRules is
designed for classification of tree data [38]. Chemical graphs,
while not strictly trees, often are close to trees. To run
the XRules executable, we transform a graph to a tree by
randomly selecting a spanning tree of the original graph.
Our experimental study shows the application of XRules
on average delivers incompetent results among the group of
classifiers (e.g. 50% accuracy on the CDK2 inhibitor data
set), which may be due to the particular way we transform
a graph to a tree. Since we compute tree patterns for rule
based classifier such as CBA in our comparison, we did not
explore further of XRules.

We also tested a method based on a recursive optimal-
assignment [7] using biologically-relevant chemical descrip-
tors labeling each node in a chemical graph. In order to
perform a fair comparison with this method to the other
methods we chose to ignore the chemical descriptors and
focus on the structural alignment. In our experiments the
performance of this method is very similar to CBA and hence
we show results of CBA only.

4.4.2 Comparison Between Descriptor Sets
Various types of subgraphs such as trees, paths, and cy-

cles have been used in kernel functions between chemical
compounds. In addition to exact mining of general sub-
graphs, we also chose to use approximate subgraph mining
to generate the features for our respective kernel methods.
In both cases we filtered the general subgraphs mined into
sets of trees and sets of paths as well. The results for these
experiments are given in Tables 2 and 3 above.

From Table 2 we see that the results for all kernels using
exact tree subgraphs are identical to those for exact general
subgraphs. This is not surprising, given that most chemical
fragments are structured as trees. The results using exact
path subgraphs, however, do show some shifts in accuracy
but the difference is not significant.

The results using approximate subgraph mining (shown
in Table 4) are similar to those for exact subgraph mining
(shown in Table 3). In contrast to our hypothesis that using
approximate subgraph mining might improve the classifi-
cation accuracy, the data show that there is no significant

difference between the set of features. However, it is clearly
that GPD is still better than the competing kernel functions.

4.4.3 Effect Of Varying GPD Diffusion Rate And Time
We want to evaluate the sensitivity of the GPD methods

to its two parameters: diffusion rate λ and diffusion time.
We tested different diffusion rate λ values and diffusion time
values. Figure 3 shows that the GPD algorithm is not very
sensitive to the two parameters at the range that we tested.
Although we show only three data sets in Figure 3, the ob-
servation is true for other data sets in our experiments.
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Figure 3: Left: GPD Classification Accuracy with differ-

ent diffusion rate. Right: GPD Classification Accuracy with

different diffusion time.

5. CONCLUSIONS AND FUTURE WORKS
With the rapid development of fast and sophisticated data

collection methods, data has become complex, high-dimensional
and noisy. Graphs have proven to be powerful tools for
modeling complex, high-dimensional and noisy data; build-
ing highly accurate predictive models for graph data is a
new challenge for the data mining community. In this pa-
per we have demonstrated the utility of a novel graph kernel
function, graph pattern diffusion kernel (GPD kernel). We
showed that the GPD kernel can capture the intrinsic sim-
ilarity between two graphs and has the lowest testing error
in many of the data sets evaluated. Although we have devel-
oped a very efficient computational framework, computing a
GPD kernel may be hard for large graphs. Our future work
will concentrate on improving the computational efficiency
of the GPD kernel for very large graphs, as well as per-
forming additional comparisons between our method other
2D-descriptor and QSAR-based methods.
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APPENDIX

A. CONNECTION OF PATTERN DIFFUSION
TO MARGINALIZED GRAPH KERNEL

Here we show the connection of pattern diffusion kernel
function to the marginalized graph kernel [19], which uses
a Markov model to randomly generate walks of a labeled
graph.

Given a graph G with nodes set V [G] = {v1, v2, . . . , vn},
and a seed S ⊆ V [G], for each diffusion function ft, we con-
struct a vector Ut = (ft(v1), ft(v2), . . . , ft(vn)). According
to the definition of ft, we have Ut+1 = Γ × Ut where the
matrix Γ is defined as:

Γ(i, j) =

8

>

<

>

:

λ
d(vj)

if i 6= j and i ∈ N(j)

1 − λ
d(vi)

i = j

0 otherwise

In this representation, we compute the stationary distri-
bution (fS = limt→∞ ft) by computing Γ∞ × U0.

We notice that the matrix Γ corresponds to a probability
matrix corresponding to a Markov Chain since

• all entries are non-negative

• column sum is 1 for each column

Therefore the vector Γ∞ ×U0 corresponds to the station-
ary distribution of the local random walk as specified by Γ.
In other words, rather than using random walk to retrieve
information about the local topology of a graph, we use the
stationary distribution to retrieve information about the lo-
cal topology. Our experimental study shows that this in fact
is an efficient way for graph classification.
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ABSTRACT
Mutual information (MI) is a powerful concept for correlation-
centric applications. Recently, it has been used for feature
selection for microarray gene expression data. One of the
merits of MI is, unlike many other heuristic methods, it is
based on a mature theoretic foundation. When applied to
microarray data, however, it faces a number of challenges.
Firstly, due to large numbers of features (i.e., genes) present
in microarrays, the true distributions for the expression val-
ues of some genes may be masked by noises. Secondly, eval-
uating inter-group mutual information requires estimating
multi-variate distributions, which is difficult. To address the
first problem, we use a scheme called Substantial relevance
boosting, which requires a non-noisy feature to show sub-
stantially additional relevance with class labeling beyond the
already selected features. To address the second problem, we
use Increasing likelihood of feature interaction, which proba-
bilistically compensates for feature interaction missing from
simple aggregation-based simulation. We justify our strate-
gies from both a theoretical perspective, and the experimen-
tal results on real life data sets, which show the improved
effectiveness of our method over the existing schemes.

Categories and Subject Descriptors
I.5.2 [Computing Methodologies]: Design Methodology—
feature evaluation and selection

General Terms
Algorithms

Keywords
Feature selection, gene expression profiling, mutual informa-
tion, classification, feature interaction

1. INTRODUCTION
Due to large numbers of features (i.e., genes) in microarray

gene expression data, some genes may seem to be relevant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BIOKDD ’08, August 24, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-302-0 ...$5.00.

to the class labeling, but in fact are biologically irrelevant.
These ’noisy’ features can mislead the learning process, ren-
dering traditional classification methods not being effective.
Feature selection is a process to select truly relevant features
with the class labeling. When the purpose of learning is to
classify unlabeled samples, the selected feature subset with
small size is desirable. There are some good reasons for this.
Small feature sizes imply less redundancies, which can im-
prove inferences and classifications. Small feature sizes are
less likely to over-fit, and therefore can increase generaliza-
tion capability for classifiers. This is beneficial in clinical
settings. In disease profiling, a small sized gene set that en-
ables accurate classification may be potential diagnostic or
prognostic markers. Because of this, minimizing the sizes of
feature sets that enable accurate classifications has been the
goal of a large number of existing works on feature selection
for gene expression data.

Mutual information (MI) is a powerful concept for correlation-
centric applications. Recently, it has been used for feature
selection for microarray gene expression data [4, 9, 10, 17].
One of the merits of MI is that, unlike many other heuristic
methods, it has a mature theoretic foundation [8]. For a
data set where many noisy features are present, however, its
power may diminish. In these data sets, the mutual infor-
mation evaluated for noisy features may not reflect the true
facts. Another problem with MI in this context arises from
evaluation of inter-group mutual information. This normally
requires estimating multivariate distributions, which in the
general case is difficult. Existing MI-based feature selection
methods rank features according to their individual mutual
information with class labeling, with the hope that noisy
features will be filtered out automatically. Redundancies are
evaluated based on mutual information between a candidate
feature and the group of already-selected features. Estima-
tion of multi-variate distribution is avoided by using simple
aggregation (e.g., averaging) over individual mutual infor-
mation as an approximation for group mutual information.
Since the simple aggregation is based on mutual information
individually evaluated, it is incapable of simulating mutual
information arising from feature interactions. (Refer to Sec-
tion 2.2.4 for detail.)

MI-based feature selection belongs to the general category
of individual-oriented scoring methods, which score genes
individually based on their ability to discriminate different
classes, and measure redundancies using feature-feature cor-
relation [4, 6, 9, 11, 16, 17, 19, 21]. These schemes all
shared the two problems mentioned previously. A differ-
ent category of group-oriented methods associates scores
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with groups, rather than individual features [1, 5, 12, 15,
20]. Higher scores are assigned to groups with higher rele-
vance with class labeling and smaller redundancies among
the group members. The actual scoring mechanisms used
are quite diverse. Focus [1] systematically searches for a
feature set that has consistent discriminative power with
the full feature set. Its search method is essentially exhaus-
tive, and costly in high dimensional space. In [15], the au-
thors introduce Markov-blanket to detect effectively redun-
dant features at the conceptual level. It is however difficult
to implement in practice since it requires estimating multi-
variate densities. The same problem is shared by the work
in [5]. Some work relaxes this requirement. The correlation-
based feature selection [12] uses a metric that requires only
estimating bi-variant densities, at the price of reduced ca-
pability of describing relevance and redundancy. The fast-
correlation-based feature selection proposed in [23] approx-
imates Markov blanket. It is a powerful model. However, it
requires estimating tri-variate densities. The scheme in [24]
uses as the group criteria the leave-one-out cross validation
errors based on least-square SVM (i.e., LS-SVM) classifiers.
The error is actually generated by solving a linear system
of equations for the training set, and therefore avoids re-
peated LOOCV applications. However, solving the linear
system of equations is still sometime time consuming. Also,
it is unclear how this technique can be applied to data sets
with more than two classes. The work in [22] uses princi-
ple component technique to select features. However, there
is no discussion of how effective this approach is in dealing
with redundancies. Recently, some work studies margin-
based schemes, which score features based on the maximum
margins they can exert between different classes [18]. They
are essentially individual-oriented methods mentioned previ-
ously, but can be conveniently extended to kernel spaces [3,
7, 20]. However, these schemes normally are not concerned
with redundancies.

