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ABSTRACT
Protein-protein interactions (PPI) are important in most biological
processes and their study is crucial in many applications. Identi-
fication of types of protein complexes is a particular problem that
has drawn the attention of the research community in the past few
years. We focus on obligate and non-obligate complexes, their
prediction and analysis. We propose a prediction model to dis-
tinguish between these two types of complexes, which uses des-
olvation energies of domain-domain interactions (DDI), pairs of
atoms and amino acids present in the interfaces of such complexes.
Principal components of the data were found and then the predic-
tion is performed via linear dimensionality reduction (LDR) and
support vector machines (SVM). Our results on a newly compiled
dataset, namely binary-PPID, which is a joint and modified version
of two well-known datasets consisting of 146 obligate and 169 non-
obligate complexes, show that the best prediction is achieved with
SVM (77.78%) when using desolvation energies of atom type fea-
tures. Furthermore, a detailed analysis shows that different DDIs
are present in obligate and non-obligate complexes, and that homo-
DDIs are more likely to be present in obligate interactions.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Classifier de-
sign and evaluation, Feature evaluation and selection

General Terms
Algorithms, Performance, Experimentation

Keywords
protein-protein interaction; domain-domain interaction; complex
type prediction

1. INTRODUCTION
Protein interactions are important in many essential biological

processes in living cells, including signal transduction, transport,
cellular motion and gene regulation. As a consequence of this, the
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identification of protein-protein interactions (PPIs) is a key topic in
life science research. Prediction of PPIs has been studied mostly
using computational approaches and from many different perspec-
tives. Prediction of interfaces (interactions between subunits) in
different molecules includes analysis of patches, sites, amino acids,
or even specific atoms. The physicochemical and geometric ar-
rangement of subunits in protein complexes is best known as dock-
ing. An important aspect that has recently drawn the attention of
the research community is to predict “when” the interactions will
occur – this is mostly studied at the protein interaction network
level. Another important aspect in studying PPIs is the identifica-
tion of different types of complexes, including similarities between
subunits (homo/hetero-oligomers), number of subunits involved in
the interaction (dimers, trimers, etc.), duration of the interaction
(transient vs. permanent), stability of the interaction (non-obligate
vs. obligate), among others; we focus on the latter problem.

Obligate interactions are usually considered as permanent, while
non-obligate interaction can be either permanent or transient [1].
Non-obligate and transient interactions are more difficult to study
and understand due to their instability and short life, while obli-
gate and permanent interactions last for a longer period of time,
and hence are more stable [2]. For these reasons, an important
problem is to distinguish between obligate and non-obligate com-
plexes. To study the behavior of obligate and non-obligate inter-
actions, in [3], it was shown that non-obligate complexes are rich
in aromatic residues and arginine, while depleted in other charged
residues. The study of [4] suggested that mobility differences of
amino acids are more significant for obligate and large interface
complexes than for transient and medium-sized ones.

Some studies in PPI consider the analysis of a wide range of
parameters, including desolvation energies, amino acid composi-
tion, conservation, electrostatic energies, and hydrophobicity for
predicting obligate and non-obligate complexes. In [1], a classifica-
tion of obligate and non-obligate interactions was proposed where
interactions are classified based on the lifetime of the complex.
In [5], three different types of interactions were studied, namely
crystal packing, obligate and non-obligate interactions. That study
was based on using solvent accessible surface area, conservation
scores, and the shapes of the interfaces. After classifying obligate
and transient protein interactions based on 300 different interface
attributes in [6], the difference in molecular weight between inter-
acting chains was reported as the best single feature to distinguish
transient from obligate interactions. Based on their results, interac-
tions with the same molecular weight or large interfaces are obli-
gate.

