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ABSTRACT
PLWAP algorithm uses a preorder linked, position coded
version of WAP tree and eliminates the need to recursively
re-construct intermediate WAP trees during sequential min-
ing as done by WAP tree technique. PLWAP produces sig-
nificant reduction in response time achieved by the WAP
algorithm and provides a position code mechanism for re-
membering the stored database, thus, eliminating the need
to re-scan the original database as would be necessary for
applications like those incrementally maintaining mined fre-
quent patterns, performing stream or dynamic mining.

This paper presents open source code for both the PLWAP
and WAP algorithms describing our implementations and
experimental performance analysis of these two algorithms
on synthetic data generated with IBM quest data generator.
An implementation of the Apriori-like GSP sequential min-
ing algorithm is also discussed and submitted. A web log
pre-processor for producing real input to the algorithms is
made available too.

Keywords
sequential patterns, web usage mining, WAP tree, pre-order
linkage

1. INTRODUCTION
Basic association rule mining with the Apriori algorithm

[1] finds database items (attributes) that occur most of-
ten together in database transactions. Thus, given a set
of transactions (similar to database records), where each
transaction is a set of items (attributes), an association rule
is of the form X → Y , where X and Y are sets of items
and X ∩ Y = ∅. Association rule mining algorithms gen-
erally first find all frequent patterns (itemsets) as all com-
binations of items or attributes with support (percentage

∗(A full version of this paper is available in the Journal of
Data Mining and Knowledge Discovery 10, 5-38, 2005.)

.

occurrence in the entire database), greater or equal to a pre-
defined minimum support. Then, in the second stage of min-
ing, association rules are generated from each frequent pat-
tern by defining all possible combinations of rule antecedent
(head) and consequent (tail) from items composing the fre-
quent patterns such that antecedent ∩ consequent = ∅ and
antecedent ∪ consequent = frequentpattern. Then, only
rules with confidence (number of transactions that contain
the rule divided by the number of transactions containing
the antecedent) greater than or equal to a pre-defined mini-
mum confidence are retained as valuable, while the rest are
pruned.

Sequential mining is an extension of basic association rule
mining that accommodates ordered set of items or attributes,
where the same item may be repeated in a sequence. While
basic frequent pattern has a set of non-ordered items that
have occurred together up to minimum support threshold,
frequent sequential pattern has a sequence of ordered items
that have occurred frequently in database transactions at
least as often as the minimum support threshold. Thus,
the measures of support and confidence used in association
rule mining for deciding frequent itemsets are used in se-
quential mining for deciding frequent sequences. Just as an
i-itemset contains i items, an n-sequence contains n ordered
items (events). One application of sequential mining is web
usage mining for finding the relationship among different
web users’ accesses from web access logs [5], [11], [4] and
[19]. Analysis of these access data can help for server per-
formance enhancement and direct marketing in e-commerce
as well as web personalization. Before applying sequential
mining techniques to web log data, the web log transactions
are pre-processed to group them into set of access sequences
for each user identifier and to create web access sequences
in the form of a transaction database (e.g., abdac, eaebcac,
babfaec, babfaec). Access sequence S′ = e′1e

′

2 . . . e′l is called
a subsequence of an access sequence, S = e1e2...en, and S is
a super-sequence of S’, denoted as S′ ⊆ S, if and only if for
every event e′j in S’, there is an equal event ek in S, while
the order that events occurred in S is the same as the order
of events in S′. For example, with S′ = ab, S = babcd, S′ is
a subsequence of S, and ac is a subsequence of S, although
there is b occurring between a and c in S. In the sequence
babcd, while bcd is a suffix subsequence of bab, bab is a prefix
subsequence of bcd. Techniques for mining sequential pat-
terns from web logs fall into Apriori or non-Apriori.

This paper presents discussions of the implementations of
three key sequential mining algorithms PLWAP, WAP and
GSP used in [7].
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1.1 Related Work
Work on mining sequential patterns in web log include

the GSP [3], the PSP [13], the G sequence [18] and the
graph traversal [15] algorithms. Agrawal and Srikant pro-
posed three algorithms (Apriori, AprioriAll, AprioriSome)
for sequential mining in [2]. The GSP (Generalized Sequen-
tial Patterns) [3] algorithm is 20 times faster than the Apri-
ori algorithm. The GSP Algorithm makes multiple passes
over data. The first pass determines the frequent 1-item
patterns (L1). Each subsequent pass starts with a seed set:
the frequent sequences found in the previous pass (Lk−1).
The seed set is used to generate new candidate sequences
(Ck) by performing an Apriori gen join of Lk−1 with (Lk−1).
This join requires that every sequence s in the first Lk−1

joins with other sequences s′ in the second Lk−1 if the
last k-2 elements of s are the same as the first k-2 ele-
ments of s’. For example, if frequent 3-sequence set L3

has the following 6 sequences: {((1,2)(3)), ((1,2)(4)), ((1)(3,
4)), ((1,3)(5)), ((2)(3,4)), ((2)(3)(5))}, to obtain frequent 4-
sequences, every frequent 3-sequence should join with the
other 3-sequences that have the same first two elements
as its last two elements. Sequence s=((1,2)(3)) joins with
s′=((2)(3,4)) to generate a candidate 4-sequence ((1,2)(3,4))
since the last 2 elements of s, (2)(3), match with the first 2
elements of s′. Similarly, ((1,2) (3)) joins with ((2)(3)(5)) to
form ((1,2)(3)(5)). There are no more matching sequences
to join in L3. The join phase is followed with the prun-
ing phase, when the candidate sequences with any of their
contiguous (k-1)-subsequences having a support count less
than the minimum support, are dropped. The database is
scanned for supports of the remaining candidate k-sequences
to find frequent k-sequences(Lk), which become the seed for
the next pass, candidate (k+1)-sequences. The algorithm
terminates when there are no frequent sequences at the end
of a pass, or when there are no candidate sequences gener-
ated. The GSP algorithm uses a hash tree to reduce the
number of candidates that are checked for support in the
database.