In this paper, we propose a group-oriented, MI-based fea-
ture selection scheme. Our scheme uses explicit mechanisms
to relieve the two problems mentioned previously. To ad-
dress the first problem, we use a mechanism called Substan-
tial relevance boosting, which requires a non-noisy feature
to show substantially additional relevance with class label-
ing beyond the already selected features. To address the
second problem, we use Increasing likelihood of feature in-
teraction, which probabilistically compensates for feature in-
teraction missing from simple aggregations. In our scheme,
it is only required to estimate bi-variant densities. We jus-
tify our strategies from both a theoretical perspective, and
the experimental results on real life data sets, which show
the improved effectiveness of our method over the existing
schemes.

The rest of paper is organized as follows. In Section 2, we
provide basic concepts that will be used in the subsequent
sections, and then introduce our method. In section 3, we
present the experimental results. We conclude the paper by
summarizing the main results.

2. SELECTING RELEVANT FEATURES

2.1 A metric for relevancy and redundancy
Our definitions relating to mutual information are based

on the concepts from information theory [8]. Let X and Y

be two variables (features) and C be a set of class labels. The

entropy of X is defined as: H(X) = −
∑

Dom(X)
p(x)log(p(x)).

The conditional entropy of X given Y is
H(X|Y ) = −

∑
Dom(X)

∑
Dom(Y )

p(x, y)log(p(x|y)). The
entropy of a variable measures the amount of uncertainty
of the variable. (If X and/or Y are sets of variables, the
above definitions still hold.) The mutual information of X
and Y is: I(X; Y ) = H(X)−H(X|Y ). Note that I(X; Y ) =
I(Y ; X) = H(X) + H(Y ) − H(X,Y ). The mutual infor-
mation of X and Y given Z is: I(Y ; X|Z) = H(Y |Z) −
H(Y |Z, X). Also note that we have I(X; Y |Z) = I(Y ; X|Z)
= H(X|Z)+H(Y |Z)−H(X,Y |Z). Let C be the target class.
We say I(X; C) is the relevance of X to C. Let X and Y

be features, we also use I(X;Y ) to measure the amount of
redundancy of X and Y . It is easy to verify that if X and Y

are independent, then their redundancy is 0. On the other
hand, if they are fully dependent of each other, i.e., they are
(essentially) duplicates, then their redundancy is H(X) or
H(Y ).

2.2 Feature selections based on mutual infor-
mation

2.2.1 General criteria
Let C be the target class, and F be the entire set of fea-

tures. We can view C and each feature in F as a random
variable, and F as an n-variate. In theory, our goal is to
search for a subset D = arg maxS⊆F I(S;C). That is, D is
the subset most relevant to the target class. In the general
case, the desired subset is not unique. We would also like it
to be of a smallest size, implying that it contains least redun-
dancy. In practice, however, that expression is difficult to
evaluate since the size of the search space is 2|F |. To reduce
the search space, we may use a local optimization criterion.
Let S be the current feature set, which is initialized to φ.
We search for the next feature g to be included into S if:

g = arg max
e∈F−S

{I(e;C|S)} (1)

I(g;C|S) > 0 (2)

The conditional mutual information of e and C given S

is the information that e has about C given S. This is
the information that is not subsumed by the information
given in S about C. Therefore, both relevance and redun-
dancy have been taken care of. We select g if it results in
this information being positive and maximized. With the
above criterion, we can use a forward hill climbing method
to search for features one at a time in an incremental fash-
ion, and therefore drastically cut the search space, at the
price of returning local optimum only. However, if we use
that criterion as is for microarray data, a problem may arise,
as described in the next section.

2.2.2 Substantial relevance boosting
From the information theory, I(e;C|S) = 0 if and only if

e is conditionally independent of C given S. If e is indeed
conditionally independent of C given S, and the distribution
demonstrated by the training set is a good approximation of
the true distribution for the variables, then we can expect
that e will be close to being conditionally independent of C

given S reflected from the training set. However, as men-
tioned previously, due to the fact that genes in typical mi-
croarray datasets greatly outnumber sample examples, the
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distributions described by the training set may not accu-
rately reveal the true distributions of the variables. Thus a
biologically irrelevant or redundant gene may turn out not
to be very close to being conditionally independent of the
class labeling, resulting in I(s;C|S) not being close to zero
when estimated based on the values in the training set. We
now make the following assumption:

If e is biologically irrelevant to C given S, then
I(e;C|S)/H(C|S) based on the microarray dataset
will not be substantially larger than 0.

In other words, we allow a true conditional irrelevant gene
to deviate in the distribution reflected in the training set
from its true distribution for certain amount, which should
not be too large. We believe this assumption is reason-
able for most of the microarray datasets which have a priori
gone through pre-processing stages, in which many artifacts
and variations have been eliminated. The amount of de-
viation is measured by the ratio I(e; C|S)/H(C|S), which
is proportional to I(e;C|S), but inversely proportional to
H(C|S). The rationale for the former is easy to see: should
e’s true distribution be preserved in the training set, then
we would have I(e;C|S) = 0. Thus, a larger value for
I(e;C|S) signifies a larger departure from e’s true distri-
bution. For the latter, recall that H(C|S) is the amount
of uncertainty that remains in C when S is present, and
I(e;C|S) = H(C|S) − H(C|S, e) is the amount of uncer-
tainty further deducted from C when e is present. Such a
further deduction requires e to have the information that S

does not have. A low value of H(C|S) implies S contains
a lot of information about C, and therefore requires e to
deviate more to possess additional information to what S

already has.
Based on the above assumption, we replace condition (2)

by a stronger condition:

I(g;C|S)/H(C|S) > α (3)

where α is a threshold set by users. Note that it is easy to
verify I(g;C|S) = I(S, g; C) − I(S; C). Let S be a set of
features already selected. According to our terminologies,
we can view I(g;C|S) as a measure of the relevance with C

by in addition to I(S; C) due to g’s presence. Thus we call
condition (3) substantial relevance boosting, where α imple-
ments substantiality. A critical issue, of course, is how to set
a proper value for α. Too large a value would filter out not
only irrelevant features, but also some relevant ones, while
too small a value would weaken the filtering power. We have
done extensive testing, and found that the best value for α

is between 0.05 and 0.15, and is almost invariant for all the
data sets in our experiment. (Refer to Section 3.)

2.2.3 Computing relevance
A practical issue is how to estimate a conditional mutual

information. Our goal is to develop approximations that pre-
serve its basic characteristics, and at the same time possess
reasonable applicability. We first introduce an assertion.

Assertion 1. Let S ⊂ F and e ∈ F − S. Then

I(e;C|S) = I(S,C; e)− I(S; e) (4)

Proof. The chain rule of entropy states that, for any
variable A, and set of variables R, it is true that H(R,A) =
H(R) + H(A|R). Based on this, we have

I(e;C|S)
= H(C|S)−H(C|S, e)
= H(C,S)−H(S)− (H(C,S, e)−H(S, e))
= H(S,C)+H(e)−H(S, e,C)− (H(S)+H(e)−H(S, e))
= I(S,C; e)− I(S; e)

Thus, given feature set S and labeling C, maximizing
I(e;C|S) is equivalent to maximizing the difference on the
right side of (4). Since we are unable to actually maximize
that difference, we will use approximations for the two terms
on the right hand side of (4). In the following, for any X

and Y , we use Î(X; Y ) for the approximation of I(X; Y )
calculated using a different formula from its definition.

Î(S, C; e) =
|S|

|S|+ 1
I(S; e) +

1

|S|+ 1
I(C; e) (5)

Î(S; e) =
1

|S|

∑

x∈S

I(x; e) (6)

Substituting the right side of formulas (5) into (4), and

then replace I(S; e) by Î(S; e), we have the following

Î(e, S; C)− Î(S; C) =
1

|S|+ 1
I(e; C)−

1

|S|+ 1
Î(e; S) (7)

Formula (7) will be used to simulate formula (4). Observe

that larger value for Î(e; S), or smaller value for Î(e;C), re-
sults in smaller amount to be added to the (approximated)

relevance of S to C. If we use Î(e, S; C) − Î(S; C) to simu-
late I(e;C|S), we must maximize the former. This is equiv-

alent to maximizing I(e;C) − Î(e; S). Note that the last
maximization operation requires estimating bi-variant den-
sities only. Now the question is: how do we justify maxi-

mizing Î(e, S; C) − Î(S; C) in terms of the effectiveness of
feature selection, not just in terms of the effectiveness of
multi-variate density estimations. After all, our ultimate
purpose is to maximize I(e;C|S). From formula (5) and
(6), it is not immediately clear how the maximum value for

Î(e, S; C)− Î(S; C) can boost the value of I(e;C|S).