Different studies have claimed that only a few highly conserved
residues are crucial for protein interactions [7, 8]. Moreover, it has
been shown that physical interactions between proteins are mostly



controlled by their domains, as a domain is often the minimal and
fundamental module corresponding to a biochemical function [7,
8]. Thus, in previous studies, the physical interaction between pro-
teins is analyzed in terms of the interaction between residues of
their structural domains. For example, in [7], interactions between
residues were used for finding obligate and non-obligate residue
contacts of PPIs. That study concluded that non-obligate interfaces
occupy less than 2% of the area of the domain surfaces, while the
number of obligatory interfaces is between 0–6%. In [8], the in-
terface of 750 transient DDIs, interactions between domains that
are part of different proteins, and 2,000 obligate interactions were
studied. The interactions between domains of one amino acid chain
were analyzed to obtain a better understanding of molecular recog-
nition and identify frequent amino acids in the interfaces and on the
surfaces of PPIs. Also, in [9], the domain information from protein
complexes was used to predict four different types of PPIs includ-
ing transient enzyme inhibitor/non enzyme inhibitor and permanent
homo/hetero obligate complexes.

In a recent work [10], an approach to distinguish between obli-
gate and non-obligate complexes has been proposed in which de-
solvation energies of amino acids and atoms present in the inter-
faces of PPIs are considered as the input features of the classi-
fiers. The results of that classifier show that desolvation energies
are better discriminant than solvent accessibility and conservation
properties. In this paper, we present an analysis of PPIs that uses
properties of DDIs present in the interface to predict obligate and
non-obligate protein-protein interactions. Desolvation energies of
atom and amino acid pairs present in the interface of DDIs as well
as desolvation energies of all atom and amino acid pairs present in
the interface of interacting complexes are used in the prediction.
We have also performed an analysis on the DDIs present in the two
types of interactions. A visual analysis shows that that unique pairs
can be identified for both types of interactions, and highlight the
presence of homo-DDIs in obligate interactions. The prediction
approach resorts on two state-of-the-art classification techniques
of linear dimensionality reduction (LDR) and support vector ma-
chines (SVM). Ten-fold cross validation of the proposed scheme
on our binary-PPID dataset, which is an extended dataset that we
compiled from two well-known datasets of [5] and [11], demon-
strates that (a) using desolvation energies of atom type features are
better than the features used in [5] for predicting obligate and non-
obligate complexes, achieving 77.78% classification accuracy in
comparison to 71.80% (b) atom type features are better than amino
acid type features for prediction of these two types of complexes (c)
although the prediction accuracies by considering atom and amino
acid pairs present in the interacting domains instead of all interact-
ing atom and amino acid pairs of two chains are low, they are still
acceptable and provide additional information about the specific
domains.

2. MATERIALS AND METHODS

2.1 Dataset
We have compiled a new dataset by merging two existing, pre-

classified datasets of protein complexes obtained from the studies
of Zhu et al. [5], and Mintseris and Weng [11]. The former dataset
contains 75 obligate and 62 non-obligate interactions while the lat-
ter contains 115 obligate and 212 transient interactions. There are
39 common interactions between these two datasets and hence the
redundant complexes were removed. In addition, we carefully ex-
amined all the interactions and removed complexes with contradict-
ing class labels. For example "1eg9,A:B" is classified as both ob-
ligate and non-obligate in [5] and [11]. In total, seven complexes:

1eg9, 1hsa, 1i1a, 1raf, 1d09, 1jkj and 1cqi, showed this contra-
diction and were then removed from the new dataset. After this
pre-processing stage, the new dataset resulted in 417 complexes
from which 182 were obligate and 235 were non-obligate. In this
study, each complex is considered as the interaction of two chains
(two single sub-units). Since the dataset of [11] considers the in-
teraction of two units in which each may contain more than one
chain, e.g., "1qfu,AB:HL", all these complexes were converted to
interactions between two single chains (binary interactions). For
this, all binary interactions of each of the 93 multiple-chain com-
plexes were identified, obtaining 289 interactions, and each of these
was converted into a separate complex in the new dataset. For ex-
ample, the multiple-chain of 1qfu was transformed to four binary
chains as follows: A:H, A:L, B:H and B:L. Another step involves
taking the whole dataset of binary complexes and filtering non-
interacting pairs. Using the interface definition of [12], complexes
with interacting chains with less than five interface residues were
removed. Two residues (from different chains) are considered to be
interacting if at least one pair of atoms from these residues is 5Å
or less apart from each other. This resulted in a dataset that con-
tains 516 complexes, from which 303 are non-obligate and 213 are
obligate binary interactions. In a final step, we collected the do-
mains contained in each interacting chain from the Pfam database
[13]. The complexes that do not have any domain in at least one of
their subunits were discarded in the analysis. This resulted in our
final dataset of 315 complexes, from which 146 are obligate com-
plexes and 169 are non-obligate complexes - we call this dataset bi-
nary protein-protein interactions by considering domain definitions
(binary-PPID). The PDB IDs of these complexes and the interact-
ing chains are shown in Table 1.