The PSP (Prefix Tree For Sequential Patterns) [13] ap-
proach is much similar to the GSP algorithm [3], but stores
the database on a more concise prefix tree with the leaf nodes
carrying the supports of the sequences. At each step k, the
database is browsed for counting the support of current can-
didates. Then, the frequent sequence set, Lk is built.

The Graph Traversal mining [14], [15], uses a simple un-
weighted graph to store web sequences and a graph traver-
sal algorithm similar to Apriori algorithm to traverse the
graph in order to compute the k-candidate set from the (k-
1)-candidate sequences without performing the Apriori-gen
join. From the graph, if a candidate node is large, the ad-
jacency list of the node is retrieved. The database still has
to be scanned several times to compute the support of each
candidate sequence although the number of computed can-
didate sequences is drastically reduced from that of the GSP
algorithm. Other tree based approaches include [18] called G
sequence mining. This algorithm uses wildcards, templates
and construction of Aggregate tree for mining.

The FP-tree structure [9] first reorders and stores the fre-
quent non-sequential database transaction items on a pre-
fix tree, in descending order of their supports such that
database transactions share common frequent prefix paths
on the tree. Then, mining the tree is accomplished by re-
cursive construction of conditional pattern bases for each

Table 1: Sample Web Access Sequence Database for
WAP-tree

TID Web access sequence Frequent subsequence
100 abdac abac
200 eaebcac abcac
300 babfaec babac
400 afbacfc abacc

frequent 1-item (in ordered list called f-list), starting with
the lowest in the tree. Conditional FP-tree is constructed
for each frequent conditional pattern having more than one
path, while maximal mined frequent patterns consist of a
concatenation of items on each single path with their suffix
f-list item. FreeSpan [8] like the FP-tree method, lists the f-
list in descending order of support, but it is developed for se-
quential pattern mining. PrefixSpan [16] is a pattern-growth
method like FreeSpan, which reduces the search space for ex-
tending already discovered prefix pattern p by projecting a
portion of the original database that contains all necessary
data for mining sequential patterns grown from p.

Web access pattern tree (WAP), is a non-Apriori algo-
rithm, proposed by Pei et al. [17]. The WAP-tree stores the
web log data in a prefix tree format similar to the frequent
pattern tree [9] (FP-tree). WAP algorithm first scans the
web log to compute all frequent individual events, then it
constructs a WAP-tree over the set of frequent individual
events of each transaction before it recursively mines the
constructed WAP tree by building a conditional WAP tree
for each conditional suffix frequent pattern found. The pro-
cess of recursive mining of a conditional suffix WAP tree
ends when it has only one branch or is empty.

An example application of the WAP-tree algorithm for
finding all frequent events in the web log (constructing the
WAP-tree and mining the access patterns from the WAP
tree) is shown with the database in Table 1. Suppose the
minimum support threshold is set at 75%, which means an
access sequence, s should have a count of 3 out of 4 records in
our example, to be considered frequent. Constructing WAP-
tree, entails first scanning database once, to obtain events
that are frequent, a, b, c. When constructing the WAP-tree,
the non-frequent (like d, e, f) part of every sequence is dis-
carded. Only the frequent sub-sequences shown in column
three of Table 1 are used as input. With the frequent se-
quence in each transaction, the WAP-tree algorithm first
stores the frequent items as header nodes for linking all
nodes of their type in the WAP-tree in the order the nodes
are inserted. When constructing the WAP-tree, a virtual
root (Root) is first inserted. Then, each frequent sequence
in the transaction is used to construct a branch from the
Root to a leaf node of the tree. Each event in a sequence is
inserted as a node with count 1 from Root if that node type
does not yet exist, but the count of the node is increased
by 1 if the node type already exists. Also, the head link
for the inserted event is connected (in broken lines) to the
newly inserted node from the last node of its type that was
inserted or from the header node of its type if it is the very
first node of that event type inserted. Once the frequent
sequential data are stored on the complete WAP-tree (Fig-
ure 1), the tree is mined for frequent patterns starting with
the lowest frequent event in the header list, in our example,
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Figure 1: Construction of the Original WAP Tree

starting from frequent event c as the following discussion
shows. From the WAP-tree of Figure 1, it first computes
prefix sequence of the base c or the conditional sequence
base of c as: aba : 2; ab : 1; abca : 1; ab : -1; baba : 1;
abac : 1; aba : -1 The conditional sequence list of a suffix
event is obtained by following the header link of the event
and reading the path from the root to each node (excluding
the node). After discarding the non-frequent part c in the
above sequences, the conditional sequences based on c are
listed below:
aba : 2; ab : 1; aba : 1; ab : -1; baba : 1; aba : 1; aba : -1.
Using these conditional sequences, a conditional WAP tree,
WAP-tree|c, is built using the same method as shown in Fig-
ure 1. The re-construction of WAP trees that progressed as
suffix sequences |c, |bc discovered frequent patterns found
along this line c, bc and abc. The recursion continues with
the suffix path |c, |ac. The algorithm keeps running, finding
the conditional sequence bases of bac, b, a. Figure 2 shows
the WAP trees for mining conditional pattern base c. After
mining the whole tree, discovered frequent pattern set is:
{c, aac, bac, abac, ac, abc, bc, b, ab, a, aa, ba, aba}.

