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ABSTRACT
We analyze the lung cancer data available from the SEER
program with the aim of developing accurate survival pre-
diction models for lung cancer using data mining techniques.
Carefully designed preprocessing steps resulted in removal/
modification/splitting of several attributes, and 2 of the 11
derived attributes were found to have significant predic-
tive power. Several data mining classification techniques
were used on the preprocessed data along with various data
mining optimizations and validations. In our experiments,
ensemble voting of five decision tree based classifiers and
meta-classifiers was found to result in the best prediction
performance in terms of accuracy and area under the ROC
curve. Further, we have developed an on-line lung cancer
outcome calculator for estimating risk of mortality after 6
months, 9 months, 1 year, 2 year, and 5 years of diagnosis,
for which a smaller non-redundant subset of 13 attributes
was carefully selected using attribute selection techniques,
while trying to retain the predictive power of the original
set of attributes. The on-line lung cancer outcome cal-
culator developed as a result of this study is available at
http://info.eecs.northwestern.edu:8080/ LungCancerOutcome-
Calculator/
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1. INTRODUCTION
Respiratory (lung) cancer is the second most common can-

cer [1], and the leading cause of cancer-related deaths among
men and women in the USA [2]. Survival rate for lung cancer
is estimated to be 15% after 5 years of diagnosis [28].

The Surveillance, Epidemiology, and End Results (SEER)
Program [4] of the National Cancer Institute is an author-
itative repository of cancer statistics in the United States
[3]. It is a population-based cancer registry which covers
about 26% of the US population across several geographic
regions and is the largest publicly available domestic cancer
dataset. The data includes patient demographics, cancer
type and site, stage, first course of treatment, and follow-up
vital status. The SEER program collects cancer data for all
invasive and in situ cancers, except basal and squamous cell
carcinomas of the skin and in situ carcinomas of the uterine
cervix [28]. The ‘SEER limited-use data’ is available from
the SEER website on submitting a SEER limited-use data
agreement form. [20] presents an overview study of the can-
cer data at all sites combined and on selected, frequently
occurring cancers from the SEER data. The SEER data at-
tributes can be broadly classified as demographic attributes
(e.g. age, gender, location), diagnosis attributes (e.g. pri-
mary site, histology, grade, tumor size), treatment attributes
(e.g. surgical procedure, radiation therapy), and outcome
attributes (e.g. survival time, cause of death), which makes
the SEER data ideal for performing outcome analysis stud-
ies.

There have been numerous statistical studies using the
SEER data like demographic and epidemiological studies of
rare cancers [35], assessing susceptibility to secondary can-
cers that emerge after a primary diagnosis [29], perform-
ing survival analysis [28], studying the impact of a certain
type of treatment on overall survival [12], studying condi-
tional survival (measuring prognosis of patients who have
already survived a period of time after diagnosis) [31, 32,
11], amongst many others. There also have been scattered
applications of data mining using SEER data for breast can-
cer survival prediction [25, 14, 6, 16] and a few studying lung
cancer survival [10, 13].

Applying data mining techniques to cancer data is useful
to rank and link cancer attributes to the survival outcome.
Further, accurate outcome prediction can be extremely use-
ful for doctors and patients to not only estimate surviv-
ability, but also aid in decision making to determine the
best course of treatment for a patient, based on patient-



specific attributes, rather than relying on personal experi-
ences, anecdotes, or population-wide risk assessments. Here
we use data mining techniques to predict survival of respi-
ratory cancer patients, at the end of 6 months, 9 months,
1 year, 2 years, and 5 years of diagnosis. Experiments with
several classifiers were conducted to find that many meta
classifiers used with decision trees can give impressive re-
sults, which can be further improved by combining the re-
sulting prediction probabilities from several classifiers using
an ensemble voting scheme. Further, we have developed an
an on-line lung cancer outcome calculator to estimate the
patient-specific risk for mortality due to lung cancer at the
end of 6 months, 9 months, 1 year, 2 years, and 5 years.
The rest of the paper is organized as follows: Section 2

summarizes the recent research relevant to the problem, fol-
lowed by a description of the major classification schemes
used in this study in Section 3. The survival prediction sys-
tem is presented in Section 4, and Experiments and results
are presented in Section 5. The lung cancer outcome calcu-
lator is described in Section 6, and the conclusion and future
work is presented in Section 7.

