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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection) 
•  Conclusions 
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Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Problem#1: Joint work with 
Dr. Deepayan Chakrabarti  
(CMU/Yahoo R.L.) 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Protein Interactions 
[genomebiology.com] 

Friendship Network 
[Moody ’01] 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

• web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 



CMU SCS 

RPI 08 C. Faloutsos 8 

Graphs - why should we care? 
•  network of companies & board-of-directors 

members 
•  ‘viral’ marketing 
• web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does the web look like? 
•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 
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Graph mining 
• Are real graphs random? 
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Laws and patterns 
• Are real graphs random? 
• A: NO!! 

– Diameter 
– in- and out- degree distributions 
– other (surprising) patterns 
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Solution#1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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Solution#1’: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 



CMU SCS 

RPI 08 C. Faloutsos 14 

Solution#1’: Eigen Exponent E 

•  [Papadimitriou, Mihail, ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 
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But: 
How about graphs from other domains? 
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The Peer-to-Peer Topology 

•  Count versus degree  
•  Number of adjacent peers follows a power-law 

[Jovanovic+] 
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More power laws: 

citation counts: (citeseer.nj.nec.com 6/2001) 

1
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log # citations

’cited.pdf’

log(#citations) 

log(count) 

Ullman 
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More power laws: 
• web hit counts [w/ A. Montgomery] 

Web Site Traffic 

log(in-degree) 

log(count) 

Zipf 

users 
sites 

``ebay’’ 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 
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Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Problem#2: Time evolution 
•  with Jure Leskovec (CMU/

MLD) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 
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Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
– diameter ~ O(log N) 
– diameter ~ O(log log N) 

• What is happening in real data? 
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Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
– diameter ~ O(log N) 
– diameter ~ O(log log N) 

• What is happening in real data? 
• Diameter shrinks over time 
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Diameter – ArXiv citation graph 

•  Citations among 
physics papers    

•  1992 –2003 
• One graph per 

year 

time [years] 

diameter 
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Diameter – “Autonomous 
Systems” 

• Graph of Internet 
• One graph per 

day  
•  1997 – 2000 

number of nodes 

diameter 
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Diameter – “Affiliation Network” 

• Graph of 
collaborations in 
physics – authors 
linked to papers 

•  10 years of data 

time [years] 

diameter 
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Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 

time [years] 

diameter 
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Temporal Evolution of the Graphs 

• N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
• Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
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Temporal Evolution of the Graphs 

• N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
• Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
• A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
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Densification – Physics Citations 
•  Citations among 

physics papers  
•  2003: 

– 29,555 papers, 
352,807 
citations 

N(t) 

E(t) 

?? 
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Densification – Physics Citations 
•  Citations among 

physics papers  
•  2003: 

– 29,555 papers, 
352,807 
citations 

N(t) 

E(t) 

1.69 
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Densification – Physics Citations 
•  Citations among 

physics papers  
•  2003: 

– 29,555 papers, 
352,807 
citations 

N(t) 

E(t) 

1.69 

1: tree 
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Densification – Physics Citations 
•  Citations among 

physics papers  
•  2003: 

– 29,555 papers, 
352,807 
citations 

N(t) 

E(t) 

1.69 clique: 2 
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Densification – Patent Citations 

•  Citations among 
patents granted 

•  1999 
– 2.9 million nodes 
– 16.5 million 

edges 
•  Each year is a 

datapoint N(t) 

E(t) 

1.66 



CMU SCS 

RPI 08 C. Faloutsos 35 

Densification – Autonomous Systems 

• Graph of 
Internet 

•  2000 
– 6,000 nodes 
– 26,000 edges 

• One graph per 
day 

N(t) 

E(t) 

1.18 
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Densification – Affiliation Network 

• Authors linked 
to their 
publications 

•  2002 
– 60,000 nodes 

• 20,000 authors 
• 38,000 papers 

– 133,000 edges 
N(t) 

E(t) 