Although WAP-tree algorithm scans the original database
only twice and avoids the problem of generating explosive
candidate sets as in Apriori-like algorithm, its main draw-
back is recursively re-constructing large numbers of inter-
mediate WAP-trees and patterns during mining taking up
computing resources.

Pre-Order linked WAP tree algorithm (PLWAP) [7], [10],
is a version of the WAP tree algorithm that assigns unique
binary position code to each tree node and performs the
header node linkages pre-order fashion (root, left, right).
Both the pre-order linkage and binary position codes enable
the PLWAP to directly mine the sequential patterns from
the one initial WAP tree starting with prefix sequence, with-
out re-constructing the intermediate WAP trees. To assign
position codes to a PLWAP node, the root has null code,
and the leftmost child of any parent node has a code that
appends ‘1’ to the position code of its parent, while the
position code of any other node has ‘0’ appended to the po-
sition code of its nearest left sibling. The PLWAP technique
presents a much better performance than that achieved by
the WAP-tree technique as shown in extensive performance
analysis.
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Figure 2: Reconstruction of WAP Trees for Mining
Conditional Pattern Base c

1.2 Motivations and Contributions
PLWAP algorithm [7], a recently proposed sequential min-

ing tool in the Journal of Data Mining and Knowledge Dis-
covery has many attractive features that makes it suitable
as a building block for many other sophisticated sequen-
tial data mining approaches like incremental mining [6], web
classification and personalization. This paper supplements
the detailed and formal presentations of the PLWAP al-
gorithm, its properties and theorems given in [7] by fo-
cusing on details of the code implementations of PLWAP,
WAP and GSP sequential miners as well as making avail-
able a real web log data pre-processor and providing fur-
ther indepth analysis. This paper thus, contributes by dis-
cussing our code implementations of the PLWAP and two
other key sequential mining algorithms (WAP and GSP)
used in performance studies of work in [7]. These algorithms
have been tested thoroughly on publicly available data sets
(http://www.almaden.ibm.com/software/quest/Resources/
index.shtml) and with real data. Through this paper, a real
web log pre-processor for preparing real input data for the
miners is also made available (ask author if needed). A
more indepth performance analysis that confirms the sta-
bility of the PLWAP algorithm is another contribution of
paper. Such code availability motivates adoption of algo-
rithm as a building block for more sophisticated data min-
ing processes like stream and dynamic mining, distributed,
incremental, drill-down and roll-up mining, semantic mining
and sensor network mining.

1.3 Outline of the Paper
Section 2 discusses example mining with the Pre-Order

Linked WAP-Tree (PLWAP) algorithm. Section 3 discusses
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the C++ implementations of the PLWAP, WAP and the
GSP algorithms for sequential mining. Section 4 discusses
experimental performance analysis, while section 5 presents
conclusions and future work.

2. AN EXAMPLE SEQUENTIAL MINING
WITH PLWAP ALGORITHM

Unlike the conditional search in WAP-tree mining, which
is based on finding common suffix sequence first, the PLWAP
technique finds the common prefix sequences first. The main
idea is to find a frequent pattern by progressively finding its
common frequent subsequences starting with the first fre-
quent event in a frequent pattern. For example, if abcd is a
frequent pattern to be discovered, the WAP algorithm pro-
gressively finds suffix sequences d, cd, bcd and abcd. The
PLWAP tree, on the other hand, would find the prefix event
a first, then, using the suffix trees of node a, it will find the
next prefix subsequence ab and continuing with the suffix
tree of b, it will find the next prefix subsequence abc and
finally, abcd. Thus, the idea of PLWAP is to use the suf-
fix trees of the last frequent event in an m-prefix sequence
to recursively extend the subsequence to m+1 sequence by
adding a frequent event that occurred in the suffix trees.
Using the position codes of the nodes, the PLWAP is able
to know the descendant and sibling nodes of oldest parent
nodes on the suffix root set of a frequent header element
being checked for appending to a prefix subsequence if it
is frequent in the suffix root set under consideration. An
element is frequent if the sum of the supports of the old-
est parent nodes on all its suffix root sets is greater than or
equal to the minimum support.