2. RELATED WORK
With SEER data being available in the public domain,

there is a mature literature on the statistics of SEER data
[35, 29, 28, 12, 31, 32, 11], many of them using the the
SEERStat software provided by SEER itself.
In addition, there also have been a few data mining ap-

plications, which has become a very significant component
of cancer research and survivability analysis. A number of
techniques based on data mining have been proposed for
the survivability analysis of various cancers. [36] uses de-
cision trees and artificial neural networks for survivability
analysis of breast cancer, diabetes and hepatitis. [25] uses
artificial neural networks on SEER data to predict breast
cancer survival. [14] empirically compared three data min-
ing techniques: neural networks, decision trees and logistic
regression for the task of predicting 60 months breast can-
cer survival. They applied these techniques on 2000 ver-
sion of SEER data. They found that decision trees per-
formed the best with 93.6% accuracy, followed by neural
networks. [6] found that the pre-classification process used
by [14] was not accurate in determining the records of the
’not survived’ class. The authors of [6] corrected this and
investigated Naive bayes, the back-propagated neural net-
works, and the C4.5 decision tree algorithm using the data
mining tool WEKA. Decision Trees and Neural networks
performed the best with 86.7% and 86.5% accuracy respec-
tively. According to the authors, the difference in results
reported by [14] and those obtained by them is due to the
facts that they used a newer database (2000 vs. 2002), a
different class-distribution (109, 659 and 93, 273 vs. 35, 148
and 116, 738) and different toolkits (industrial grade tools
vs. WEKA).
The authors in [16] studied 5-year survival of follow-up pa-

tients in SEER data in 2002 who were diagnosed as breast
cancer from 1992 − 1997. They compared seven data min-
ing algorithms (artificial neural network, naive bayes, bayes
net, decision trees with naive bayes, decision trees (ID3),
decision trees(J48)) and logistic regression model. The con-
clusion was that logistic regression (accuracy 85.8%) and de-
cision trees (accuracy 85.6%) were the best ones with high
accuracies and high sensitivities. [6, 16] also showed that

there is a significant imbalance between survived and not-
survived classes for the five year survival problem: 80%
survived, 20% not-survived. This imbalance in data can
potentially affect the accuracy of the developed model. [34]
addressed this problem and used under-sampling to balance
the two classes. The conclusion was that the performance of
the models is best while the distribution of data is approxi-
mately equal.

Modeling survival for lung cancer is not as developed as
for breast cancer. [27] performs a statistical analysis of the
SEER data and computes survival percentage based on gen-
der, race, geographic area, cancer stage, etc. [10] used SEER
data containing records of lung cancer patients diagnosed
from 1988 through 1998. They examined the following at-
tributes: AJCC stage, grade, histological type and gender.
For each of the first three attributes, they considered four
popular values that are generally used in lung cancer stud-
ies. The attribute gender had two values: male and female.
This gave them 128 (4× 4× 4× 2) possible combinations of
values. They applied ensemble clustering on those combina-
tions to get seven clusters and studied survival patterns of
those clusters. [13] used SEER data for patients diagnosed
of cancer of lung or bronchus from the year 1988 through
2001. They studied 8 months survivability of lung cancer.
They compared penalized logistic regression and SVM for
survival prediction of lung cancer, and found that logistic re-
gression resulted in better prediction performance (in terms
of <sensitivity, specificity> pair). They also note that SVM-
modeling is significantly slow, taking hours to train.

3. CLASSIFICATION SCHEMES
We used several classification schemes resulting in identi-

fication of top 5 classification schemes, plus ensemble voting
scheme to combine the prediction probabilities from the top
5 (details presented in Experiments and Results section).
This section presents a brief description of the classifiers and
meta-classifiers used in the experiments reported in this pa-
per.

1. Support vector machines: SVMs are based on the
Structural Risk Minimization(SRM) principle from sta-
tistical learning theory. A detailed description of SVMs
and SRM is available in [30]. In their basic form, SVMs
attempt to perform classification by constructing hy-
perplanes in a multidimensional space that separates
the cases of different class labels. It supports both clas-
sification and regression tasks and can handle multiple
continuous and nominal variables. Different types of
kernels can be used in SVM models, like linear, poly-
nomial, radial basis function (RBF), and sigmoid. Of
these, the RBF kernel is the most recommended and
popularly used, since it has finite response across the
entire range of the real x-axis.