2.2 Features
We use desolvation energies as the predicting properties, which

are shown to be very efficient for prediction of obligate and non-
obligate complexes [10]. Knowledge-based contact potential that
accounts for hydrophobic interactions, self-energy change upon de-
solvation of charged and polar atom groups, and side-chain entropy
loss compose the so-called binding-free energy. In [14], the total
desolvation energy is defined as follows:

∆Gdes = g(r)ΣΣeij . (1)
If we are considering the interaction between the ith atom of a

ligand and the jth atom of a receptor then eij is the atomic contact
potential (ACP) [15] between them, and g(r) is a smooth function
based on their distance. The value of g(r) is 1 for atoms that are
less than 5 Å apart [14]. For simplicity, we consider the smooth
function to be linear. Within the range of 5 and 7 Å, the value of
g(r) is (7− r)/2.

We collected the structural data from the Protein Data Bank (PDB)
[16] for each complex in our dataset. After adding domain infor-
mation obtained from Pfam to each atom present in the chain, each
PDB file was divided into two different ligand and receptor files
based on its side chains. From [15], we know that there are 18
atom types. Thus, for each protein complex a feature vector with
182 values was obtained, where each feature contains the desol-
vation energy of a pair of atom types. As the order of interacting
atom pairs is not important, the final length of feature vector for
each complex was 171 that correspond to unique pairs. We also
considered pairs of amino acids, and for this, we computed des-
olvation energy values for each pair of atoms using Eq. (1) and
accumulated the values for each pair of amino acids. Avoiding re-
peated pairs resulted in 210 different features (unique pair of amino
acids).



Table 1: binary-PPID dataset (146 obligate and 169 non-obligate binary complexes).

Obligate Complexes

1a0f , A:B 1byk , A:B 1eex , A:B 1hcn , A:B 1jk0 , A:B 1li1 , A:C 1qbi , A:B 2hdh , A:B

1a6d , A:B 1c3o , A:B 1eex , A:G 1hfe , L:S 1jk8 , A:B 1li1 , B:C 1qdl , A:B 2hhm , A:B

1ahj , A:B 1c7n , A:B 1efv , A:B 1hgx , A:B 1jkm , A:B 1lti , C:G 1qfe , A:B 2kau , A:C

1aj8 , A:B 1ccw , A:B 1ep3 , A:B 1hjr , A:C 1jmx , A:G 1lti , C:H 1qfh , A:B 2kau , B:C

1ajs , A:B 1cmb , A:B 1ezv , D:H 1hr6 , A:B 1jnr , A:B 1lti , C:D 1qu7 , A:B 2min , A:B

1aq6 , A:B 1cnz , A:B 1ezv , C:F 1hss , A:B 1jro , A:B 1lti , C:F 1sgf , A:B 2mta , A:H

1b34 , A:B 1coz , A:B 1f6y , A:B 1ihf , A:B 1jwh , A:C 1lti , C:E 1sgf , A:Y 2nac , A:B

1b3a , A:B 1cpc , A:B 1ffu , A:C 1jb0 , B:E 1jwh , A:D 1luc , A:B 1spp , A:B 2pfl , A:B

1b4u , A:B 1dce , A:B 1ffv , A:B 1jb0 , B:E 1k3u , A:B 1mro , A:B 1spu , A:B 2utg , A:B

1b5e , A:B 1dii , A:C 1fm0 , D:E 1jb0 , B:D 1k8k , A:B 1mro , B:C 1trk , A:B 3gtu , A:B

1b7b , A:C 1dj7 , A:B 1g8k , A:B 1jb0 , B:D 1k8k , B:F 1mro , A:C 1vcb , A:B 3pce , A:M

1b7y , A:B 1dkf , A:B 1gka , A:B 1jb0 , A:E 1k8k , A:E 1msp , A:B 1vlt , A:B 3tmk , A:B