Assertion 2. The following inequality is true:

I(e;C|S) ≤ I(e;C)− Î(e; S) + H(S|C) (8)

Proof. First, by chain rule for mutual information, I(S,C; e) =
I(C; e) + I(S; e|C), we have the following:

I(S,C; e)− I(S; e)
= I(C; e)− I(S; e) + I(S; e|C)
= I(C; e)− I(S; e) + H(S|C)−H(S|C, e)
≤ I(C; e)− I(S; e) + H(S|C)
= I(e;C)− I(e;S) + H(S|C)
On the other hand, by the information theory, for any

x ∈ S, I(e;S) ≥ I(e; x). Thus I(e;S) ≥ 1

|S|

∑
x∈S

I(e;x) =

Î(e;S) . This implies I(S,C; e)−I(S; e) ≤ I(e; C)−Î(e;S)+
H(S|C). Inequality (8) then follows from Assertion 1

Assertion 2 establishes an upper bound for I(e;C|S). When
S and C are given, the term H(S|C) is a constant. Thus,

maximizing I(e;C) − Î(e; S) actually maximizes this up-
per bound, which approximates the criterion of maximizing
I(e;C|S). The expected effect of this approximation is the
high likelihood that a large value for I(e;C|S) will be ob-
tained. In the following section, we will use a strategy that
additionally promotes such a likelihood.
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2.2.4 Increasing Likelihood for Features Interacting
Let us analyze formula I(e;C|S) = I(S, e; C) − I(S; C)

more closely. It is the additional information to what S

already has about C, that e can generate in cooperation
with S. This additional information may contain a portion
called interacting information [13, 14].(Its precise definition
is complex, and not important in our discussion.) It is only
necessary to note that the interacting information of S and
e about C can exist only in I(S, e; C)(or I(e; C|S)), but
never in either I(S; C) or I(e;C). Since it is difficult to
evaluate directly I(S, e;C), all the existing approximation
methods have the effects only of increasing directly the non-
interacting information, and heuristically the interacting in-
formation, of I(e;C|S). (There are a few work, however,
which attempt to increase directly the interacting informa-
tion as well for |S| = 1 [16].)

Our method basically follows this line also. Consider for-

mula (8) again. Maximizing I(e;C)− Î(e;S) implies I(e;C)
tends to be large. This has the effect of boosting the non-
interacting information in I(S, e; C). On the other hand,
maximizing the above difference maximizes the upper bound
of I(e;C|S), and hence it has the effect of increasing the
probability of boosting interacting information in I(e;C|S).
Is it possible to increase this probability further in addition
to the maximization of the above mentioned difference? We
look into this issue in the following.

Recall that, presumably, the data sets we are dealing with
contain a large number of features. Thus it is quite likely
that multiple features can reach the maximum value for

I(e;C) − Î(e; S). A question is, among all these features,
which one should we choose? It may seem that we should
choose the one that maximizes I(e;C). In the following, we
will give plausible argument to show that this is not the case.
We first look at an example to get some motivation.

Exmple: Consider the dataset in Table 1.

Table 1: An example data set
C 0 0 1 1
s 0 1 0 1
e1 0 1 1 0
e2 0 0 0 1
e3 1 0 1 0

Suppose the current feature set is {s}. To select the next
feature, note that I(e1; C)−I(e1; s) = I(e2; C)−I(e2; s) = 0
and I(e3; C) − I(e3; s) = −1. Thus e1 and e2 are the can-
didates. First, we have I(e1; C) = 0 < I(e2; C) = 0.31,
which means e2 is more relevant to C than e1 is. This how-
ever only illustrates that e2 offers more non-interacting in-
formation about C than e1 does. On the other hand, we
have I(e1; C|s) = 1 > I(e2; C|s) = 0.5. This means ac-
tually e1 is a better choice. The implication is, e1 offers
more interacting information with s about C than e2 does,
and this interacting information plays a pre-dominant role
in the above conditional mutual information. Now, let us
see how s is correlated with e1 and e2. We have H(e1|s) = 1
and H(e2|s) = 0.5. This means that given s, e2 is more
certain than e1. Intuitively, we can think of e2 as having
less freedom than e1 given s. This point of ’conditional
freedom’ can be further illustrated, in part, by considering
e3. Here, we have I(e3; C|s) = 0, implying that e3 pro-

vides no additional information about C when s is given.
Note that I(e1; C) = I(e3; C), thus the non-interacting in-
formation by e3 about C is not a factor for the discrepancy
between I(e1; C|s) and I(e3; C|s). The only explanation for
this discrepancy is that e3 offers no interacting information
with s about C. The cause for no interacting information is
H(e3|s) = 0, i.e., when s is given, e3 is completely certain,
and hence has no freedom at all.

In the following, we look at this issue from some theoret-
ical perspective.

Assertion 3. Let F be the full feature set and S ⊆ F .
Let ei and ej be two features randomly chosen from F − S.
Let Hi,j = H(ei|S) − H(ej|S) and HCi,j = H(ei|S, C) −
H(ej |S, C). Assume the following conditions hold true:

1. Pr(Hi,j > 0) = Pr(Hi,j < 0) = 0.51

2. Pr(HCi,j > 0) = Pr(HCi,j < 0) = 0.5

3. for any I ⊆ [−H(ej), H(ei)], P r(HCi,j ∈ I) > 0

4. Hi,j and HCi,j are independent.

Then Pr
(
I(ei; C|S) > I(ej; C|S)|Hi,j > 0

)

> Pr
(
I(ej; C|S) > I(ei; C|S)|Hi,j > 0

)

Proof. We have:
Pr(I(ei; C|S) > I(ej ; C|S)|Hi,j > 0)

= Pr(Hi,j > HCi,j |Hi,j > 0)
= Pr(HCi,j < 0|Hi,j > 0) + Pr(Hi,j > HCi,j > 0|Hi,j >

0)
= Pr(HCi,j < 0) + Pr(Hi,j > HCi,j > 0) > 0.5
Since Pr

(
I(ei; C|S) > I(ej ; C|S)|Hi,j > 0

)

+ Pr
(
I(ej ; C|S) > I(ei; C|S)|Hi,j > 0

)
= 1, the claim fol-

lows.

Assertion 3 states that, under the specified conditions, fea-
tures with higher remaining entropies when S is given are
more likely to provide more additional information about C.
Conditions 1 and 2 are reasonable since, without any prior
knowledge about the distributions of the variables, and their
correlations with S and C, we should not be biased toward
the relative values of their entropies. Condition 3 states that
HCi,j can possibly fall into any interval within its domain.
Again, this is because we do not know the distributions of
ei and ej , we cannot claim in a definitive term that HCi,j

will not fall into certain interval in its domain. Condition 4,
however, may seem a bit strong, since one may argue that
knowing Hi,j > 0 increases the likelihood that HCi,j > 0.
We note, however, that Hi,j involves only non-interacting
information of S about ei or ej , while HCi,j involves inter-
acting information of S and C about them, and the latter
cannot be derived from the former.

The above discussion suggests that among the features e

with the maximum difference of I(e;C)− Î(e; S), we should
select the one that maximizes its conditional entropy given
S. We will stress conditional entropy further, however, due
to its intrinsic role in boosting the interacting information.
In our algorithm we will expand the candidate set in which
to apply conditional entropy, by requiring a feature to be
only ’close’ to, rather than attain the maximum difference

of I(e;C)−Î(e;S), to be eligible for participating in the next

1We omit the probability that Hi,j = 0, since Hi,j and HCi,j

can be viewed as continuous variables.
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round of conditional entropy filtering. We call the process
of maximizing the conditional entropy increasing likelihood
for feature interacting. Note that since H(e|S) involves es-
timating multi-variate densities, we will approximate it as

Ĥ(e|S) =
1

|S|

∑

x∈S

H(e|x) (9)

2.2.5 Algorithm
The algorithm is presented below, which is called Rein-

forced Mutual Information based Feature Selection (RMIFS).

Algorithm 1 RMIFS

1: S ← φ

2: optimal size← |F |
3: current size← 0
{min(∗, ∗) = |F | if optimal unknown}

4: while |S| < |F | & current size ≤ min(optimal size +
W, |F |) do

5: max diff ← max(I(e;C) − Î(e;S)|e ∈ F − S)
6: if optimal size = |F | then
7: if max diff/(|S| + 1) < αH(C|S) or H(C|S) = 0

then
8: optimal size← current size

9: end if
10: end if
11: if max diff < 0 then
12: max diff ← ((2− β)/β) ×max diff

13: end if
14: g ← argmax{Ĥ(e|S)|e ∈ {h|I(h; C) − Î(h; S) ≥ β ×

max diff&h ∈ F − S}}
15: append g to the list
16: S ← S

⋃
{g}

17: current size++
18: end while

In the above algorithm, F is the full feature set, and S

is the current feature set. The variable optimal size is the
size of the selected feature set deemed to be optimal. A full
feature set size for optimal size indicates the optimal feature
set is unknown (i.e., yet to be determined). Variable cur-
rent size is the size of the feature set being examined in the
current iteration, i.e., S. The test in the while loop implies
that even when the optimal feature set has been selected, the
algorithm will continue outputting up to W features, where
W is a small value given by a user. This is because the opti-
mal feature set serves only as a reference point, thus we out-
put a few additional features to give a user some flexibilities.
(See the experiments.) In line 7, if the first test evaluates to
true, no remaining feature can substantially boost the rel-
evance to C. Then the current feature set is identified as
the optimal feature set. When the second test evaluates to
true in line 7, all the remaining features meet the substan-
tial boosting criterion. However, we have I(S : C) = H(C),
implying S has reached its full relevance to C. Thus, S is
identified as the optimal feature set. Line 14 implements
the process of increasing likelihood for feature interacting,
where β controls the number of features which we allow not

to reach the maximum difference of I(e;C)− Î(e; S) and to
be scrutinized by the ’increasing likelihood for feature inter-
acting’ criterion. Our experiments show that the best value
for it is between 0.9 and 0.95. The mutual information and
the entropy are calculated in the manner described in the

previous sections, and require only estimations of bi-variate
densities. For the time complexity of the algorithm, let F

be the full feature set, ei be the feature selected in iteration
i, and Si be the set of features selected up to iteration i.
Logically, selecting ei+1 in iteration i+1 requires evaluating
i + 1 mutual information for every feature e ∈ F − Si, i.e.,

I(e;C), and I(e;x) for each x ∈ Si. (Evaluating Ĥ(e|S)
does not take extra time, since H(e|x) is already available
in I(e;x) for all x ∈ Si.) However, observe that for ev-
ery x ∈ Si − {ei}, I(e;x) and I(e;C) have already been
generated in the previous iterations, and therefore can be
stored for the later use. Thus, we need to evaluate I(e; ei)
only. This results in an asymptotic time of O((|S| + W )n)
where S is the feature set identified as being optimal, W is
the additional features output beyond S, and n is the total
number of features. Since W is normally selected as a very
small value, the time complexity is O(|S|n).