2. Artificial neural networks: ANNs are networks of
interconnected artificial neurons, and are commonly
used for non-linear statistical data modeling to model
complex relationships between inputs and outputs. The
network includes a hidden layer of multiple artificial
neurons connected to the inputs and outputs with dif-
ferent edge weights. The internal edge weights are
‘learnt’ during the training process using techniques
like back propagation. Several good descriptions of
neural networks are available [7, 17].



3. J48 decision tree: In a decision tree classifier, the
internal nodes denote the different attributes whose
values would be used to decide on the classification
path, and the branches denote the split depending on
the attribute values, while the leaf nodes denote the
final value (classification) of the dependent variable.
While constructing the decision tree, the J48 algo-
rithm [26] identifies the attribute that must be used
to split the tree further based on the notion of infor-
mation gain/gini impurity.

4. Random forest: The Random Forest [8] classifier
consists of multiple decision trees. The final class of an
instance in a Random Forest is assigned by outputting
the class that is the mode of the outputs of individual
trees, which can produce robust and accurate classifi-
cation, and ability to handle a very large number of
input variables. It is relatively robust to overfitting
and can handle datasets with highly imbalance class
distributions.

5. LogitBoost: Boosting is a technique that can dramat-
ically improve the performance of several classification
techniques by sequentially applying them repeatedly
to re-weighted versions of the input data, and taking a
weighted majority vote of the sequence of classifiers
thereby produced. In [19], the authors explain the
theoretical connection between Boosting and additive
models. The LogitBoost algorithm is an implementa-
tion of additive logistic regression which performs clas-
sification using a regression scheme as the base learner,
and can handle multi-class problems.

6. Decision stump: A decision stump [33] is a weak
tree-based machine learning model consisting of a single-
level decision tree with a categorical or numeric class
label. Decision stumps are usually used in ensemble
machine learning techniques.

7. Random subspace: The Random Subspace classi-
fier [23] constructs a decision tree based classifier con-
sisting of multiple trees, which are constructed system-
atically by pseudo-randomly selecting subsets of fea-
tures, trying to achieve a balance between overfitting
and achieving maximum accuracy. It maintains high-
est accuracy on training data and improves on gener-
alization accuracy as it grows in complexity.

8. Reduced error pruning tree: Commonly known as
REPTree [33], it is a implementation of a fast decision
tree learner, which builds a decision/regression tree
using information gain/variance and prunes it using
reduced-error pruning.

9. Alternating decision tree: ADTree [18] is decision
tree classifier which supports only binary classification.
It consists of two types of nodes: decision nodes (spec-
ifying a predicate condition, like ’age’ > 45) and pre-
diction nodes (containing a single real-value number).
An instance is classified by following all paths for which
all decision nodes are true and summing the values of
any prediction nodes that are traversed. This is differ-
ent from the J48 decision tree algorithm in which an
instance follows only one path through the tree.

10. Voting: Voting is a popular ensemble technique for
combining multiple classifiers. It has been shown that
ensemble classifiers using voting may outperform the
individual classifiers in certain cases [24]. Here we com-
bine multiple classifiers by using the average of proba-
bilities generated by each classifier. The base classifiers
used for the voting scheme were LogitBoost (with De-
cisionStump), RandomSubSpace (with REPTree), J48
decision tree, Random Forests, and ADTree.

4. SURVIVAL PREDICTION SYSTEM
Understanding and cleaning data to prepare it for a data

mining analysis is one of the most important steps in the
data mining approaches. Appropriate preprocessing, there-
fore, becomes extremely crucial in any kind of predictive
modeling, including that of cancer survival, as also widely
accepted by numerous other related studies. The proposed
respiratory cancer survival prediction system consists of four
stages:

1. SEER-related preprocessing: This is the first stage
preprocessing designed according to the way SEER
program records, codes, and releases the data. There
are three principle steps in this stage:

(a) Convert apparently numeric attributes to nomi-
nal, e.g. marital status, sex.

(b) Split appropriate numeric attributes into numeric
and nominal parts, e.g. tumor size. (‘CS TU-
MOR SIZE’ gives the exact size of the tumor in
mm, if it is known. But in some cases, the doctor
notes may say ’less than 2cm’, in which case the
coder assigns a value of 992 to the field, which,
if used as a numeric value, would correspond to
992mm, which is incorrect)

(c) Construct survival time in months (numeric) from
SEER format of YYMM.