1b8j , A:B 1dm0 , A:D 1go3 , E:F 1jb0 , A:E 1k8k , C:F 1poi , A:B 1wgj , A:B 4rub , A:T

1b8m , A:B 1dm0 , A:E 1gpe , A:B 1jb0 , A:C 1k8k , D:F 1pp2 , L:R 1xso , A:B

1b9m , A:B 1dor , A:B 1gpw , A:B 1jb0 , C:E 1kpe , A:B 1prc , C:H 1ypi , A:B

1be3 , G:A 1dtw , A:B 1gux , A:B 1jb0 , B:C 1kqf , B:C 1prc , C:L 1ytf , C:D

1bjn , A:B 1dxt , A:B 1h2a , L:S 1jb0 , A:D 1ktd , A:B 1prc , C:M 2aai , A:B

1brm , A:B 1e8o , A:B 1h2r , L:S 1jb0 , A:D 1l7v , A:C 1qae , A:B 2ae2 , A:B

1byf , A:B 1e9z , A:B 1h8e , A:D 1jb0 , C:D 1ld8 , A:B 1qax , A:B 2ahj , A:B

Non-obligate Complexes

1a14 , L:N 1bml , A:C 1eai , A:C 1fq1 , A:B 1i4d , B:D 1jsu , B:C 1n2c , B:E 2btc , E:I

1a14 , H:N 1buh , A:B 1eay , A:C 1fqj , A:C 1i4d , A:D 1jsu , A:C 1n2c , A:E 2btf , A:P

1a2k , B:C 1c1y , A:B 1ebd , A:C 1frv , A:B 1i7w , A:B 1jtg , A:B 1n2c , B:F 2mta , A:L

1a4y , A:B 1c4z , A:D 1ebd , B:C 1fss , A:B 1i85 , B:D 1jw9 , B:D 1nbf , A:D 2mta , A:C

1acb , E:I 1cc0 , A:E 1eer , A:B 1gaq , A:B 1i8l , A:C 1k5d , A:B 1nf5 , A:B 2mta , H:L

1agr , E:A 1cgi , E:I 1efu , A:B 1gcq , B:C 1ib1 , B:E 1kcg , A:C 1noc , A:B 2pcb , A:B

1akj , B:D 1cmx , A:B 1efx , A:D 1gh6 , A:B 1ib1 , A:E 1kcg , B:C 1pdk , A:B 2pcc , A:B

1akj , A:D 1cs4 , A:C 1eja , A:B 1gl1 , A:I 1icf , B:I 1kkl , A:H 1qbk , B:C 2prg , B:C

1ar1 , B:D 1cs4 , B:C 1es7 , C:B 1gla , F:G 1ijk , A:B 1kkl , C:H 1qgw , A:C 2sic , E:I

1avg , H:I 1cse , I:E 1es7 , A:B 1gp2 , A:B 1ijk , A:C 1kmi , Y:Z 1rlb , A:E 2tec , E:I

1avw , A:B 1cvs , A:C 1eth , A:B 1grn , A:B 1is8 , C:M 1kxp , A:D 1rlb , C:E 3hhr , A:B

1avx , A:B 1d4x , A:G 1euv , A:B 1gvn , A:B 1is8 , B:L 1kyo , O:W 1rlb , B:E 3sgb , E:I

1avz , B:C 1d5x , A:C 1evt , A:C 1gzs , A:B 1is8 , E:O 1lb1 , A:B 1rrp , A:B 3ygs , C:P

1awc , A:B 1de4 , C:A 1f02 , I:T 1h2k , A:S 1is8 , D:N 1lpb , A:B 1stf , E:I 4htc , H:I

1ay7 , A:B 1dev , A:B 1f34 , A:B 1h59 , A:B 1is8 , A:K 1m10 , A:B 1t7p , A:B 4sgb , E:I