3. EMPIRICAL STUDY
Our empirical analysis consists in comparison of our al-

gorithm with four other algorithms, Correlation-based Fea-
ture Selection (CFS) [12], Fast Correlated-based Feature Se-
lection (FCBF) [23], ReliefF [19] and Maximum Relevance
Minimum Redundancy (MRMR) [9]. The former two are
group-oriented, and the latter two are individual-oriented.
The following is a brief description of them.

CFS associates each feature set with a metric proportional
to the correlation between the feature set and the class, and
inversely proportional to the inter-correlations among the
features themselves. The correlation can be either Pearson
correlation or symmetric uncertainty. CFS uses a best-first
search strategy where the first feature set that attains the
best metric is returned. FCBF uses approximate Markov-
blanket (AMB) to filter out redundant features. A feature
e1 is an AMB for e2 if the correlation between e2 and C

is lower than not only the correlation between e1 and C,
but also the correlation between e2 and e1. FCBF itera-
tively removes features that have an AMB. ReliefF assigns
a discriminative score to each feature based on how well it
discriminates a randomly selected instance from its near-
est neighbors of different classes. MRMR assigns a score to
each remaining feature that incorporates both redundancy
and discriminative power. The redundancy and the discrim-
inative power are measured by its mutual information with
the features that are already selected, and with the class la-
beling, respectively. Since the CFS and FCBF are aimed at
selecting the best feature sets, they are group-based, while
the Relief and MRMR essentially rank all the features based
on their scores, we consider them as individual-based2.

We use three classifiers, NB (Naive Bayesian), ID3 (deci-
sion tree), and Logistic classifier, and five data sets, Leukemia,
Colon Cancer, DLBCL (diffuse large b-cell lymphomas and
follicular lymphomas), Prostate Tumor and Lung Cancer.
The properties of the data sets are listed in Table 2.

We compare the classification accuracies and the sizes of
the feature sets returned by the selection algorithms. The
accuracies are generated by a LOOCV test. This is per-
formed on the entire data set, i.e., training plus testing, for

2A more recent version of MRMR [19] uses an external clas-
sifier to identify the best feature set. This is similar to a
wrapper approach. Therefore, we did not include it for com-
parison here.
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Table 2: Descriptions of the Data Sets
name #classes #samples #features sources

Leukemia 2 72 7129 http://www.genome .wi.mit.edu/MPR
Colon Cancer 2 62 2000 http://www.molbio .princeton.edu/colondata

DLBCL 2 77 5470 http://www.tech .plym.ac.uk
Prostate Tumor 2 102 10510 http://www.tech .plym.ac.uk

Lung Cancer 5 203 12600 http://sdmc.i2r.a-star.edu.sg/rp/Main.html

each data set. (For datasets that do not provide testing sets,
we perform LOOCV on the training sets.) Since all the al-
gorithms are heuristics in nature, it makes practical sense to
treat the feature sets returned by them as a reference, rather
than a firm result to be followed. For this reason, we use a
window with a small size, say 5, to identify a neighborhood
of the feature set returned, and retrieve the highest accu-
racy attained by any feature set in that window. Since the
CFS and FCBF do not output additional features once they
have selected the feature set with the best metric value, we
align the window’s upper boundary to the last feature in the
set, i.e, the neighborhood contains the preceding five subsets
(inclusive) of the selected set formed by the algorithm. For
RMIFS, since it can continue output features after it finds
the one with the best metric value, we align the center of
the window to the last feature in the set, i.e, the neighbor-
hood contains the preceding three subsets (inclusive), and
the following two supersets, of the selected set. For the two
individual-based algorithms, since they do not return any
single feature set, the above method is not applicable. We
give them an advantage of a much larger window size of 32,
i.e., the neighborhood contains the top 32 feature sets. As
mentioned before, when α ∈ [0.05, 0.15] and β ∈ [0.9, 0.95],
the RMIFS has a stable performance for all the data sets in
the experiments. As such, we set α = 0.1 and β = 0.93. We
run the other algorithms implemented in Weka V3.5. The
results are shown in Table 3.

From the table, except for Colon Cancer dataset where
FCBF has the best performance, RMIFS leads all the other
algorithms in average accuracy in all the datasets. Although
the improvement is not substantial, such a consistent trend
is obvious. We attribute the small margin in the improve-
ment over some of the other algorithms to their near saturate
accuracies on the data sets. (For example, for Lung Cancer
data set, which contains five classes, 95% of the accuracy
should be very near to a global optimum for the classifica-
tion accuracies.) In the case where their performances are
relatively weak, RMIFS shows a clear advantage. For exam-
ple, while most algorithms have relatively low accuracies for
ID3 for a number of datasets, RMIFS still demonstrates a
robust behavior for ID3 in all the data sets. The effective-
ness of the mechanisms used in our algorithm can also be
explained from the comparison with MRMR. Both RMIFS
and MRMR are based on mutual information. RMIFS how-
ever enjoys consistently higher accuracies than MRMR in
all data sets, despite the fact that the latter has been given
a selection space five times larger. The largest improve-
ment over MRMR occurs in Colon Cancer data set. This
is not a coincidence. It is well known that Colon Cancer
dataset presents some challenges in feature selection due to
the fact that it contains some hard-to-recognize genes that
may confuse a learning process. (One of these kinds of genes
is responsible for cell composition, which may appear to be

good indicators for the cancerous and normal samples, but
in fact are not informative [2]. This is because the can-
cerous tissue generally contains many epithelial (skin) cells,
while the normal tissue contains different kinds, including
smooth muscle cells.) The above results suggest that the
advantages of our mechanisms are more obvious in the cases
where the existing algorithms are weak. We attribute this
point mainly to the use of ’increasing likelihood for feature
interacting’ mechanism in our algorithm, which aims at in-
creasing the probability that the selected genes have high
interacting information about the class labeling.

Now, consider the sizes of the feature sets determined
by the three group-based algorithms. Table 3 shows that
RMIFS consistently selects smaller feature sets than CFS
and FCBF on all the datasets by a big margin. The discrep-
ancies are especially noticeable for Lung Cancer dataset,
which contains five class labels. In this case, we checked
output data by the three algorithms in detail. For CFS
and FCBF, we found that the same accuracies were also
attained at some subsets with far smaller sizes that were
scrutinized at some earlier stages. On the other hand, for
RMIFS, none of the nine proper subsets of the selected set
processed at the earlier stages can reach the same accuracy.
Recall that in our ’substantial relevance boosting’ mecha-
nism, a gene will be selected only if it contains a substantial
amount of additional information about the class labeling
given the current feature set. The above result shows that
this mechanism indeed has a strong capability of filtering
out redundant and/or noisy features, even in the case where
multiple class labels are present.

Finally, it is worth mentioning that the feature sets by the
individual-based algorithms listed in the table have smaller
sizes than the CFS and FCBF in all cases, and than RMIFS
in almost half of the cases. This is not entirely unexpected,
given that these feature sets are manually selected to be
the smallest ones with the highest accuracies from the top
32 feature sets, while the feature sets for the group-based
algorithms are determined by the programs based only on
the metric values.

4. CONCLUSION
Due to the insufficient representation for the true distribu-

tion of the data population by microarray data sets, which
possess extremely high dimensions and only a small number
of training cases, feature selection has proven to be a nec-
essary step in pre-processing the data set for further data
analysis tasks such as classifications. We study for this kind
of data sets the issue of feature selections based on a popular
framework of mutual information, and propose methods to
enhance its effectiveness by reinforcing the existing criteria.
Our main strategy consists of substantial relevance boost-
ing and increasing likelihood for feature interacting. The
former requires the common maximization strategy to be

58



Table 3: Experimental Results
CFS FCBF RMIFS ReliefF MRMR

Size 81 51 4 3 2
NB 100% 100% 100% 100% 100%

Leukemia ID3 90.27% 88.89% 100% 97.22% 100%
Logistic 100% 100% 100% 100% 100%

Avg 96.75% 96.30% 100% 99.07% 100%
Size 26 14 6 7 4
NB 98.39% 100% 96.77% 88.71% 95.16%

Colon Cancer ID3 93.55% 95.16% 95.16% 90.32% 93.55%
Logistic 96.77% 100% 100% 88.71% 95.16%

Avg 96.23% 98.38% 97.31% 89.25% 94.62%
Size 87 65 6 14 17
NB 100% 100% 100% 97.40% 100%

DLBCL ID3 96.10% 93.51% 98.70% 90.91% 94.81%
Logistic 97.40% 98.70% 100% 98.70% 100%

Avg 97.83% 97.40% 99.57% 95.67% 98.27%
Size 79 67 10 5 11
NB 98.04% 98.04% 98.04% 93.14% 98.04%

Prostate Tumor ID3 88.24% 85.29% 96.08% 93.14% 97.06%
Logistic 98.04% 99.02% 99.02% 93.14% 97.06%