1.15 



CMU SCS 

RPI 08 C. Faloutsos 37 

Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Problem#3: Generation 
•  Given a growing graph with count of nodes N1, 

N2, … 
•  Generate a realistic sequence of graphs that will 

obey all the patterns 
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Problem Definition 
•  Given a growing graph with count of nodes N1, 

N2, … 
•  Generate a realistic sequence of graphs that will 

obey all the patterns  
– Static Patterns 

 Power Law Degree Distribution 
 Power Law eigenvalue and eigenvector distribution 
 Small Diameter 

– Dynamic Patterns 
 Growth Power Law 
 Shrinking/Stabilizing Diameters 
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Problem Definition 

• Given a growing graph with count of nodes 
N1, N2, … 

• Generate a realistic sequence of graphs that 
will obey all the patterns 

•  Idea: Self-similarity 
– Leads to power laws 
– Communities within communities 
– … 
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Kronecker Product – a Graph 

Intermediate stage 

Adjacency matrix 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Properties: 

• We can PROVE that 
– Degree distribution is multinomial ~ power law 
– Diameter: constant 
– Eigenvalue distribution: multinomial 
– First eigenvector: multinomial 

•  See [Leskovec+, PKDD’05] for proofs 
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Problem Definition 
•  Given a growing graph with nodes N1, N2, … 
•  Generate a realistic sequence of graphs that will obey all 

the patterns  
–  Static Patterns 

 Power Law Degree Distribution 
 Power Law eigenvalue and eigenvector distribution 
 Small Diameter 

–  Dynamic Patterns 
 Growth Power Law 
 Shrinking/Stabilizing Diameters 

•  First and only generator for which we can prove 
all these properties 

 
 
 

 
 
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Stochastic Kronecker Graphs 
•  Create N1×N1 probability matrix P1 

•  Compute the kth Kronecker power Pk 
•  For each entry puv of Pk include an edge 

(u,v) with probability puv 

0.4 0.2 
0.1 0.3 

P1 

Instance  
Matrix G2 

0.16 0.08 0.08 0.04 
0.04 0.12 0.02 0.06 
0.04 0.02 0.12 0.06 
0.01 0.03 0.03 0.09 

Pk 

flip biased 
coins 

Kronecker 
multiplication 

skip 
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Experiments 
•  How well can we match real graphs? 

– Arxiv: physics citations: 
•  30,000 papers, 350,000 citations 
•  10 years of data 

– U.S. Patent citation network 
•  4 million patents, 16 million citations 
•  37 years of data 

– Autonomous systems – graph of internet 
•  Single snapshot from January 2002 
•  6,400 nodes, 26,000 edges 

•  We show both static and temporal patterns 
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(Q: how to fit the parm’s?) 
A: 
•  Stochastic version of Kronecker graphs + 
• Max likelihood  + 
• Metropolis sampling 
•  [Leskovec+, ICML’07] 
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Experiments on real AS graph 
Degree distribution Hop plot 

Network value Adjacency matrix eigen values 
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Conclusions 

• Kronecker graphs have: 
– All the static properties  

 Heavy tailed degree distributions 
 Small diameter 
 Multinomial eigenvalues and eigenvectors 

– All the temporal properties 
 Densification Power Law 
 Shrinking/Stabilizing Diameters 

– We can formally prove these results 

 
 

 

 
 
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Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Problem#4: MasterMind – ‘CePS’ 
• w/ Hanghang Tong, 

KDD 2006 
•  htong <at> cs.cmu.edu 
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Center-Piece Subgraph(Ceps) 
• Given Q query nodes 
•  Find Center-piece (       ) 

• App. 
– Social Networks 
– Law Inforcement, … 

•  Idea: 
– Proximity -> random walk 

with restarts 
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Case Study: AND query�

R .  Agrawal Jiawei Han 

V .  Vapnik M .  Jordan 
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Case Study: AND query�
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Case Study: AND query�
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2_SoftAnd query 