2. Problem-specific preprocessing: This is the sec-
ond stage preprocessing which is specific to the prob-
lem of survival prediction. The following are the steps
in this stage:

(a) Select data records for a particular time period of
interest.

(b) Filter the attributes that vary too much or too
little, since they do not have significant predictive
power.

(c) For cancer-specific survival analysis, remove records
where the patient died because of something other
than the cancer in study.

(d) For cancer-specific survival analysis, remove at-
tributes apart from survival time, which directly
or indirectly specify the outcome, e.g. cause of
death, whether the patient is still alive.

(e) For binary class prediction, derive appropriate bi-
nary attributes for survival, e.g. 5-year survival.

3. Predictive modeling: This is where data mining
classifiers are employed to construct predictive models
for cancer-specific survival, on the preprocessed data.
The two straightforward steps of this stage are:



Figure 1: Block-diagram of the survival prediction
system

(a) Split the preprocessed data in training and testing
sets (or use cross validation)

(b) Construct a model on the training data using data
mining classifiers, e.g. Naive bayes, logistic re-
gression, decision trees, etc., including an ensem-
ble of different classifiers.

4. Evaluation: In this stage, the predictive model is
evaluated on the testing data.

(a) Compare the survival predictions from the pre-
dictive model on unseen data (testing set) against
known survival.

(b) Calculate performance metrics like accuracy (per-
centage of predictions that are correct), precision
(percentage of positive predictions that are cor-
rect), recall/sensitivity (percentage of positive la-
beled records that were predicted as positive),
specificity (percentage of negatively labeled records
that were predicted as negative), area under the
ROC curve (a measure of discriminative power of
the model), etc.

Fig. 1 presents the block diagram of the survival predic-
tion system with carefully designed preprocessing steps fol-
lowed by modeling and evaluation with different data mining
optimizations and validations.

5. EXPERIMENTS AND RESULTS
In this study, we used the data in the SEER Novem-

ber 2008 Limited-Use Data files [4] (released in April 2009)
from nine SEER registries (Atlanta, Connecticut, Detroit,
Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-
Puget Sound, and Utah). The SEER data used in this study
had a follow-up cutoff date of December 31, 2006, i.e., the
patients were diagnosed and followed-up upto this date. In
our experiments, we used the WEKA toolkit for data mining
[22].
The SEER-related preprocessing resulted in modification

and splitting of several attributes, many of which were found
to have significant predictive power. In particular, 2 out of

11 newly created (derived) attributes were within the top
13 attributes that were selected to be used in the lung can-
cer outcome calculator. These were a) the number of re-
gional lymph nodes that were removed and examined by
the pathologist; and b) number of malignant/in-situ tumors.
These attributes were derived from ’Regional Nodes Ex-
amined’ and ’Sequence Number-Central’ respectively from
raw SEER data, both of which had nominal values encoded
within the same attribute, with the latter also encoding non-
malignant tumors.

Subsequently, we selected the data for the patients diag-
nosed between 1998 and 2001. This choice was made because
of the following: Since we wanted to do a survival predic-
tion for upto 5-years, and the follow-up cutoff date for the
SEER data in study was December 31, 2006, we used the
data for cancer patients with year of diagnosis as 2001 or
before. Moreover, since several important attributes were
introduced to the SEER data in 1998 (like RX Summ-Surg
Site 98-02, RX Summ-Scope Reg 98-02, RX Summ-Surg Oth
98-02, Summary stage 2000 (1998+)), we further restricted
the patient data with year of diagnosis as 1998 or after.
Thus, we selected the data of all cases of respiratory cancer
patients in the above mentioned nine SEER registries diag-
nosed between 1998 and 2001. There were a total of 70132
such instances. After removing the attributes which varied
too much or too little (and hence did not have significant
predictive power), we were left with a total of 68 attributes.
We further removed all instances where the patient died be-
cause of something other than respiratory cancer, reducing
the number of instances to 57254. After removing cause of
death and related attributes, we were left with 64 attributes
(including survival time in months). Since the survival rate
of respiratory cancer is extremely low, we derived binary
attributes for 6-month, 9-month, 1-year, 2-year, and 5-year
survival. The number of attributes were thus reduced from
118 in the initial dataset to 64, i.e., 63 predictor attributes
and 1 outcome attribute (which can be 6-month/9-month/1-
year/2-year/5-year survival).

