

Graph Mining: Laws, Generators and Tools

Christos Faloutsos CMU

Thank you!

- Prof. Petros Drineas
- Prof. Mohammed Zaki
- Prof. Sanmay Das

Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection)
- Conclusions

Motivation

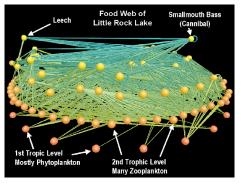
Data mining: ~ find patterns (rules, outliers)

- Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

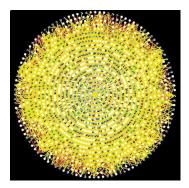
Problem#1: Joint work with

Dr. Deepayan Chakrabarti (CMU/Yahoo R.L.)

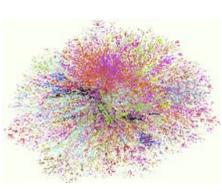
Graphs - why should we care?



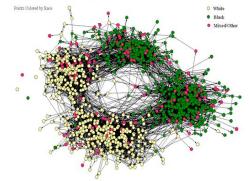
Food Web [Martinez '91]



Protein Interactions [genomebiology.com]



Internet Map [lumeta.com]

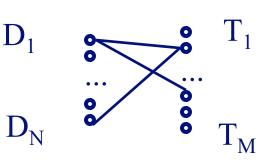


Friendship Network [Moody '01]

RPI 08

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)



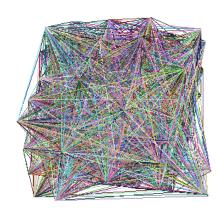
• web: hyper-text graph

• ... and more:

Graphs - why should we care?

- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Problem #1 - network and graph mining



- How does the Internet look like?
- How does the web look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Graph mining

• Are real graphs random?

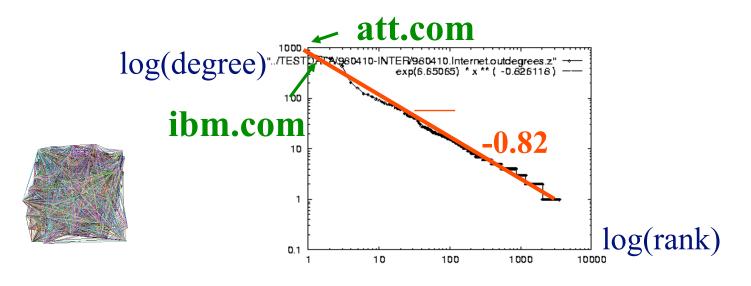
Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns

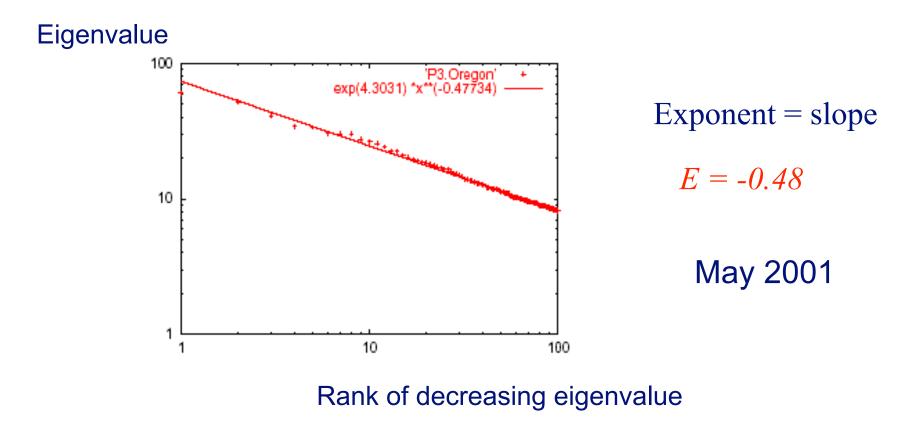
Solution#1

• Power law in the degree distribution [SIGCOMM99]