Assume we want to mine the web access database (WASD)
of Table 1 for frequent sequences given a minimum sup-
port of 75% or 3 transactions. Constructing and mining
the PLWAP tree goes through the following steps. (1) Scan
WASD (column 2 of Table 1 once to find all frequent indi-
vidual events, L as {a:4, b:4, c:4}. The events d:1, e:2, f:2
have supports less than the minimum support of 3 and
(2) Scan WASD again, construct a PLWAP-tree over the
set of individual frequent events (column 3 of Table 1),
by inserting each sequence from root to leaf, labeling each
node as (node event: count: position code). Then, after all
events are inserted, traverse the tree pre-order way to con-
nect the header link nodes. Figure 3 shows the completely
constructed PLWAP tree with the pre-order linkages.
(3) Recursively mine the PLWAP-tree using common pre-

fix pattern search: The algorithm starts to find the frequent
sequence with the frequent 1-sequence in the set of frequent
events(FE) {a, b, c}. For every frequent event in FE and
the suffix trees of current conditional PLWAP-tree being
mined, it follows the linkage of this event to find the first
occurrence of this frequent event in every current suffix tree
being mined, and adds the support count of all first occur-
rences of this frequent event in all its current suffix trees. If
the count is greater than the minimum support threshold,
then this event is appended (concatenated) to the last subse-
quence in the list of frequent sequences, F. The suffix trees of
these first occurrence events in the previously mined condi-
tional suffix PLWAP-trees are now in turn, used for mining
the next event. To obtain this conditional PLWAP-tree, we
only need to remember the roots of the current suffix trees,
which are stored for next round mining. For example, the

Figure 3: Construction of PLWAP-Tree Using Pre-
Order Traversal

algorithm starts by mining the tree in Figure 4(a) for the
first element in the header linkage list, a following the a link
to find the first occurrencies of a nodes in a:3:1 and a:1:101
of the suffix trees of the Root since this is the first time
the whole tree is passed for mining a frequent 1-sequence.
Now, the list of mined frequent patterns F is {a} since the
count of event a in this current suffix trees is 4 (sum of a:3:1
and a:1:101 counts), and more than the minimum support
of 3. The mining of frequent 2-sequences that start with
event a would continue with the next suffix trees of a rooted
at {b:3:11, b:1:1011} shown in Figure 4(b) as unshadowed
nodes. The objective here is to find if 2-sequences aa, ab
and ac are frequent using these suffix trees. In order to con-
firm aa frequent, we need to confirm event a frequent in the
current suffix tree set, and similarly, to confirm ab frequent,
we should again follow the b link to confirm event b frequent
using this suffix tree set, same for ac. The process continues
to obtain same frequent sequence set {a, aa, aac, ab, aba,
abac, abc, ac, b, ba, bac, bc, c} as the WAP-tree algorithm.

3. C++ IMPLEMENTATIONS OF THREE SE-
QUENTIAL MINING ALGORITHMS

Although, we lay more emphasis on the PLWAP algorithm
developed in our lab, we also provide the source codes of
the WAP and GSP algorithms used for performance analy-
sis. The source codes are discussed under seven headings of
(1) development and running environment, (2) input data
format and files, (3) minimum support format, (4) output
data format and files, (5) functions used in the program,
(6) data structures used in the program and (7) additional
information. All of the codes are documented with infor-
mation on this section and more for code readability, main-
tainability and extendability. Each program is stored in
a .cpp file and compiled with “g++ filename.cpp”. It is
worth noting that all three algorithms were implemented
in the year 2002, when no other versions of the WAP and
GSP algorithms were publicly available. While we cannot
still find a publicly available version of the GSP program,
there are some subtle differences between our implemen-
tation of the WAP algorithm and that now available at
http://www.cs.ualberta.ca/ tszhu/software.html. One dif-
ference we have noticed is with the input formats of the two
implementations: while Alberta version accepts the input in
one sequence, we accept a list of sequences belonging to dif-
ferent users as in web log mining. It also seems like Alberta

29



a |   s u f f i x   t r e e 
{ b : 1 1 ,   b : 1 0 1 1 } 

a a |   s u f f i x   t r e e 
{ c : 1 1 1 1 ,   c : 1 1 1 0 1 1 ,   c : 1 0 1 1 1 1 } 

a a c |   s u f f i x   t r e e 
{ c : 1 1 1 1 1 } 

R o o t 

a : 3 
1

b : 3 
1 1 

a : 2 
1 1 1 

c : 1 
1 1 1 0 

c : 2 
1 1 1 1 

c : 1 
1 1 1 1 1 

a : 1 
1 1 1 0 1 

c : 1 
1 1 1 0 1 1 

b : 1 
1 0 

a : 1 
1 0 1 

b : 1 
1 0 1 1 

a : 1 
1 0 1 1 1 

c : 1 
1 0 1 1 1 1 

a

b

c

a : { 1 , 1 1 1 , 1 1 1 0 1 , 1 0 1 , 1 0 1 1 1 } 
b : { 1 1 , 1 0 , 1 0 1 1 } 
c : { 1 1 1 1 , 1 1 1 1 1 , 1 1 1 0 , 1 1 1 0 1 1 , 1 0 1 1 1 1 } 

( a ) 

R o o t 

a : 3 
1

b : 3 
1 1 

a : 2 
1 1 1 

c : 1 
1 1 1 0 

c : 2 
1 1 1 1 

c : 1 
1 1 1 1 1 

a : 1 
1 1 1 0 1 

c : 1 
1 1 1 0 1 1 

b : 1 
1 0 

a : 1 
1 0 1 

b : 1 
1 0 1 1 

a : 1 
1 0 1 1 1 

c : 1 
1 0 1 1 1 1 

a

b

c

R o o t 

a : 3 
1

b : 3 
1 1 

a : 2 
1 1 1 

c : 1 
1 1 1 0 

c : 2 
1 1 1 1 

c : 1 
1 1 1 1 1 

a : 1 
1 1 1 0 1 

c : 1 
1 1 1 0 1 1 

b : 1 
1 0 

a : 1 
1 0 1 

b : 1 
1 0 1 1 

a : 1 
1 0 1 1 1 

c : 1 
1 0 1 1 1 1 

a

b

c

R o o t 

a : 3 
1

b : 3 
1 1 

a : 2 
1 1 1 

c : 1 
1 1 1 0 

c : 2 
1 1 1 1 

c : 1 
1 1 1 1 1 

a : 1 
1 1 1 0 1 

c : 1 
1 1 1 0 1 1 

b : 1 
1 0 

a : 1 
1 0 1 

b : 1 
1 0 1 1 

a : 1 
1 0 1 1 1 

c : 1 
1 0 1 1 1 1 

a

b

c

( b ) 