ML/Statistics 

databases 
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Conclusions 
• Q1:How to measure the importance? 
• A1: RWR+K_SoftAnd 
• Q2:How to do it efficiently? 
• A2:Graph Partition (Fast CePS) 

– ~90% quality 
– 150x speedup (ICDM’06, b.p. award) 
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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection) 
•  Conclusions 
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Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Tensors for time evolving graphs 
•  [Jimeng Sun+ 

KDD’06] 
•  [    “    ,  SDM’07] 
•  [ CF, Kolda, Sun, 

SDM’07 tutorial] 
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Social network analysis 

•  Static: find community structures  

DB 

A
 u t

 h o
 r s

 

Keywords 
1990 
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Social network analysis 

•  Static: find community structures  

DB 

A
 u t

 h o
 r s

 

1990 
1991 

1992 
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Social network analysis 

•  Static: find community structures  
•  Dynamic: monitor community structure evolution; 

spot abnormal individuals; abnormal time-stamps 
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DB 

DM 

Application 1: Multiway latent 
semantic indexing (LSI) 

DB 

2004 

1990 
Michael 

Stonebraker 

Query Pattern 

Ukeyword 

au
th

or
s 

keyword 

U
au

th
or

s 

•  Projection matrices specify the clusters 
•  Core tensors give cluster activation level 

Philip Yu 
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Bibliographic data (DBLP) 

•  Papers from VLDB and KDD conferences 
•  Construct 2nd order tensors with yearly 

windows with <author, keywords>  
•  Each tensor: 4584×3741  
•  11 timestamps (years) 
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Multiway LSI 
Authors Keywords Year 
michael carey, michael 
stonebraker, h. jagadish, 
hector garcia-molina 

 queri,parallel,optimization,concurr, 
objectorient 

1995 

surajit chaudhuri,mitch  
cherniack,michael 
stonebraker,ugur etintemel 

distribut,systems,view,storage,servic,pr
ocess,cache 

2004 

 jiawei han,jian pei,philip s. yu, 
jianyong wang,charu c. aggarwal 

streams,pattern,support, cluster, 
index,gener,queri  

2004 

•  Two groups are correctly identified: Databases and Data 
mining 

•  People and concepts are drifting over time 

DM 

DB 
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Network forensics 
•  Directional network flows 
•  A large ISP with 100 POPs, each POP 10Gbps link 

capacity [Hotnets2004] 
–  450 GB/hour with compression 

•  Task: Identify abnormal traffic pattern and find out the 
cause 
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source 
(with Prof. Hui Zhang and Dr. Yinglian Xie) 
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MDL mining on time-evolving graph 
(Enron emails) 

GraphScope [w. Jimeng Sun,  
Spiros Papadimitriou and Philip Yu, KDD’07] 
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Conclusions 
Tensor-based methods (WTA/DTA/STA): 
•  spot patterns and anomalies on time 

evolving graphs, and 
•  on streams (monitoring) 
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Motivation 

Data mining: ~ find patterns (rules, outliers) 
•  Problem#1: How do real graphs look like? 
•  Problem#2: How do they evolve? 
•  Problem#3: How to generate realistic graphs 
TOOLS 
•  Problem#4: Who is the ‘master-mind’? 
•  Problem#5: Track communities over time 
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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection, blogs) 
•  Conclusions 
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Virus propagation 

•  How do viruses/rumors  propagate? 
•  Blog influence? 
•  Will a flu-like virus linger, or will it become 

extinct soon? 
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The model: SIS 

•  ‘Flu’ like: Susceptible-Infected-Susceptible 
•  Virus ‘strength’ s= β/δ 

Infected 

Healthy 

NN1 

N3 

N2 
Prob. β 

Prob. δ 
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Epidemic threshold τ

of a graph: the value of τ, such that 

if   strength s = β / δ <  τ

an epidemic can not happen 
Thus,  
•  given a graph 
•  compute its epidemic threshold
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Epidemic threshold τ