Avg 94.77% 94.12% 97.71% 93.14% 97.39%
Size 550 453 10 23 26
NB 99.01% 99.01% 98.52% 95.07% 98.52%

Lung Cancer ID3 91.13% 88.67% 93.60% 88.18% 90.15%
Logistic 96.06% 95.07% 95.57% 93.10% 97.54%

Avg 95.40% 94.25% 95.89% 92.12% 95.40%

strengthened to cope with the distribution deviation, and
the latter calls for additional feature scrutiny based on the
concept of conditional entropy to increase the probability of
increasing interacting information. Our experiments show
the effectiveness of these strategies.
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ABSTRACT
We propose a dynamic graph-based relational learning ap-
proach using graph-rewriting rules to analyze how biological
networks change over time. The analysis of dynamic biolog-
ical networks is necessary to understand life at the system-
level, because biological networks continuously change their
structures and properties while an organism performs vari-
ous biological activities to promote reproduction and sustain
our lives. Most current graph-based data mining approaches
overlook dynamic features of biological networks, because
they are focused on only static graphs. First, we generate a
dynamic graph, which is a sequence of graphs representing
biological networks changing over time. Then, our approach
discovers graph rewriting rules, which show how to replace
subgraphs, between two sequential graphs. These rewriting
rules describe the structural difference between two graphs,
and describe how the graphs in the dynamic graph change
over time. Temporal relational patterns discovered in dy-
namic graphs representing synthetic networks and metabolic
pathways show that our approach enables the discovery of
dynamic patterns in biological networks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; J.3 [Life and
Medical Science]: Biology and genetics—Biological Net-
works

Keywords
Temporal Graph Mining, Graph Rewriting Rules, Biological
Network

1. INTRODUCTION
To investigate bio-organisms and understand the theory

of life, we should consider our bodies are dynamic. Our
bodies are well-organized and vigorous systems, which pro-
mote reproduction and sustain our lives. Well-organized sys-
tems refer to structural properties of biological networks,
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which include various molecules and relationships between
molecules. Vigorous systems refer to dynamic properties of
biological networks, which continuously change their struc-
tures and properties, while an organism performs various bi-
ological activities, such as digestion, respiration and so on.
We assume the structures of biological networks change over
time as they interact with specific conditions, for instance,
a disease.

We propose a novel approach to analyze structural fea-
tures along with temporal features in a time series of bio-
logical networks to enhance our systems-level understanding
of bio-organisms. The temporal patterns in the structural
changes of biological networks can be significant informa-
tion about a disease and help researchers develop new drugs.
During the development period, the temporal patterns in
the structural changes of biological networks after taking
the medicine are also used for the development and evalua-
tion of the new drug. Lactose intolerance is the inability to
digest lactose because of a lack of the lactase enzyme, break-
ing down lactose into galactose and glucose [3]. Two major
treatments are to minimize the intake of lactose products
and take the lactase supplement. Our approach can help us
discover the temporal patterns in the structural changes of
galactose metabolism pathway after these treatments, and
investigate another treatment (i.e., improving the produc-
tion of the lactase enzyme in the pathway).

Temporal data mining can discover temporal features in
the sequence of data. But it is hard for temporal data min-
ing to discover structural features or relational patterns be-
tween two entities. Graph-based data mining is a process
to learn novel knowledge in data represented as a graph
and has been applied to identify relational patterns in bi-
ological networks [24]. However, the current graph-based
data mining approaches overlook dynamic features of net-
works, because most of them are focused on only static
graphs. Our dynamic graph-based relational learning ap-
proach uses graph-rewriting rules to analyze how biological
networks change over time. Graph-rewriting rules define
how one graph changes to another in its topology replac-
ing vertices, edges or subgraphs according to the rewriting
rules. Our discovery algorithm takes a dynamic graph as an
input. The dynamic graph contains a sequence of graphs
representing biological networks changing over time. Then,
the algorithm discovers rewriting rules between two sequen-
tial graphs. After discovery of whole sets of graph rewriting
rules from the dynamic graph, we discover temporal patterns
in the discovered graph rewriting rules.

This paper, first, introduces several preceding approaches
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related to dynamic analysis of biological networks. Then,
we present our definition of graph rewriting rules and our
Dynamic Graph Relational Learning (DynGRL) algorithm.
In our experiments, we generate several dynamic graphs of
the yeast metabolic pathways using the KEGG PATHWAY
database and microarray data. Then, we apply our Dyn-
GRL approach to the dynamic graphs. The results show
our discovered graph rewriting rules and temporal patterns
in the rewriting rules. The temporal patterns show which
graph rewriting rules are repeated periodically or temporal
relations among several graph rewriting rules. Our results
also help us to visualize what substructures change over time
and how they change. This approach enables us to investi-
gate dynamic patterns in biological networks in two aspects:
structural and temporal explorations. The ultimate goal
of this research is to discover the temporal patterns in the
structural changes of biological networks for drug discovery
and the systems-level understanding of complex biosystems.

2. RELATED WORK
To understand how biosystems change over time, we need

to follow two aspects: structural and temporal analysis of
dynamic biological networks. Here, we introduce microar-
ray analysis and temporal data mining for the temporal ex-
ploration. Then, related research on biological networks is
followed for the structural exploration.

The microarray is a tool for measuring gene expression
levels for thousands of genes at the same time [4, 17], and
have already produced terabytes of important functional ge-
nomics data that can provide clues about how genes and
gene products interact and form their gene interaction net-
works. Most genes are co-expressed, as most proteins in-
teract with other molecules. Co-expressed genes construct
common processes or patterns in biological networks (gene
regulatory networks or protein networks) in the specific con-
dition or over time. Microarrays can also monitor patterns
in gene expression levels for the period of time or at the
different conditions. Patterns in gene expression levels can
represent changes in the biological status or distinguish two
different states, such as the normal and disease state.

Some microarray research [7, 22] describes patterns in
gene expression values. One approach explores temporal
patterns in gene expression promoting the regulation of a
metabolic pathway [7]. Other research observes more than
half of the yeast genes show periodic temporal patterns dur-
ing metabolic cycles [22]. But the microarray analysis can
overlook structural aspects, which show how the genes or ex-
pressed gene products are related to each other in biological
networks.

Temporal data mining attempts to learn temporal pat-
terns in sequential data, which is ordered with respect to
some index like time stamps, rather than static data [20].
Temporal data mining is focused on discovery of relational
aspects in data such as discovery of temporal relations or
cause-effect association. In other words, we can understand
how or why the object changes rather than merely static
properties of the object. In this research, we are focused
on discovery of temporal patterns and their visualization.
Allen and et al. [2] formalized temporal logic for time inter-
vals using 13 interval relations. This approach allows us to
present temporal relations in sequential data.

There are several approaches to apply temporal data min-
ing in biological data. Ho et al. [11] propose an approach

to detect temporal patterns and relations between medical
events of Hepatitis data. They represent medical informa-
tion of patients as sequential events and classify temporal
patterns and relations of medical testing results in the se-
quential events using the Naive Bayes classifier. Farach-
Colton et al. [9] introduce an approach of mining temporal
relations in protein-protein interactions. They model the
assembly pathways of Ribosome using protein-protein inter-
actions. This approach determines the order of molecular
connections using the distance measure of each interaction
between two proteins.

Temporal data mining approaches discover temporal pat-
terns in data, but they disregard relational aspects among
entities. For example, they can identify temporal patterns
of appearance of genes such that a gene, YBR218C, appears
before another gene, YGL062W, but cannot identify how
these two genes interact with each other.

According to the central dogma in molecular biology, the
genetic information in DNA is transcribed into RNA (tran-
scription) and protein is synthesized from RNA (transla-
tion). These biomolecules (DNA, RNA and proteins) play
central roles in the aspects of the function and structure of
organisms. However, there are few molecules that can work
alone. Each molecule has its own properties and relation-
ships with other molecules to carry out its function. Biolog-
ical networks have various molecules and relations between
them including reactions and relations among genes and pro-
teins. Biological networks including metabolic pathways,
protein-protein interactions and gene regulatory networks,
consist of various molecules and their relationships [13]. In
addition to the structural aspect, we also consider the tem-
poral aspect of biological networks, because the biosystems
always change their properties and structures while inter-
acting with other conditions.

Two approaches have been developed for the analysis of
biological networks. One approach is graph-based data min-
ing [14, 24]. This approach represents biological networks as
graphs, where vertices represent molecules and edges rep-
resent relations between molecules, and discovers frequent
patterns in graphs. Many approaches of graph-based data
mining discover structural features of biological networks,
but they overlook temporal properties. The other approach
is mathematical modeling, which is an abstract model to de-
scribe a system using mathematical formulae [18]. Most of
these approaches, as a type of quantitative analysis, model
the kinetics of pathways and analyzes the trends in the
amounts of molecules and the flux of biochemical reactions.
But most of them disregard relations among multiple molecules.

There are two main points to consider for understanding
biological networks: structural and temporal aspects. The
former reminds us to focus on relations between molecules
as well as a single molecule. The latter is necessary to under-
stand biological networks as dynamic operations rather than
static relations, because every biological process changes
over time and interacts with inner or outer conditions. For
this reason, we need an approach to analyze biological net-
works changing over time in both aspects: structural and
temporal properties.

3. GRAPH REWRITING RULES
This paper focuses on temporal and structural analysis

of biological networks. Our dynamic graph-based relational
learning approach discovers graph rewriting rules in a series
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Figure 1: An example of application of graph rewrit-
ing rules, where the rule derives a graph H from a
graph G by replacing a subgraph L by a subgraph
R.

of graphs changing their structures over time. Each graph
rewriting rule represents topological changes between two
sequential graphs. Here, we define graph rewriting rules for
our approach.