( c ) ( d ) 

Figure 4: Mining PLWAP-Tree to Find Frequent
Sequence Starting with aa

version is memory-only as intermediate pattern input is not
saved on disk, while it is saved on disk in our implemen-
tation. The implication is that running the memory-only
version on an environment with less memory than data size
would result in operating system swapping of data onto disk.

3.1 C++ Implementation of the PLWAP Se-
quential Mining Algorithm

This is the PLWAP algorithm program, which is based
on the description in [7], C.I. Ezeife and Y. Lu. “Mining
Web Log sequential Patterns with Position Coded Pre-Order
Linked WAP-tree” in DMKD 2005.
1. DEVELOPMENT ENVIRONMENT: Although initial
version is developed under the hardware/software environ-
ment specified below, the program runs on more powerful
and faster multiprocessor UNIX environments as well. Ini-
tial environment is: (i)Hardware: Intel Celeron 400 PC, 64M
Memory; (ii)Operating system: Windows 98; (iii)Development
tool: Inprise(Borland) C++ Builder 6.0. The algorithm is
developed under C++ Builder 6.0, but compiles and runs
under any standard C++ development tool.
2. INPUT FILES AND FORMAT: Input file is test.data:
For simplifying input process of the program, we assume
that all input data have been preprocessed such that all
events belonging to the same user id have been gathered to-
gether, and formed as a sequence and saved in a text file,
called, “test.data”. The “test.data” file may be composed of
hundreds of thousands of lines of sequences where each line

represents a web access sequence for each user. Every line
of the input data file (“test.data”) includes UserID, length
of sequence and the sequence which are separated by tab
spaces. An example input line is: 100 5 10 20 40 10 30 .
Here, 100 represents UserID, the length of sequence is 5, the
sequence is 10,20,40,10,30.
3. MINIMUM SUPPORT FORMAT: The program also
needs to accept a value between 0 and 1 as minimum sup-
port. The minimum support input is entered interactively
by the user during the execution of the program when prompted.
For a minimum support of 50%, user should type 0.5, and
for minsupport of 5%, user should type .05, and so on.
4. OUTPUT FILES AND FORMAT: result PLWAP.data:
Once the program terminates, we can find the result frequent
patterns in a file named “result PLWAP.data”. It may con-
tain lines of patterns, each representing a frequent pattern.
5. FUNCTIONS USED IN THE CODE: (i)BuildTree: builds
the PLWAP tree, (ii)buildLinkage: Builds the pre-order link-
age for PLWAP tree, (iii)makeCode: makes the position
code for a node, (1v)checkPosition: checks the position be-
tween any two nodes in the PLWAP tree, (v)MiningProcess:
mines sequential frequent patterns from the PLWAP tree us-
ing position codes.
6. DATA STRUCTURE: Three struct are used in this pro-
gram: (i) the node struct indicates a PLWAP node which
contains the following information: a.the event name, b.the
number of occurrence of the event, c. a link to the position
code, d. length of position code, e. the linkage to next node
with same event name in PLWAP tree, f. a pointer to its
left son, g. a pointer to its right sibling, h. a pointer to its
parent, i. the number of its sons. (ii) a position code struct
implemented as a linked list of unsigned integer to make it
possible to handle data of any size without exceeding the
maximum integer size. (iii) a linkage struct.
7. ADDITIONAL INFORMATION: The run time is dis-
played on the screen with start time, end time and total
seconds for running the program.

3.2 C++ Implementation of the WAP Sequen-
tial Mining Algorithm

This is the WAP algorithm program based on the de-
scription in [17]: Jian Pei, Jiawei Han, Behzad Mortazavi-
asl, and Hua Zhu, “Mining Access Patterns Efficiently from
Web Logs”, PAKDD 2000.
1.DEVELOPMENT ENVIRONMENT: The same as described
for PLWAP and can run on any UNIX system as well.
2. INPUT FILES AND FORMAT:
i) Input file test.data: Pre-processed sequential input records
are read from the file “test.data”. The “test.data” file, which
is the same format as described for PLWAP above.
ii) Input file middle.data: used to save the conditional mid-
dle patterns. During the WAP tree mining process, follow-
ing the linkages, once the sum of support for an event is
found greater than minimum support, all its prefix condi-
tional patterns are saved in the “middle.data” file for next
round mining. The format of “middle.data” is as follows:
Each line includes the length of the sequence, the occur-
rence of the sequence, and the events in the sequence. For
example, given a line in middle.data: 5 4 10 20 40 10 30, the
length of sequence is 5, 4 indicates the sequence occurred
4 times in the previous conditional WAP tree and the se-
quence is 10,20,40,10,30.
3. MINIMUM SUPPORT:
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The program also needs to accept a value between 0 and 1
for minimum support or frequency. The user is prompted
for minimum support when the program starts.
4. OUTPUT FILES AND FORMAT: result WAP.data
Once the program terminates, the result patterns are in a
file named “result WAP.data”, which may contain lines of
patterns.
5. FUNCTIONS USED IN THE CODE:
(i)BuildTree: Builds the WAP tree/conditional WAP tree
(ii)MiningProcess: produces sequential pattern/conditional
prefix sub-pattern from WAP tree/conditional WAP tree.
6. DATA STRUCTURE: three struct are used in this pro-
gram: (i) the node struct indicates a WAP node which con-
tains the following information: a.the event name, b.the
number of occurrence of the event, c. the linkage to next
node same event name in WAP tree, d. a pointer to its left
son, e. a pointer to its rights sibling, f. a pointer to its
parent.
(ii) a linkage struct described in the program.
7. ADDITIONAL INFORMATION: The run time is dis-
played on the screen with start time, end time and total
seconds for running the program.