Table 1 presents the distribution of not-survived and sur-
vived patients at the end of 6 months, 9 months, 1 year, 2
years, and 5 years of diagnosis. It clearly shows that the
distribution can be quite lopsided for some classes.

For classification, we built predictive models using more
than 30 different classification schemes, and of those which
completed execution in reasonable time, the top 5 were se-
lected:

1. J48 decision tree

2. Random forest

3. LogitBoost (with Decision Stump as the underlying
classifier)

4. Random subspace (with REPTree as the underlying
classifier)

5. Alternating decision tree

Because these 5 classification schemes gave good perfor-
mance, we also decided to use the ensemble voting tech-
nique for combining the results from these classifiers. Voting
can combine the probabilities generated by each classifier in
different ways, like average, product, majority, maximum,
minimum, median. After some initial experiments with the



Table 1: Class distribution
Fraction/Survival class 6-month 9-month 1-year 2-year 5-year

Not-survived 38.85% 49.12% 57.04% 72.79% 83.23%
Survived 61.15% 50.88% 42.96% 27.21% 16.77%

Figure 2: Prediction accuracy comparison amongst
different classification techniques. The lung cancer
outcome calculator uses ensemble voting scheme us-
ing just 13 predictor attributes.

different ways of combining the probabilities (which gave
similar results), we chose to calculate the resulting proba-
bility by taking the average of the probabilities generated
by each classifier.
We conducted experiments with the above mentioned 6

(=5+1) classification schemes, on each of the 5 datasets
(with class variable as 6-month, 9-month, 1-year, 2-year, and
5-year survival). 10-fold cross-validation was used for train-
ing and testing, and 10 runs of each <dataset, algorithm>
were conducted (with different cross-validation folds) for sta-
tistical analysis of the performance comparison. Thus, there
were a total of 5×6×10×10 = 3000 runs. Next, we present
the results.
The ZeroR classifier is commonly used as a baseline classi-

fier to measure the improvement in prediction performance
due to modeling over simply going by statistical majority,
i.e., always predicting the majority class. Fig. 2 presents the
overall prediction accuracy of the above-mentioned 6 classi-
fication schemes, along with ZeroR classifier, on each of the
five datasets. Since, accuracy results can be often mislead-
ing due to imbalanced classes, the area under the ROC curve
(AUC) is considered a better metric to measure the ability
of the model to discriminate between the different class val-
ues. Fig. 3 presents the area under the ROC curve (AUC)
for the same. For completeness, Fig. 2 and Fig. 3 also
present the classification results obtained by using support
vector machines (with RBF kernel) [15, 9] and neural net-
works, although their results were found to be less accurate
and inconsistent as compared to other classifiers. Moreover,
the execution time for constructing SVM and neural network
models was significantly larger as compared to other mod-
els. Therefore, instead of multiple runs of cross-validation,

Figure 3: Prediction performance comparison in
terms of area under the ROC curve (AUC). The
lung cancer outcome calculator uses ensemble vot-
ing scheme using just 13 predictor attributes.

a single run of training-testing split (training on 66% data,
and testing on 33%) was conducted to measure the accuracy
of these models. The SVM models required around 15 CPU
hours for construction (slow training of SVM models is also
acknowledged in [13]), and the neural network model con-
struction did not complete after more than 400 CPU hours
of execution time. The results for neural network reported
in this paper were obtained on the dataset with a reduced
attribute set (from 63 attributes to 13 attributes, used for
the tool as described later), which, for the ensemble vot-
ing scheme was found to give similar prediction accuracy
as with using all 63 attributes. Neural network modeling on
this smaller dataset took about 80 CPU hours. Since for this
data, better prediction quality was obtained by other mod-
els that could be constructed faster than SVM and neural
network models, these models were not investigated further.
Ability to construct the models in reasonable time is crucial
to enable regular model updates by incorporating new data
as and when it becomes available.