Graph rewriting is a method to represent topological changes
of graphs using graph rewriting rules [8, 21]. Generally,
graph rewriting rules identify subgraphs in a graph and mod-
ify them. Each graph rewriting rule defines a transforma-
tion between L and R, where L and R are subgraphs in two
graphs G and H respectively, such that L is replaced by R,
L is deleted, or R is created [19]. As shown in figure 1,
L is identified first in graph G. Then L is replaced by R
to produce graph H. There are also several algorithms to
discover the node or edge replacement graph grammar using
the minimum description length principle [12, 15]. However,
their scope is limited to static graphs.

Traditional approaches to the identification of graph rewrit-
ing rules determine which subgraphs will be replaced by
other subgraphs. Our approach is focused on representing
changing structures between two graphs rather than just
what subgraphs change. We define our graph rewriting
rules to represent how substructures change between two
graphs rather than just what subgraphs change. First, we
discover maximum common subgraphs between two sequen-
tial graphs G1 and G2. Then, we derive removal substruc-
tures from G1 and addition substructures from G2. Figure
2 shows an instance of this process. A maximum common
subgraph (denoted by S) is discovered between two graphs,
G1 and G2. Then the remaining structure in G1 and G2 be-
comes removal (denoted by R) and addition (denoted by A)
substructures respectively. These substructures with con-
nection edges rc and ac are elements of graph rewriting rules:
removal and addition rules respectively. For this approach,
we define several preliminary terms.

A directed graph G is defined as G = (V, E), where V is
a set of vertices and E is a set of edges. An edge e (∈ E)
is directed from x to y as e = (x, y), where x, y ∈ V . Here,
we define a dynamic graph DG as a sequence of n graphs
as DG = {G1, G2, · · · , Gn}, where each graph Gi is a graph
at time i for 1 ≤ i ≤ n. Then, we define a set of removal
substructures RG and a set of addition substructures AG as
follows.

RGi = Gi/Si,i+1, AGi+1 = Gi+1/Si,i+1

RGi denotes a set of removal substructures in a graph Gi,

A A

C C

DB

E

G H

rc ac

S AR S

Figure 2: An example of application of graph rewrit-
ing rules, which shows an removal rule {R, rc} from
a graph G and an addition rule {A,ac} to a graph
H. The removal and addition substructures are con-
nected to G and H by edges rc and ac. S represents
the common subgraph between G and H.

AGi+1 denotes a set of addition substructures in the next
graph Gi+1, and Si,i+1 is a maximum set of common sub-
graphs between two sequential graphs Gi and Gi+1 in a dy-
namic graph DG.

A prior graph Gi is transformed to a posterior graph Gi+1

by application of a set of graph rewriting rules GRi,i+1 as
denoted by

Gi+1 = Gi

M
GRi,i+1

A set of graph rewriting rules GRi,i+1 between two sequen-
tial graphs Gi and Gi+1 is defined as follows.

GRi,i+1 = {(m, p, CEm, CLm), · · · ,
(n, q, CEn, CLn), , · · · , }

m and n are indices of graph rewriting rules in a set GRi,i+1.
p and q are indices of a removal substructure in RGi and
an addition substructure in AGi+1 respectively. CE and
CL are defined as a set of connection edges and a set of
labels of the connection edges. Each element of RG and
AG corresponds to a set of CE and CL, unless a removal
(addition) substructure does not connect to the Gi (Gi+1).
CEk and CLk represent connections between substructures
and the original graphs (k = m or n) as follows.

CE = {(d, X, Y ), · · · }, CL = {labelxy, · · · }

d represents whether the edge is directed or undirected using
d and u. X and Y denote the starting and ending vertices
of the edge. Because the connection edge links the substruc-
ture to the original graph, one end of this edge is from the
substructure and the other is from the original graph. The
end vertex from the substructure starts with “s” followed by
the index of the vertex, and the end vertex from the original
graph starts with “g” followed by the index of the vertex.
For example, (d, g1, s3) represents the directed edge from a
vertex 1 in the original graph to another vertex 3 in the sub-
structure. labelxy represents a label for the corresponding
connection edge between two vertices X and Y . The num-
ber of elements of CE (CL as well) represents the number of
connections between substructures and the original graph.
If a substructure is not connected to the original graph, both
sets of CE and CL are empty.

We describe more detail with an example. Figure 3 shows
an instance of graph rewriting rules between the synthetic
biological networks, G1 and G2. The thick-drawn substruc-

63



sce:A

sce:B

sce:C sce:D

sce:E sce:F

PPrel:---

PPrel:+p PPrel:+p

PPrel:-p

PPrel:--- PPrel:+p

PPrel:-->

sce:B

sce:C sce:D

sce:E

sce:H sce:I

PPrel:+p PPrel:+p

PPrel:-p

PPrel:--- PPrel:-p

PPrel:+p

G1 G2 

Figure 3: An instance of graph rewriting rules between

graph G1 and G2 in the synthetic biological networks

tures in both graphs represent the maximum common sub-
structures. The underline labeled elements in G1 represent
removal substructures (from G1) with the rectangle labeled
connection edges. The underline labeled elements in G2 rep-
resent addition substructures (to G2), where this addition
rule does not have any connection edges.

GR1,2 represents a set of graph rewriting rules, which is
applied to G1 and produces G2 using G2 = G1

L
GR1,2 as

described in the previous section. It has four graph rewrit-
ing rules. For example, r1 (r denotes removal.) represents
an index into the set of removal rules including a removal
subgraph (rSub1), which contains a single vertex A. rSub1

was connected by an edge (d, s1, g2), which is labeled by
PPrel : − − −. This edge is a directed edge (indicated
by ‘d’). One end of this edge is s1, which denotes a ver-
tex number 1 in rSub1 (s denotes the substructure.). The
other end is g2, which denotes a vertex number 2 in G1 (g
denotes the original graph.). a1 and a2 represent addition
rules similarly. But these two cases look somewhat different.
a1 has ∅ (emptyset) as the addition substructure, because
a1 is a rule representing a blue edge PPrel : −p in G2 with-
out any addition substructure. a2 also has ∅s for edges and
edge labels, because aSub1 represents a disconnected graph
including vertices H and I in G2.

GR1,2 = {(r1, rSub1, {(d, s1, g2)}, {PPrel : −−−}),
(r2, rSub2, {(d, g4, s1), (d, g5, s1)},
{PPrel : +p, PPrel : −− >}),
(a1, ∅, {(d, g3, g4)}, {PPrel : −p}),
(a2, aSub1, ∅, ∅)}

The graph rewriting rules show how two sequential graphs
are structurally different. After collecting all sets of graph
rewriting rules in a dynamic graph, we also discover tem-
poral patterns in graph rewriting rules, which can describe
how the graphs change over time as well as what structures
change.

4. APPROACH
This section describes our graph rewriting rule discovery

system, DynGRL, that discovers graph rewriting rules in a
dynamic graph. Our approach extends Cook and Holder’s
earlier work [5, 6], which is a graph-based relational learn-
ing approach to discover subgraphs. Their approach evalu-

ates discovered subgraphs using the Minimum Description
Length (MDL) principle to find the best subgraphs that min-
imize the description length of the input graph after being
compressed by the subgraphs. The description length of
the substructure S is represented by DL(S), the descrip-
tion length of the input graph is DL(G), and the description
length of the input graph after compression is DL(G|S). The
approach tries to minimize the Compression of the graph
as follows.

Compression =
DL(S) + DL(G|S)

DL(G)

Their approach, which is called as DiscoverSub() in our
algorithms, tries to maximize the V alue of the subgraph,
which is simply the inverse of the Compression. Even though
we can use a frequent subgraph mining approach [16, 23] for
DiscoverSub(), we choose the compression-based approach,
because there is no need to choose a proper minimum sup-
port and many times the best-compressing subgraph bet-
ter captures the patterns of interest than the most frequent
subgraph. A more detailed comparison between the two ap-
proaches is left for future work.

The algorithm starts with a dynamic graph DG consisting
of a sequence of n graphs as shown in algorithm 1. First,
the algorithm creates a list of n virtual graphs, V GL, corre-
sponding to n time series of graphs at line 1. Our approach
uses a virtual graph to specify the application locations of
graph rewriting rules. Because a graph may have multiple
graph rewriting rules and several same-labeled vertices and
edges, the exact locations of connection edges and rewriting
rules are important to reduce the discovery error. The next
procedure is to create a two-graph set, Graphs, including
two sequential graphs Gi and Gi+1 (line 5) and to specify the
limit based on unique labeled vertices and edges of Gi and
Gi+1 (line 6). UV L and UEL denote the number of unique
vertex labels and edges in Gi and Gi+1. The Limit specifies
the number of substructures to consider when searching for
a common substructure (line 6). The Limit based on the
number of labels in the input graph bounds the search space
within polynomial time and ensure consideration of most of
the possible substructures.

The inner loop (lines 7 to 14) represents the procedure
to discover common substructures between two sequential
graphs. DiscoverSub() is used to find the maximum com-
mon subgraph. Although to find the maximum common
subgraph is NP-Complete, DiscoverSub() can be used as a
polynomial-time approximation to this problem using Limit
and iteration as described later. After discovery of the best
substructure, the algorithm checks whether the substructure
is a subgraph of both graphs Gi and Gi+1. In the affirmative
case, the best substructure is added into ComSubSet and
the two target graphs are compressed by replacing the sub-
structure with a vertex. If the best substructure does not be-
long to one of the two graphs, the algorithm just compresses
the graphs without adding any entry into ComSubSet. Af-
ter compression, the algorithm discovers another substruc-
ture at the next iteration until there is no more compression.