1azz , A:D 1df9 , B:C 1f3v , A:B 1hlu , A:P 1is8 , D:O 1m1e , A:B 1tab , E:I

1azz , A:D 1dfj , E:I 1f80 , A:E 1hwg , A:C 1is8 , A:L 1m4u , A:L 1tgs , I:Z

1b6c , A:B 1doa , A:B 1fak , H:T 1hwg , A:B 1is8 , E:K 1mah , A:F 1toc , B:R

1b9y , A:C 1du3 , A:D 1fg9 , B:C 1hzz , B:C 1is8 , C:N 1mbu , A:C 1uea , A:B

1bdj , A:B 1du3 , A:F 1fg9 , A:C 1i2m , A:B 1is8 , B:M 1ml0 , A:D 1wq1 , G:R

1bi8 , A:B 1dx5 , M:I 1fin , A:B 1i3o , D:E 1itb , A:B 1mr1 , A:D 1ycs , A:B

1bkd , R:S 1e6e , A:B 1fle , E:I 1i3o , B:E 1jch , A:B 1n2c , A:F 1zbd , A:B



Table 2: Description of the subsets of features used in this study.
Name Feature Type Interacting Chains DDIs
PPID-AT atom type X -
PPID-AA amino acid X -
PPID-ATD atom type - X
PPID-AAD amino acid - X

A posterior step was to identify the 317 unique domains present
in the interface of at least one complex in the dataset. Consider-
ing all pairs of domains, the desolvation energies for all atoms and
amino acids present in each interacting domains were calculated
using Eq. (1) and finally each complex had 171 atom type and 210
amino acid type features. By using desolvation energies for dif-
ferent types of features, four subsets of features for prediction and
evaluation were generated (Table 2 ). The names of the subsets are
PPID-X where X is AT for atom type, AA for amino acid pairs,
ATD for atoms in interacting domains (DDIs) or AAD for amino
acid pairs in interacting domains.

2.3 Prediction Methods

2.3.1 Linear Dimensionality Reduction
One of the approaches we have used for prediction is LDR. The

basic idea of LDR is to represent an object of dimension n as a
lower-dimensional vector of dimension d, achieving this by per-
forming a linear transformation. We consider two classes, ω1 and
ω2, represented by two normally distributed random vectors x1 ∼
N(m1,S1) and x2 ∼ N(m2,S2), respectively, with p1 and p2 the
a priori probabilities. After the LDR is applied, two new random
vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1A

t)
and y2 ∼ N(Am2;AS2A

t) with mi and Si being the mean vec-
tors and covariance matrices in the original space, respectively. The
aim of LDR is to find a linear transformation matrix A in such a
way that the new classes (yi = Axi) are as separable as possible.
Let SW = p1S1 +p2S2 and SE = (m1−m2)(m1−m2)

t be the
within-class and between-class scatter matrices respectively. Var-
ious criteria have been proposed to measure this separability [17].
We consider the following two LDR methods:

(a) The heteroscedastic discriminant analysis (HDA) approach
[17], which aims to obtain the matrix A that maximizes the follow-
ing function, which is optimized via eigenvalue decomposition:

JHDA(A) = tr
{
(ASW At)−1

[
ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W

S1S
− 1

2
W

)+p2 log(S
− 1

2
W

S2S
− 1

2
W

)

p1p2
S

1
2
W At

]}
. (2)

(b) The Chernoff discriminant analysis (CDA) approach [17],
which aims to maximize the following function, which is maxi-
mized via a gradient-based algorithm:

JCDA(A) = tr{p1p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1A
t)− p2 log(AS2A

t)}.
(3)

In order to classify each complex, first a linear algebraic opera-
tion y = Ax is applied to the n-dimensional vector, obtaining y, a
d-dimensional vector, where d is ideally much smaller than n. The
linear transformation matrix A corresponds to the one obtained by
one of the LDR methods, namely HDA or CDA. The resulting vec-
tor y is then passed through a Quadratic Bayesian (QB) classifier

[17], which is the optimal classifier for normal distributions. For
additional tests, a linear Bayesian (LB) classifiers is considered, by
deriving a Bayesian classifier with a common covariance matrix:
S = S1 + S2.

2.3.2 Support Vector Machines
SVMs are well known machine learning techniques used for clas-

sification, regression and other tasks. The aim of SVM is to find the
support vectors (most difficult vectors to be classified), and derive a
linear classifier, which ideally separates the space into two regions.
Classification is normally inefficient when using a linear classifier,
because the data is not linearly separable, and so the use of kernels
is crucial in mapping the data onto a higher dimensional space in
which the classification is much more efficient. There are number
of kernels that can be used in SVM models. In our model, we use
polynomial, radial basis function (RBF) and sigmoid.