From Fig. 2 and Fig. 3, it is clear that ensemble voting
classification scheme gives the best prediction performance,
both in terms of prediction accuracy and AUC, which was
also found to be (statistically) significantly better than the
J48 decision tree as the base learner, at 5% significance
level. Some important observations from these figures are
as follows. For 5-year survival prediction, the baseline clas-
sifier (ZeroR) classifies all records as ’not survived’ (major-
ity class), achieving a prediction accuracy of 83.2% because
of the imbalanced class distribution, which seems quite im-
pressive, but is clearly uninformative and not useful in prac-
tice. Model-driven prediction for the same 5-year prediction
boosts the prediction accuracy up to 91.4%, which means an



effective reduction of error rate from 16.8% to 8.6%, thereby
reducing the error rate almost by a factor of 2. Apart from
prediction accuracy, an excellent discriminative power (dis-
crimination between death and survival) of 5-year survival
prediction model was also obtained with a high AUC of 0.94.
In general, it is not straightforward to compare predic-

tion results on different datasets with different class distri-
butions. The work in [10] had applied ensemble clustering
to study survival patterns of obtained clusters, but no test
results were reported. Moreover, the study used only 4 at-
tributes with popular values of those attributes. The pre-
dictive models used in the current study are more general
using all available attributes. The work in [13] studied 8
months survivability of lung cancer using variations of lo-
gistic regression and SVM techniques, and reported results
in terms of sensitivity and specificity. Again, their results
are not directly comparable to ours, since both the dataset
and the target class are different. More specifically, we use
a more recent release of the SEER database with newer at-
tributes, and a different time period of the diagnosed cases,
as compared to [13]. They report sensitivity and specificity
as measures of the quality of prediction. Some of the best
<sensitivity, specificity> combinations in their experiments
were: <74.62, 70.57>, <74.84, 68.26>, <75.44, 63.27>. We
had conducted experiments for 9-month survival, and the
<sensitivity, specificity> combination with ensemble voting
scheme was <78.90, 70.15>.

6. ON-LINE LUNG CANCER OUTCOME
CALCULATOR

Further, for the purpose of building an on-line tool for
lung cancer outcome prediction, we used correlation-based
feature subset selection technique [21] to identify a smaller
non-redundant subset of attributes which were highly cor-
related with the outcome variable while having low inter-
correlation amongst themselves. The goal here was to make
the tool convenient to use by reducing the number of at-
tributes, while trying to retain the predictive power of the
original set of attributes in the preprocessed data. The at-
tribute subsets obtained for the five different outcome vari-
ables were combined, and clearly redundant attributes were
manually removed. SEER-specific attributes were further
removed to make the calculator more easily applicable to
new patients. The calculator uses the resulting 13 input
variables as shown in Fig. 4 (with relative predictive power)
to estimate lung-cancer-specific mortality risk using the en-
semble voting scheme. Following is a brief description of
these attributes. The original SEER names of the attributes
are also mentioned wherever significantly different from the
names used in the calculator.

1. Age at diagnosis: Numeric age of the patient at the
time of diagnosis for lung cancer.

2. Birth place: The place of birth of the patient. There
are 198 options available to select for this attribute
(based on the values observed in the SEER database).

3. Cancer grade: A descriptor of how the cancer cells
appear and how fast they may grow and spread. Avail-
able options are - well-differentiated, moderately differ-
entiated, poorly differentiated, undifferentiated, and
undetermined.

Figure 4: The attributes used in the lung cancer out-
come calculator along with their relative predictive
power.

4. Diagnostic confirmation: The best method used to
confirm the presence of lung cancer. Available options
are - positive histology, positive cytology, positive mi-
croscopic confirmation (method unspecified), positive
laboratory test/marker study, direct visualization, ra-
diology, other clinical diagnosis, and unknown if mi-
croscopically confirmed.

5. Farthest extension of tumor: The farthest docu-
mented extension of tumor away from the lung, either
by contiguous extension (regional growth) or distant
metastases (cancer spreading to other organs far from
primary site through bloodstream or lymphatic sys-
tem). There are 20 options available to select for this
attribute. The original SEER name for this attribute
is ‘EOD extension’.

6. Lymph node involvement: The highest specific lymph
node chain that is involved by the tumor. Cancer cells
can spread to lymph nodes near the lung, which are
part of the lymphatic system (the system that pro-
duces, stores, and carries the infection-fighting-cells.
This can often lead to metastases. There are 8 options
available for this attribute. The original SEER name
for this attribute is ‘EOD Lymph Node Involv’.

7. Type of surgery performed: The surgical proce-
dure that removes and/or destroys cancerous tissue of
the lung, performed as part of the initial work-up or
first course of therapy. There are 25 options available
for this attribute, like cyrosurgery, fulguration, wedge
resection, laser excision, pneumonectomy, etc. The
original SEER name for this attribute is ‘RX Summ-
Surg Prim Site’.