Using the complete list of common substructures, ComSubSet,
the algorithm acquires removal substructures, remSubs, and
addition substructures, addSubs, (lines 15 and 17). First,
the algorithm identifies vertices and edges not part of com-
mon substructures and finds each disconnected substructure
in Gi and Gi+1 using the modified Breadth First Search
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Algorithm 1 DynGRL discovery Algorithm

Require: DG = {G1, G2, · · · , Gn }
1. Create V GL = {V G1, V G2, · · · , V Gn}
2. RRL = {}
3. for i = 1 to n− 1 do
4. RemRuleSet =AddRuleSet = ComSubSet = {}
5. Graphs = {Gi, Gi+1}
6. Limit = UV L + 4(UEL− 1)
7. while No more compression do
8. BestSub = DiscoverSub(Limit, Graphs)
9. if BestSub ∈ Gi & Gi+1 then

10. Add BestSub into ComSet
11. end if
12. Compress Graphs by BestSub
13. Mark BestSub on V Gi and V Gi+1

14. end while
15. Get remSubs, CE from V Gi

16. Add remSubs into RemSubSet and CE into
RemCESet

17. Get addSubs, CE from V Gi+1

18. Add addSubs into AddSubSet and CE into
AddCESet

19. Create RR from RemSubSet, AddSubSet,
RemCESet, AddCESet

20. Add RR into RRL
21. end for
22. return RRL

(mBFS), which adds each edge as well as each vertex into
the queues as visited or to be visited. The marked sub-
structures in Gi and Gi+1 are removal and addition sub-
structures respectively. While mBFS searches these removal
and addition substructures, it also finds connection edges,
CE, as described previously. These edges are added into
RemCESet and AddCESet, where removal and addition
substructures are added into RemSubSet and AddSubSet
respectively (in lines 16 and 18). Using these rewriting sub-
structures and connection edges, rewriting rules (RR) are
created and stored into RRL (in lines 19 to 20).

The main challenge of our algorithm is to discover max-
imum common subgraphs between two sequential graphs,
because this problem is known to be NP-hard [10]. To avoid
this problem, first we use the Limit to restrict the number
of substructures to consider in each iteration. The Limit is
computed using the number of unique labels of vertices and
edges in graphs. Second, our algorithm does not try to dis-
cover the whole common substructures at once. In each step,
the algorithm discovers a portion of common, connected sub-
structure and iterates the discovery process until discovering
the whole maximum common subgraphs. Usually, the size
of graphs representing biological networks is not too large.
Therefore, discovery of graph rewriting rules is still feasi-
ble. However, we still have challenges to analyze very large
graphs.

5. DATASETS: MICROARRAY DATA AND
GRAPH

We prepare dynamic graphs representing the yeast metabolic
pathways in combination with microarray data. As described
in section 2, microarrays can be used in two ways: monitor-
ing the change of gene expression levels over time or distin-
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Figure 4: The oscillation curves of the changing gene
expression values of three yeast genes: YNL071W,
YER178W, and YBR221C.
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Figure 5: An instance of the graph representation
for a metabolic pathway.

guishing patterns in two different states. Here, we use time-
based microarray data to generate a dynamic graph, where
each column of data represents the gene expression values
at a particular time. The microarray data used in our re-
search observes periodic gene expression of Saccharomyces
cerevisiae using microarray analysis [22]. The microarray
data has 36 columns where each column represents one time
slice. Their results show more than 50% of genes have three
periodic cycles in the gene expression. We normalize each
gene expression value of microarray data from 0 to 1, because
we are focused on trends of the changes of gene expression
values. Figure 4 shows normalized gene expression values of
three genes shown in the glycolysis pathway.

Here, we prepare 10 dynamic graphs, each of which con-
tains 36 consecutive graphs representing one yeast metabolic
pathway changing over time (36 time slices) correspond-
ing to 36 columns in microarray data. The 10 dynamic
graphs represent 10 metabolic pathways: glycolysis (00010),
TCA (00020), Pentose phosphate pathway (00030), Purine
metabolism (00230), Pyrimidine metabolism (00240), Urea
cycle (00220), Glutamate metabolism (00251), Arginine and
proline metabolism (00330), Glycerolipid metabolism (00561)
and Glycerophospholipid metabolism (00564), where each
number denotes the identification number of the pathways
in the KEGG data [1]. The first three pathways are involved
in the carbohydrate metabolism, the second two pathways
are involved in the nucleic acids, the next three pathways
are involved in the amino acids metabolism and the last two
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Figure 6: A visualization of time points when the
substructure including each gene is removed from
or added to graphs representing the glycolysis path-
way at the experiment of threshold 0.6. The points
above the time axis represent the time points when
the substructures including the specified genes or
relation are removed (Genes with (-)). The points
below the time axis represent the time points when
the substructures including the specified genes or re-
lation are added (Genes with (+)). Relation points
represent the time points when the enzyme-enzyme
relations are shown in the pathway.

pathways are involved in the lipid metabolism.
First, we generate a static graph to represent each metabolic

pathway from the KEGG PATHWAY database [1], where
vertices represent compounds, genes, enzymes, relations and
reactions, and edges represent relationships between ver-
tices. Figure 5 shows an example of the graph represen-
tation. “ECrel:Compound” represents a relation between
two enzymes (gene products). One enzyme is produced by
one or more genes, which is represented as edges “G to E”.
“RN:Rxxxxx” represents a reaction and “cpd:Cyyyyy” rep-
resents chemical compounds, where xxxxx and yyyyy repre-
sent the identification number in the KEGG database. Here,
we assume only genes change over time based on gene ex-
pression values and other molecules like compounds remain
the same amount.

We use a threshold t to apply the numeric gene expression
values on graph. At each time, we assume a gene, which has
more than t gene expression value, is shown in the graph.
One particular point is our graph representation has enzyme
vertices, which do not exist in the KEGG data. One enzyme
needs one or more genes to synthesize. At a specific time,
only one gene can be expressed out of two genes, which are
needed for one enzyme. Naturally, the enzyme is not syn-
thesized at that time. We use enzyme vertices to represent
this scheme. Only when all genes are expressed, the enzyme
vertex is shown in the graph. At that time, the reaction,
which is catalyzed by the enzyme, is also shown. In this
way, we can observe the structure of the glycolysis pathway
based on microarray gene expression at each time.

6. EXPERIMENTS AND RESULTS
Our approach discovers graph rewriting rules in each dy-

namic graph. First, we discuss temporal patterns in graph
rewriting rules. Then, we represent how the discovered sub-
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Figure 7: A visualization of time points when a par-
ticular substructure is removed from or added to
graphs representing the glycolysis pathway at the
experiment of threshold 0.6. Each substructure in-
cludes a relation, which is an enzyme-enzyme rela-
tion between two gene, where ECrel(x, y) represents
the relation, and x, y represent the id of enzymes.

structures in the rewriting rules link to the original graphs
at the specific time.

6.1 Temporal patterns
As described in the previous section, the goal of this re-

search is to discover temporal patterns in graph rewriting
rules to describe structural changes of metabolic pathways
over time. Because the result of the microarray data [22] rep-
resents three periodic cycles of gene expression, we observe
similar temporal patterns in graph rewriting rules. Here,
we are focused on graph rewriting rules involving enzyme-
enzyme relations as well as genes. The enzyme-enzyme re-
lation represents a relationship between two enzymes. As
shown in figure 5, one or more genes produce an enzyme, and
the enzyme can have a relation with one other enzyme. The
relation vertex labeled as “ECrel:Compound” exists, only
when there exist two enzyme vertices. Each enzyme ver-
tex exists only when the linked genes exist (biologically, the
linked genes produce the enzyme). The left enzyme exists
only when two genes, YER178W and YER221C exist. The
right enzyme exists only when one gene YAL038W exists.

Figure 6 shows a visualization of the changes to the par-
tial pathway including the above three genes of the glycol-
ysis pathway. The complete pathway is shown in figure 10
(Sub F ). The points above the time axis represent the time
points when the substructures including the specified genes
or relation are removed. The points below the time axis
represent the time points when the substructures including
the specified genes or relation are added. The points on the
axis represent the time when the relation exists. The result
clearly shows the temporal patterns in removal and addition
rules as three cycles. Three genes are added and the relation
is shown in the pathway. After several time intervals, one
of three genes starts to be removed from the pathway and
the relation disappears, too. Like the microarray research
[22], we can notice the genes are added and removed three
times periodically. In addition, we discover the removal and
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Figure 8: Visualization of three periodic cycles in removals and additions of Enzyme Relations in TCA cycle
(A), urea cycle (B), glutamate metabolism (C), glycerophospholipid metabolism (D), purine metabolism (E)
and pyrimidine metabolism (F) at the experiment of threshold 0.5. The points marked as “X” above the time
axis represent removals, and the points marked as rectangles represent additions.

Table 1: Running time of ten dynamic graphs. Path-
way denotes the name of the pathway represented
by the dynamic graph. Max. Size and Min. Size
denote the maximum and minimum size of a graph
in the dynamic graph. Total Size denotes

P
size(Gi)

for Gi ∈ DG. Time is in seconds
Pathway Max. Size Min. Size Total Size Time

00010 522 65 7738 69.86
00020 294 46 4667 9.44
00030 192 57 4069 3.82
00220 236 58 4147 4.58
00251 394 110 7928 172.88
00330 184 61 4277 4.65
00561 183 44 2425 3.38
00564 231 57 4937 4.96
00230 643 161 10259 54.06
00240 486 85 6040 18.03

addition of some relations also show temporal cycles. Sup-
pose there are two genes and a relation between two genes.
One gene is always shown in the pathway, and the other is
shown three times periodically. The relation is also shown
three times like the latter gene, because the relation is ac-
tivated only when both genes are activated. Because most
genes and proteins work together, the temporal patterns in
the relations between the molecules are also important as
well as the temporal patterns in the existence of genes and
proteins.