3. RESULTS AND DISCUSSIONS

3.1 Experimental Settings
For the LDR schemes, four different classifiers were implemented

and evaluated, namely the combinations of HDA and CDA, and QB
and LB classifiers. In a 10-fold cross validation setup, reductions
to dimensions d = 1, . . . , 20 were performed, followed by QB and
LB, and the maximum average classification accuracy was recorded
for each classifier. The best accuracy for each method for each
dataset is bolded to indicate the classifier that performed the best
for that dataset. Principal component analysis (PCA) was used as a
pre-processing step to eliminate ill-conditioned matrices present in
the LDR step. To select the principal components, we used differ-
ent threshold values (from λmax10−2 to λmax10−7), where λmax

is the largest eigenvalue of the scatter matrix. The results for the
threshold that achieves the highest accuracy are reported.

The SVM was also trained in a 10-fold cross validation setup
with three kernels: RBF, polynomial and sigmoid. The training
was carried out with the LIBSVM package [18]. A grid search
was performed on the parameters gamma and C, choosing the ones
that gives the maximum average accuracy for all kernels. For the
polynomial kernel, the degree of the polynomial was set to 3.

The subsets of features shown in Table 2 were used for predic-
tion. To analyze the power of desolvation energy in discriminat-
ing obligate and non-obligate complexes, NOXclass [5] was also
applied to our binary-PPID dataset. The following four interface
properties were analyzed, since in [5], these properties were recog-
nized as the best ones for prediction of different types of protein
protein interactions:

• Interface area

• Interface area ratio

• Amino acid composition of the interface

• Correlation between amino acid compositions of interface
and protein surface

We used NACCESS [19] to calculate solvent accessible surface
area (SASA). After running the classifiers in a 10-fold cross vali-
dation procedure for all subsets of features, the average accuracies
were computed. The accuracy for each individual fold was com-
puted as follows: acc = (TP + TN)/Nf , where TP and TN are
the true positive (obligate) and true negative (non-obligate) coun-
ters respectively, and Nf is the total number of complexes in the
test set of the corresponding fold.



Table 3: Prediction results for SVM and LDR classifiers on binary-PPID dataset.
SVM LDR

RBF Polynomial Sigmoid Linear Quadratic
HDA CDA HDA CDA

PPID-AT 77.78 76.83 72.70 71.76 74.08 72.73 74.55
PPID-AA 75.56 71.43 71.11 71.46 71.81 71.46 65.07
PPID-ATD 70.30 67.62 67.43 68.66 68.06 70.25 68.97
PPID-AAD 69.84 67.62 66.35 67.34 66.12 68.32 62.80

PPID-NOXclass 72.38 69.84 69.52 68.89 71.80 67.71 68.97

3.2 Analysis of Prediction
The results of SVM and LDR classifiers with different subsets

of features are depicted in Table 3. For SVM, it is clearly seen that
the RBF kernel performs better that polynomial and sigmoid ker-
nels for all subsets of features. The atom type features present in
interacting chains (PPID-AT) are best classified with SVM and a
RBF kernel, achieving an average accuracy of 77.78%, while accu-
racy for atom type features present in interacting domains (PPID-
ATD) is 70.30%. Similarly, the subset of amino acid type features
present in interacting chains (PPID-AA) with 75.56% classifica-
tion accuracy yields more efficient predictions than using the sub-
set of amino acid type features present in DDIs (PPID-AAD) with
69.84% classification accuracy. Furthermore, the subset based on
NOXclass features (with best accuracy of 72.38%) perform worse
than the best subset based on desolvation energy properties (PPID-
AT) on a SVM classifier.

For LDR, the best accuracy, 74.55%, is achieved by CDA with
the quadratic classifier, which is still lower than the best accuracy
achieved by SVM. Note that both of them are on the PPID-AT sub-
set. Additionally, as in SVM, subsets of atom and amino acid type
features present in interacting chains perform better than those in
DDIs. Also, the NOXclass subset of features (PPID-NOXclass)
yields lower accuracy (71.80%) than PPID-AT, which is based on
calculation of desolvation energies only, and also DDI subsets.