8. Reason for no surgery: The reason why surgery was
not performed (if not). Available options are - surgery
performed, surgery not recommended, contraindicated
due to other conditions, unknown reason, patient or
patient’s guardian refused, recommended but unknown
if done, and unknown if surgery performed.



9. Order of surgery and radiation therapy: The
order in which surgery and radiation therapies were
administered for those patients who had both surgery
and radiation. Available options are - no radiation
and/or surgery, radiation before surgery, radiation af-
ter surgery, radiation both before and after surgery,
intraoperative radiation therapy, intraoperative radi-
ation with other radiation given before/after surgery,
and sequence unknown but both surgery and radiation
were given. The original SEER name for this attribute
is ‘RX Summ-Surg/Rad Seq’.

10. Scope of regional lymph node surgery: It de-
scribes the removal, biopsy, or aspiration of regional
lymph node(s) at the time of surgery of the primary
site or during a separate surgical event. There are 8
options available for this attribute. The original SEER
name for this attribute is ‘RX Summ-Scope Reg 98-02’.

11. Cancer stage: A descriptor of the extent the cancer
has spread, taking into account the size of the tumor,
depth of penetration, metastasis, etc. Available op-
tions are - in situ (noninvasive neoplasm), localized
(invasive neoplasm confined to the lung), regional (ex-
tended neoplasm), distant (spread neoplasm), and un-
staged/unknown. The original SEER name for this
attribute is ‘Summary Stage 2000 (1998+)’.

12. Number of malignant tumors in the past: An in-
teger denoting the number of malignant tumors in the
patient’s lifetime so far. This attribute is derived from
the SEER attribute ‘Sequence Number-Central’, which
encodes both numeric and categorical values for both
malignant and benign tumors within a single attribute.
As part of the preprocessing, the original SEER at-
tribute was split into numeric and nominal parts, and
the numeric part was further split into 2 attributes
representing number of malignant and benign tumors
respectively.

13. Total regional lymph nodes examined: An inte-
ger denoting the total number of regional lymph nodes
that were removed and examined by the pathologist.
This attributed was derived by extracting the numeric
part of the SEER attribute ‘Regional Nodes Exam-
ined’.

Prediction performance with just 13 attributes used in
the calculator is also presented in Fig. 2 and Fig. 3, which
shows only marginal decrease in prediction performance as
compared to using all 63 variables. A careful selection of
attributes for the calculator has therefore resulted in a de-
crease in the number of attributes from 63 to 13, while incur-
ring only a marginal cost on prediction accuracy (Prediction
accuracy = 91.2% for 5-year survival prediction with 13 at-
tributes, as compared to 91.4% with 63 attributes; AUC =
0.937 for 5-year survival prediction with 13 attributes, as
compared to 0.94 with 63 attributes). It seems that these
13 attributes were able to reasonably encode the informa-
tion available in the previously used 63 attributes, which
prevents any significant drop in accuracy. It is also interest-
ing that the birth place shows up as a significant attribute
in the set of 13 attributes. Fig. 5 shows a screenshot of the
lung cancer outcome calculator. A preliminary version of
the calculator was reported in a recent poster abstract [5].

7. CONCLUSION AND FUTURE WORK
In this paper, we used different meta classification schemes

with underlying decision tree classifiers to construct models
for survival prediction for respiratory cancer patients. Pre-
diction accuracies of 73.61%, 74.45%, 76.80%, 85.45%, and
91.35% was obtained for the 6-month, 9-month, 1-year, 2-
year, and 5-year respiratory cancer survival prediction using
the ensemble voting classification scheme. Further, a lung
cancer outcome calculator was developed using carefully se-
lected 13 attributes, while retaining the prediction quality.

Given the prediction quality, we believe that the calculator
can be very useful to not only accurately estimate survivabil-
ity of a lung cancer patient, but also aid doctors in decision
making and improve informed patient consent by providing
a better understanding of the risks involved in a particular
treatment procedure, based on patient-specific attributes.
Accurate risk prediction can potentially also save valuable
resources by avoiding high risk procedures that may not be
necessary for a particular patient.

Future work includes developing models for conditional
survival prediction (e.g. 5-year prediction, given that the
patient has already survived for 1 year), and exploring the
use of undersampling/oversampling to deal with unbalanced
data. We also plan to do similar analysis for other cancers,
and developing on-line cancer outcome calculators for them.
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