3.3 C++ Implementation of the GSP Sequen-
tial Mining Algorithm

This is a GSP algorithm implementation, which demon-
strates the result described in [3]: R. Srikant and R. Agrawal.
“Mining sequential patterns: Generalizations and perfor-
mance improvements”, 1996.
1.DEVELOPMENT ENVIRONMENT: The same as described
for PLWAP and runs in any UNIX system as well.
2. INPUT FILES AND FORMAT: Input file test.data:
The main input file “test.data” had the same format as for
PLWAP described above.
3. MINIMUM SUPPORT: The program also needs to ac-
cept a value between 0 and 1 as minimum support. The user
is prompted for minimum support when the program starts.
4. OUTPUT FILES AND FORMAT: result GSP.data At
the termination of the program, the result patterns are in
a file named “result GSP.data”, which may contain lines of
frequent patterns.
5. FUNCTIONS USED IN THE CODE: (i)GSP: reads the
file and mines levelwise according to the algorithm.
6. DATA STRUCTURES: There are struct for i) candidate
sequence list and its count and ii) sequence.
7. ADDITIONAL INFORMATION: The run time is dis-
played on the screen with start time, end time and total
seconds for running the program.

4. PERFORMANCE AND EXPERIMENTAL
ANALYSIS OF THREE ALGORITHMS

The PLWAP algorithm eliminates the need to store nu-
merous intermediate WAP trees during mining, thus, dras-
tically cutting off huge memory access costs. The PLWAP
annotates each tree node with a binary position code for
quicker mining of the tree. This section compares the ex-
perimental performance analysis of PLWAP with the WAP-
tree mining and the Apriori-like GSP algorithms. The three
algorithms were initially implemented with C++ language
running under Inprise C++ Builder environment. All ini-

tial experiments were performed on 400MHz Celeron PC
machine with 64 megabytes memory running Windows 98
(for work in [7]). Current experiments are conducted with
the same implementations of the programs and still on syn-
thetic datasets generated using the resource data generator
code from http://www.almaden.ibm.com/software/quest/
Resources/index.shtml. This synthetic dataset has been
used by most pattern mining studies [3, 12, 17]. Experi-
ments were also run on real datasets generated from web log
data of University of Windsor Computer Science server and
pre-processed with our web log cleaner code. The correct-
ness of the implementations were confirmed by checking that
the frequent patterns generated for the same dataset by all
algorithms are the same. A high speed UNIX SUN microsys-
tem with a total of 16384 Mb memory and 8 x 1200 MHz
processor speed is used for these experiments. The synthetic
datasets consist of sequences of events, where each event rep-
resents an accessed web page. The parameters shown below
are used to generate the data sets.
|D| Number of sequences in the database
|C| : Average length of the sequences
|S|: Average length of maximal potentially frequent sequence
|N |: number of events
For example, C10.S5.N2000.D60K means that |C| = 10, |S|
= 5, |N |= 2000, and |D| = 60K. It represents a group of
data with average length of the sequences as 10, the aver-
age length of maximal potentially frequent sequence is 5,
the number of individual events in the database is 2000,
and the total number of sequences in database is 60 thou-
sand. The datasets with different parameters test different
aspects of the algorithms. Generally, if the number of these
four parameters becomes larger, the execution time becomes
longer. Experiments are conducted to test the behavior of
the algorithms with respect to the four parameters, mini-
mum support threshold, database sizes, number of database
table attributes and the average length of sequences. For
each experiment, while one of the parameters changes, oth-
ers are pegged at some constant values. Observations are
made at three levels of small, medium and large (e.g., small
database size may consist of a table with records less than 40
thousands, medium size table has between 50 nd 200 thou-
sands records, while large has over 300 thousand).
Experiment 1: Execution time trend with differ-
ent minimum supports (small size database, 40K
records):
This experiment uses fixed size database and different mini-
mum support to compare the performance of PLWAP, WAP
and GSP algorithms. The datasets are described as
C2.5.S5.N50.D40K, and algorithms are tested with mini-
mum supports between 0.05% and 20% against the 40 thou-
sand (40K) database with 50 attributes and average se-
quence length of 2.5. The results of this experiment are
shown in Table 2 and Figure 5 with the number of frequent
patterns found reported as Fp. From this result, it can be
seen that at minimum support of 0.05%, the number of fre-
quent patterns found is highest and is 2729, the PLWAP al-
gorithm ran almost 3 times faster than the WAP algorithm.
As the minimum support increases, the number of frequent
patterns found decreases and the gain in performance by
the PLWAP algorithm over the WAP algorithm decreases.
It can be seen that the more the number of frequent patterns
found in a dataset, the higher the performance gain achieved
by the PLWAP algorithm over the WAP algorithm. This is
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Table 2: Execution Times for Dataset at Different
Minimum Supports (small database)