Generally, it can be concluded that in our binary-PPID dataset:
(a) SVM with RBF kernel performs better than LDR methods in

all subsets of features
(b) Amino acid type features (for both PPID-AA and PPID-AAT

subsets) yeild lower accuracies than atom type features (PPID-AT
and PPID-ATD) for both LDR and SVM classifiers

(c) Although the performance of both SVM and LDR classifiers
are lower for subsets of DDI features (PPID-ATD and PPID-AAD)
than subsets of interacting chain features (PPID-AT and PPID-AA),
they are acceptable results.

(d) Desolvation energy properties are more powerful than four
properties of NOXclass (interface area, interface area ratio, amino
acid composition of the interface and correlation between amino
acid compositions of interface and protein surface) in predicting
obligate and non-obligate complexes.

3.3 Analysis of DDIs
As discussed earlier, the total number of DDIs among 317 exist-

ing domains of our binary-PPID dataset is 100, 489. After prepro-
cessing and removing all zero-columns, we obtain only 256 DDI
pairs of which 125 are obligate and 131 are non-obligate DDIs.

The most salient feature in our binary-PPID dataset is the fact
that all DDIs are presented in either obligate or non-obligate com-
plexes and there are no DDIs in both obligate and non-obligate.
This clearly implies that the type of complex could just be predicted

by the DDIs present in the interactions, achieving nearly perfect
prediction rate of 100%. One could design a simple classifier that
contains binary features and indicates the presence or absence of
the DDI in the complex, and then a simple rule that checks those
binary flags. However, this would not be the case when predicting
new unknown complexes (not in this dataset). That is, when using
the training data to test the classifier. When cross-validation is ap-
plied, as it is done in this paper, presence of a DDI in the training
set may not imply its presence or absence in the test set. In addi-
tion, it is expected, though it would not be the case, that the DDI
desolvation properties are much more informative than simply bi-
nary features indicating the presence or absence of the DDI in the
complex.

We performed a visual analysis on our DDIs and discovered that
from 317 existing domains in our binary-PPID dataset, 135 are
present only in obligate DDIs, 158 are present only in non-obligate
DDIs and 21 domains are in both obligate and non-obligate DDIs.
We re-ordered the domain IDs based on their types (obligate, both
and non-obligate). To provide a visual insight of the distribution of
the DDIs in the different complexes, a schematic view of the DDIs
in the dataset is shown in Figure. 1. It is clearly seen that the most
homo-domain pairs are in obligate complexes (i.e. they lie on the
diagonal line (x = y) of the plot). Only a small part of the domain
IDs are common. This also implies we can achieve a reasonable
prediction only by finding the domains of each unknown complex.
This is an interesting issue that deserves a lot of attention, and that
we are currently investigating.

4. CONCLUSION
We have proposed an approach for prediction and analysis of ob-

ligate and non-obligate protein complexes. We have investigated
various interface properties of these interactions including atom
and amino acid types present in interacting chains or domains. Var-
ious features are extracted from each complex, including the de-
solvation energies for atom and amino acid type pairs and also
NOXclass properties. The classification is performed via differ-
ent LDR methods that involve homoscedastic and heteroscedastic
criteria and SVM with different kernels, namely RBF, polynomial
and sigmoid.

The results on our binary-PPID dataset, which is a joint and mod-
ified version of two well-known datasets, show that the SVM classi-
fier with 77.78% accuracy achieves much better classification per-
formance, even better than LDR schemes coupled with quadratic
and linear classifiers for all subset of features. The results also
demonstrate that desolvation energy is better than interface area and
composition for predicting obligate and non-obligate complexes.

Furthermore, visual and numerical analysis on DDIs show that
(i) most homo-domain pairs are in obligate interactions and (ii) no
common DDI is present in obligate and non-obligate complexes
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Figure 1: Schematic view of the DDI pairs in obligate and non-
obligate interactions.

and all DDIs are present in either obligate or non-obligate com-
plexes.

Our future work involves the use of other features such as resid-
ual vicinity, shape of the structure of the interface, secondary struc-
ture, planarity, physicochemical features, hydrophobicity, structure
of domains and many others in our dataset, and also identifying
pseudo-domains and motifs present in interacting proteins.
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