Figure 7 shows a visualization of three periodic cycles of
10 relations in the glycolysis pathway. In this experiment,
the dynamic graph with threshold 0.6 shows a maximum of
13 relations at each time slice. 10 out of the 13 relations
clearly show periodic cycles three times. Figure 8 shows
the similar temporal patterns in the six other pathways,
TCA cycle (A), urea cycle (B), glutamate metabolism (C),
glycerophospholipid metabolism (D), purine metabolism (E)
and pyrimidine metabolism (F). The points (marked as ”X”)
above the time axis represent the patterns of removals and
the points (marked as the rectangles) below the time axis
represent the patterns of additions. The two time points
with the same distance over the axis represent the removals
and additions of the same subgraphs. The six visualizations
show the temporal patterns in the graph rewriting rules of
the major metabolic pathways. Even though there are some
time points that do not show clear cycles, all ten pathways
show the three periodic cycles of enzyme-enzyme relations.
We can conclude that the removals and additions of the
subgraphs including genes and relations show the temporal
patterns of three periodic cycles. Table 1 shows the running
time of Algorithm 1 on the ten dynamic graphs representing
the ten metabolic pathways. Most cases are finished within
a minute.

Figure 9 shows the temporal patterns in maplink-relations,
which represent the relations between two enzymes that
belong to two different pathways. Link(+) denotes the
time points when two pathways are linked to each other,
and Link(−) denotes the time points when they are discon-
nected. Because these relations are also activated by the
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Figure 9: A visualization of three periodic cycles in
time points when two pathways (Purine metabolism
(00230) and Glutamate metabolism (00251)) are
linked to each other at the experiment of threshold
0.5.

gene expression values, they also show three periodic cycles
like enzyme-relations. In fact, all metabolic pathways in a
cell are connected to each other. Practically, we classify
the metabolic pathways for each function such as glycoly-
sis, urea cycle and so on. The temporal patterns in the
maplink-relations show when two pathways are connected
or disconnected to each other. In addition to the temporal
patterns, our results show the structural properties related
to these patterns in next section.

Our results show three periodic cycles of enzyme-relations
and maplink-relations over ten major metabolic pathways.
We can observe similar temporal patterns in the four major
categories of pathways. These temporal patterns of rela-
tions describe periodic cycles in the behaviors of the yeast
biosystem corresponding to the periodic cycles of the gene
expression of the yeast. The major events and behaviors of
the biosystems accord with the metabolic cycles [22].

The experiments show that DynGRL discovers graph rewrit-
ing rules from dynamic graphs representing the yeast metabolic
pathways changing over time. These graph rewriting rules
represent temporal patterns that describe how the struc-
ture of the metabolic pathways change over time by showing
which elements change periodically. These temporal pat-
terns and graph rewriting rules help us to understand dy-
namic properties of the metabolic pathways. The results
show not only temporal patterns in structural changes of
metabolic pathways, but also temporal patterns in the con-
nections between two different pathways.

6.2 Structural patterns
The other goal of this research is to show structural pat-

terns in metabolic pathways as well as temporal patterns.
Because an advantage of the graph representation is visu-
alization, we can understand metabolic pathways better us-
ing structural analysis with temporal analysis. This section
illustrates the use of discovered substructures with graph
rewriting rules.

Figure 10 shows structural changes of the dynamic graph

representing the partial glycolysis pathway introduced in fig-
ure 6. Gi represents the graph at time i. This dynamic
graph contains 36 time series of graphs starting with a sin-
gle vertex graph in time 1 to no vertex in time 36. The blue
edge with the boxed labels between two sequential graphs
represents the graph transformation using removal (-) or ad-
dition (+) of one of the six substructures (Sub A to F ). For
example, graph G5 is transformed to G6 with removal of
Sub C and addition of Sub B. The red edges with the dot
boxed labels in the rules represent the connection edges as
described previously. The connection edges describe how
the discovered substructures connect to the original graph.

As described previously, we show the graph rewriting rules
between two graphs as a formula. Here, we show two exam-
ples of graph rewriting rules GR1,2 and GR5,6 as follows,

GR1,2 = {a1, addA, CE, CL)},
CE = {(d, S2, G2)}, CL = {G to E}

GR5,6 = {(r1, remC , ∅, ∅), (a1, addB , ∅, ∅)}

where am and rn denote the indices of the removal and addi-
tion rule in each graph rewriting rule, addx and remy denote
the substructure (Sub A to F ) in figure 10. CE and CL de-
note the connection edges and connection edge labels respec-
tively. The connection edge with a label G to E links Sub
A to a gene YER178W in G1 so that an enzyme is activated
by two genes, YBR221C and YER178W, and a relation is
created with the other enzyme that is activated by a gene,
YNL071W. But CE and CL are all ∅ in GR5,6 because there
is no connection edge between the substructures (remC and
addB) and the original graphs (G5 and G6) respectively.

Figure 11 shows our visualization results of a removal and
addition rule. The left figure shows a removal rule in our
output and the right figure shows the same rule marked on
the KEGG pathway map. The labels marked by “-[]” repre-
sent the labeled vertices and edges belonging to the substruc-
tures of removal rules. The labels are marked by “+[]” in the
case of addition rules. Connection edges between the discov-
ered substructures and original graphs are marked by “()”.
The removal of a gene YKL060C causes the removal of two
enzyme-relations with one other gene YDR050C and a reac-
tion R01070, which is a catalyzed by an enzyme produced
by YKL060C (There can exist more than one relation with
different properties between two genes in the KEGG data.).
The graph also loses several connection edges between the
removal structures and original graph. The DynGRL system
helps us visualize removal or addition rules on the original
graph with the connection edges. The results show how the
substructures in graph rewriting rules are structurally con-
nected to the original graphs and how the graphs change
after removal or addition rules are applied.

In addition to the change of one element, our results show
how the changes are related to other elements (i.e., which el-
ements are removed or added at the same time) as shown in
the discovered subgraphs and how the subgraphs are linked
to the original graphs. Our results show patterns in the
structural changes, not merely changes of amount. It al-
lows us to better understand the structural properties as
the pathways change over time.

In summary, we evaluated our algorithm in the experi-
ments with 10 dynamic graphs each containing 36 graphs
representing the yeast metabolic pathways in combination
with the microarray data of yeast. 35 sets of graph rewrit-
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Figure 10: Structural changes of a dynamic graph representing the partial glycolysis pathway. Gi denotes a
graph at time i for 1 ≤ i ≤ 36. The blue arrows with boxed labels between two graphs, Gx and Gy, represent
the transformation from Gx to Gy by application of the rule in the label of the arrow. Sub p (A to F ) represents
the substructure in each rule (removal and addition), where the red arrows with the dot boxed labels from
the substructures represent the connection edges. For example, G1 is transformed to G2 by addition of Sub
A, which is connected by a connection edge labeled “G to E”.

ing rules for removals and additions are discovered during
35 time intervals. Temporal patterns in the graph rewriting
rules show a number of substructures are removed and added
periodically as showing three cycles. The graph rewriting
rules and our visualization results describe how the discov-
ered substructures are connected to the original graph and
how the structures of graphs change over time. These tem-
poral patterns and graph rewriting rules help us to under-
stand temporal properties as well as structural properties of
biological networks. Some discovered temporal and struc-
tural patterns in a specific disease can show us how they
are different from normal patterns and help us investigate
disease and develop a new treatment.

7. CONCLUSION
This research formalizes graph rewriting rules to describe

structurally changing biological networks and proposes an
algorithm, DynGRL, to discover graph rewriting rules in a
dynamic graph. The algorithm is evaluated with the dy-
namic graphs representing the yeast metabolic pathways in
combination with the microarray data. Our approach repre-
sents structural and temporal properties at the same time,
and discovers novel patterns in both properties. The results
show our dynamic graph-based relational learning approach
discovers several novel temporal patterns in graph rewriting
rules of the metabolic pathways such that some relations be-
tween genes and pathways are shown periodically. Addition-
ally, the results show periodic cycles of temporal patterns in
connections between two pathways. DynGRL can also help
us to visualize the removed or added substructures to show
how the graphs structurally change or how the substructures
in rewriting rules are related to the original graphs.

The graph rewriting rules of biological networks can de-
scribe how the complex biosystems change over time. The
learned temporal patterns in the rewriting rules can describe
not only structural changes of metabolic pathways but also
temporal patterns in series of the structural changes. Our
approaches help us to better explore how biological networks
change over time and guide us to understand the structural
behaviors of the complex biosystems. Specifically, the tem-
poral patterns in structural changes of the biosystems under
specific conditions (e.g., infection) can provide essential in-
formation for drug discovery or disease treatment.

The future works follow several directions. First, we need
more systematic evaluation for the discovered graph rewrit-
ing rules. Our evaluation will also include regenerating a
dynamic graph using the discovered graph rewriting rules to
compare with the original dynamic graph from real world
data. In addition, we will also focus on the fully automated
approach to learn temporal patterns in the discovered graph
rewriting rules. Finally, we will evaluate how this approach
can be used to predict future structures of biological net-
works using the learned temporal and structural patterns.
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Figure 11: A visualization of discovered substructures of removal rule in a dynamic graph representing the
glycolysis pathway in our output (left) and on the KEGG glycolysis pathway map (right). Labels marked
by ”-[]” represent the removal rules and labels marked by ”()” represent the connection edges (left). Red
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