Alg Runtime (in secs) at Different Supports(%)
0.05 0.1 0.5 1 5 10 15
Fp= Fp= Fp = Fp= Fp= Fp= Fp
2729 1265 268 111 23 10 0

GSP 6663 3646 1054 636 157 30 1
WAP 149 66 20 8 3 1 1
PLWAP 54 26 7 3 1 1 1

because the two algorithms spend about the same amount
of time scanning the database and constructing the tree, but
the PLWAP algorithm saves on storing and reading interme-
diate re-constructed tree, which are as many as the number
of frequent patterns found. The execution times of the two
algorithms are the same when there are nearly no frequent
patterns.
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Figure 5: Execution Times Trend with Different
Minimum Supports (small database)

Experiment 2: Execution times trend with different
minimum supports (Medium size database, 200K
records):
This experiment uses fixed size database and different mini-
mum support to compare the performance of PLWAP, WAP
and GSP algorithms. The algorithms are tested with mini-
mum supports between 0.05% and 15% against the 200 thou-
sand (200K) database, 50 attributes and average sequence
length of 2.5. The results of this experiment are shown in
Table 3 and Figure 6 with the number of frequent patterns
found reported as Fp. It can be seen that the trend in per-
formance is the same as with small database. When the
minimum support reaches 15%, there are no frequent pat-
terns found and the running times of the two algorithms
become the same.
Experiment 3: Execution Times for Dataset at Dif-
ferent Minimum Supports (large database):
This experiment uses fixed size database and different mini-
mum support to compare the performance of PLWAP, WAP
and GSP algorithms. The algorithms are tested with mini-
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Figure 6: Execution Times Trend with Different
Minimum Supports (medium database)

Table 3: Execution Times for Dataset at Different
Minimum Supports (medium database)

Alg Runtime (in secs) at Different Supports(%)
0.05 0.1 0.5 1 5 10 15
Fp= Fp= Fp = Fp= Fp= Fp= Fp
2630 1271 20 114 23 10 0

GSP 34275 10021 11742 3320 785 150 4
WAP 145 78 27 17 7 5 4
PLWAP 78 47 13 9 5 4 4

mum supports between 0.05% and 15% against one million
(1M) record database. The results of this experiment are
shown in Table 4 and Figure 7.
Experiment 3a: Execution Times for Dataset at Dif-
ferent Minimum Supports (large database but very
low minimum supports):
This experiment uses fixed size database and different min-
imum support to compare the performance of PLWAP and
WAP algorithms (GSP not included because running times
get too big or process is killed). The algorithms are tested
with minimum supports between 0.001% and 0.02% against
one million (1M) record database. The results of this exper-
iment are shown in Table 5 and Figure 8.

Table 4: Execution Times for Dataset at Different
Minimum Supports (large database)

Alg Runtime (in secs) at Different Supports(%)
0.05 0.1 0.5 1 5 10 15
Fp= Fp= Fp = Fp= Fp= Fp= Fp
2646 1269 273 116 23 10 0

GSP 73084 41381 12854 7358 1715 328 9
WAP 387 100 41 27 14 10 9
PLWAP 236 87 28 17 10 9 8
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Figure 7: Execution Times for Dataset at Different
Minimum Supports (large database)
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Figure 8: Execution Times for Dataset at Different
Minimum Supports (large database and low minsup-
ports)

Experiment 4: Execution times trend with different
database sizes (small size database, 2K to 14K):
This experiment uses fixed minimum support and differ-
ent size database to compare the performance of PLWAP,
WAP and GSP algorithms. The algorithms are tested on
databases of sizes 2K to 14K at minimum support of 1%.
The gain in performance by the PLWAP algorithm is con-
stant across different sizes because the number of frequent
patterns in different sized datasets generated by the data
generator seem to be about the same at a particular mini-
mum support. The results of this experiment are shown in
Table 6 and Figure 9.
Experiment 5: Execution times trend with differ-
ent database sizes (medium size database, 20K to
200K):
This experiment uses fixed minimum support and different
size database to compare the performance of PLWAP and
WAP algorithms. The algorithms are tested with database
sizes between 20 and 200 thousands at minimum support of
1%. The results of this experiment are shown in Table 7 and

Table 5: Execution Times for Dataset at Different
Minimum Supports (large database and low minsup-
ports)

Alg Runtime (in secs) at Different Supports(%)
0.001 0.002 0.005 0.006 0.008 0.01 0.02
Fp= Fp= Fp = Fp= Fp= Fp= Fp
222K 161K 38174 38174 14931 12228 6196

WAP 13076 11512 1494 1396 1661 1329 832
PLWAP 8183 4303 1083 1066 1435 1261 403
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Figure 9: Execution Times Trend with Different
Minimum Supports (small database)