What should τ depend on? 
•  avg. degree? and/or highest degree?  
•  and/or variance of degree? 
•  and/or third moment of degree? 
•  and/or diameter? 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 

largest eigenvalue 
of adj. matrix A 

attack prob. 

recovery prob. 
epidemic threshold 

Proof: [Wang+03] 
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Experiments (Oregon) 

β/δ > τ  
(above threshold) 

β/δ = τ  
(at the threshold) 

β/δ < τ  
(below threshold) 
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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection, blogs) 
•  Conclusions 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
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E-bay Fraud detection 

•  lines: positive feedbacks 
•  would you buy from  him/her? 
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E-bay Fraud detection 

•  lines: positive feedbacks 
•  would you buy from  him/her? 

•  or him/her? 
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E-bay Fraud detection - NetProbe 
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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection, blogs) 
•  Conclusions 
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Blog analysis 

• with Mary McGlohon (CMU) 
•  Jure Leskovec (CMU) 
• Natalie Glance (now at Google) 
• Mat Hurst (now at MSR) 
[SDM’07] 
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Cascades on the Blogosphere 
B1 B2 

B4 B3 

a 

b c 

d 
e 1 

B1 B2 

B4 B3 

1 
1 

2 

3 

1 

Blogosphere 
blogs + posts 

Blog network 
links among blogs 

Post network 
links among posts 

Q1: popularity-decay of a post? 
Q2: degree distributions? 
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Q1: popularity over time 

Days after post 

Post popularity drops-off – exponentially? 

days after post 

# in links 

1 2 3 
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Q1: popularity over time 

Days after post 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

1 2 3 days after post 
(log) 
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Q1: popularity over time 

Days after post 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6 (close to -1.5: Barabasi’s stack model)  

# in links 
(log) 

1 2 3 

-1.6 

days after post 
(log) 
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Q2: degree distribution 
44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component. 

blog in-degree 

count 

B
1 

B
2 

B
4 

B
3 

1 
1 

2 
3 

1 

?? 
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Q2: degree distribution 
44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component. 

blog in-degree 

count 

B
1 

B
2 

B
4 

B
3 

1 
1 

2 
3 

1 
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Q2: degree distribution 
44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component. 

blog in-degree 

count 

in-degree slope: -1.7 
out-degree: -3 
‘rich get richer’ 
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Outline 
•  Problem definition / Motivation 
•  Static & dynamic laws; generators 
•  Tools: CenterPiece graphs; Tensors 
• Other projects (Virus propagation, e-bay 

fraud detection) 
– And research directions 

•  Conclusions 
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Next steps: 
•  edges with  

– categorical attributes and/or 

– time-stamps and/or 

– weights 

•  nodes with attributes [G-Ray, Tong et al] 

•  scalability (cloud computing) 
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E.g.: self-* system @ CMU 

•  >200 nodes 
•  40 racks of computing 

equipment  
•  774kw of power.  
•  target: 1 PetaByte 
•  goal: self-correcting, self-

securing, self-monitoring, 
self-... 
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Cloud computing, D.I.S.C. and hadoop 
•  ‘Data Intensive Scientific Computing’ [R. 

Bryant, CMU] 
–  ‘big data’  
–  http://www.cs.cmu.edu/~bryant/pubdir/cmu-

cs-07-128.pdf 
•  Yahoo: ~5Pb of data [Fayyad’07] 
•  ‘M45’: 4K proc’s, 3Tb RAM, 1.5 Pb disk 
•  Hadoop: open-source clone of map-reduce  

http://hadoop.apache.org/ 
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OVERALL CONCLUSIONS 
• Graphs pose a wealth of fascinating 

problems 
•  self-similarity and power laws work, when 

textbook methods fail! 
• New patterns (shrinking diameter!) 

• New generator: Kronecker 

•  SVD / tensors / RWR: valuable tools 

•  Scalability / cloud computing -> PetaBytes 
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