Figure 10.
Experiment 6: Execution times trend with dif-

ferent database sizes (large size database, 300K to
900K):
This experiment uses fixed minimum support and differ-
ent size database to compare the performance of PLWAP,
WAP and GSP algorithms. The algorithms are tested with
database sizes between 300K and 900K records at minimum
support of 1%. The results of this experiment are shown
in Table 8 and Figure 11. Since the CPU execution time
difference between the WAP and PLWAP from this exper-
iment, seems to diminish as the database size increases, a
further experiment was run on larger databases of between
one million and 20 million records to check if and when WAP
would run faster than the PLWAP. Result of this experiment

Table 6: Execution Times for Different Database
Sizes at Minsupport (small database)

Alg Runtime (in secs) at Different Supports(%)
2K 4K 6K 8K 10K 12K 14K

GSP 30 59 91 125 161 193 214
WAP 6 6 7 8 8 8 8
PLWAP 2 2 2 2 3 3 3
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Figure 10: Execution Times Trend with Different
Database sizes (medium database)

Table 7: Execution Times for Different Database
Sizes at Minsupport of 1%(medium database)

Alg Runtime (in secs) at Different Db sizes(%)
20K 40K 60K 80K 100K 200K

GSP 306 639 1015 1338 2004 3320
WAP 7 9 9 12 12 17
PLWAP 3 3 4 4 5 9

on larger databases is given in Table 9. From this experi-
ment, we found that at the same minimum support of 1%,
when the database size increases much, there are few or no
frequent patterns found because an item needs to appear
in about 200 thousand sequential records in the 20 million
database to be frequent and that is not very possible in the
synthetic data leading to about the same execution times
for the two algorithms. However, a run on the same 20M
records at a minimum support of 0.1% found 350 patterns
and took 560 seconds of CPU time for PLWAP, while the
WAP tree algorithm could not complete successfully.

Experiments were also run to check the behavior of the
algorithms with varying sequence lengths and number of
database attributes, and the PLWAP always runs faster than
the WAP algorithm when the average sequence length is less
than 20 and there are some found frequent patterns. How-

Table 8: Execution Times for Different Database
Sizes at Minsupport of 1% (large database)

Alg Runtime (in secs) at Different DB sizes(%)
300K 400K 500K 600K 700K 800K 900K

GSP 5329 7110 8778 12K 13K 15K 17K
WAP 22 26 30 34 38 40 44
PL- 12 15 20 23 26 31 35
WAP
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Figure 11: Execution Times Trend with Different
Database sizes (large database)

Table 9: Execution Times for Different Database
Sizes at Minsupport of 1% (larger database)

Alg Runtime (in secs) at Different DB sizes(%)
1M 2M 4M 8M 10M 20M

WAP 23 47 93 186 57 464
PLWAP 23 47 93 186 57 463

ever, the PLWAP performance starts to degrade when the
average sequence length of the database is more than 20 be-
cause with extremely long sequences, there are nodes with
position codes that are more than “maxint”, in our current
implementation, we use a number of variables to store a
node’s position code that are linked together. Thus, man-
aging and retrieving the position code for excessively long
sequences could turn out to be time consuming. Our exper-
iment on real data of size 10K having about 2500 attributes
with only a few very long sequences of up to 166 items while
most of other records are less than 7 items long, reveals
PLWAP faster than WAP by a factor of over 11 times at
a very low minimum support of 0.05% with their execution
times as 449, 5157, at 0.06%, they are 234, 1187 and at
0.07%, 144, 1071 respectively. The execution times of the
two algorithms start being the same from minimum support
1% when there are no found frequent patterns. A test on
memory usage of the WAP and PLWAP algorithms reveals
about the same amount of memory allocated to both pro-
grams.

5. CONCLUSIONS
This paper discusses the source code implementation of

the PLWAP algorithm presented in [7] as well as our imple-
mentations of two other sequential mining algorithms WAP
[17] and GSP [3] that PLWAP was compared with. Exten-
sive experimental studies were conducted on the three im-
plemented algorithms using IBM quest synthetic datasets.
From the experiments, it was discovered that the PLWAP
algorithm, which mines a pre-order linked, position coded
version of the WAP tree, always outperforms the other two
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algorithms and is much more efficient. PLWAP improves
on the performance of the efficient tree-based WAP tree
algorithm by mining with position codes and their suffix
tree root sets, rather than storing intermediate WAP trees
recursively. Thus, it saves on processing time and more
so when the number of frequent patterns increases and the
minimum support threshold is low. PLWAP’s performance
seems to degrade some with very long sequences having se-
quence length more than 20 because of the increase in the
size of position code that it needs to build and process for
very deep PLWAP tree. For mining sequential patterns from
web logs or databases, the following aspects may be con-
sidered for future work. The PLWAP algorithm could be
extended to handle sequential pattern mining in large tra-
ditional databases to handle concurrency of events. The
position code features of the PLWAP tree provides a mech-
anism for concisely storing small items not represented in the
tree for future incremental refreshment of mined patterns.
It also enables easy multilevel mining of frequent patterns
at detailed (e.g., item level like city level or word level) to
more generalized calss level (e.g., country level or book level)
through rollup mining with the same tree by providing level-
wise pre-order header linkages. This may make it useful in
several sequence oriented applications like frequent word us-
ages in collections of documents (books), cell phone call se-
quence record data, intrusion detection and sensor network
mining as well as biological sequence data. A more efficient
implementation of the position code management for long
sequences would make the PLWAP more scalable.
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