internet domains

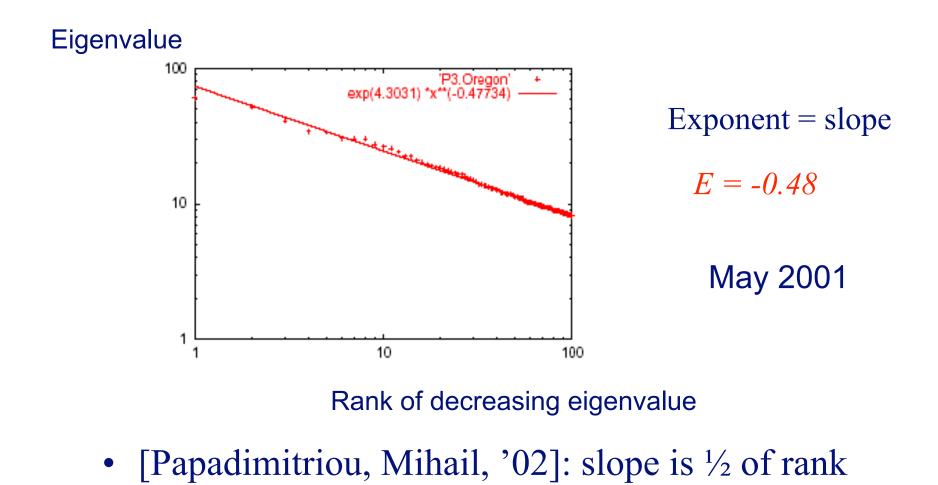


Solution#1': Eigen Exponent E



• A2: power law in the eigenvalues of the adjacency matrix

Solution#1': Eigen Exponent E



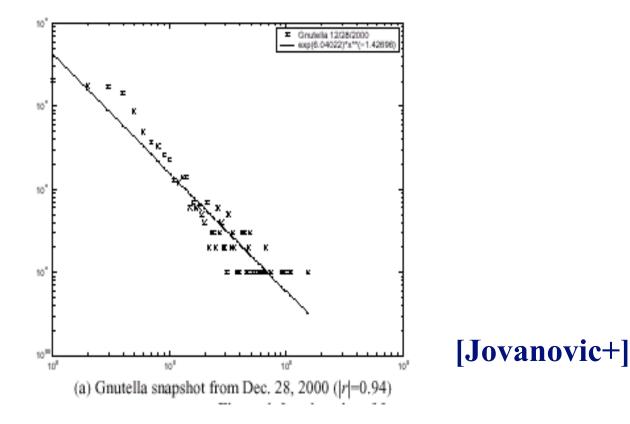
RPI 08

exponent

But:

How about graphs from other domains?

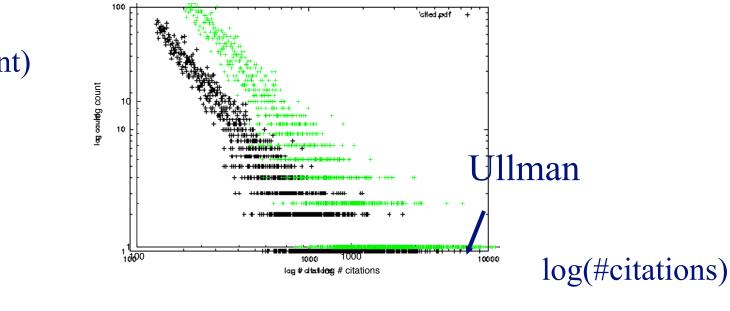
The Peer-to-Peer Topology



- Count versus degree
- Number of adjacent peers follows a power-law C. Faloutsos

More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

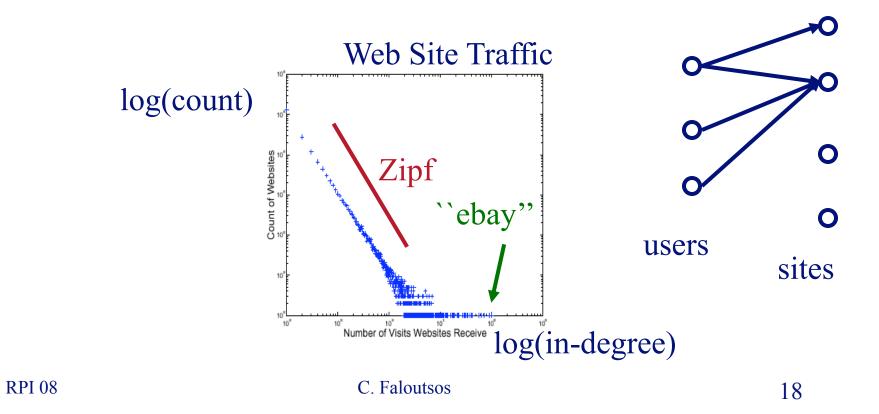


log(count)

RPI 08

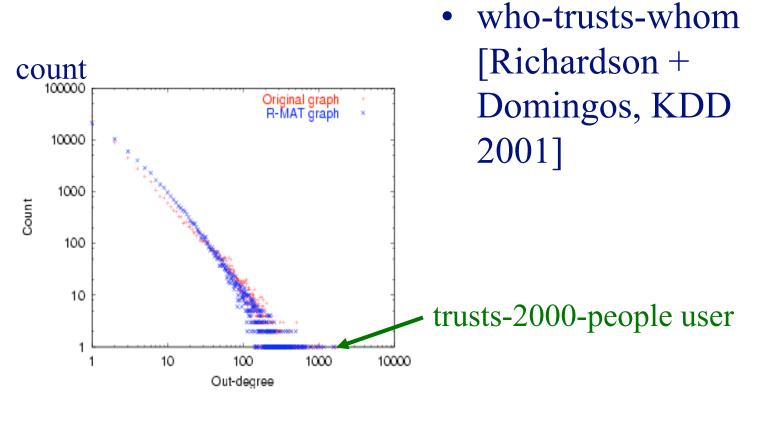
More power laws:

• web hit counts [w/ A. Montgomery]



0

epinions.com



(out) degree

Motivation

Data mining: ~ find patterns (rules, outliers)
✓ Problem#1: How do real graphs look like?

- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

Problem#2: Time evolution

• with Jure Leskovec (CMU/ MLD)

• and Jon Kleinberg (Cornell – sabb. @ CMU)

Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?

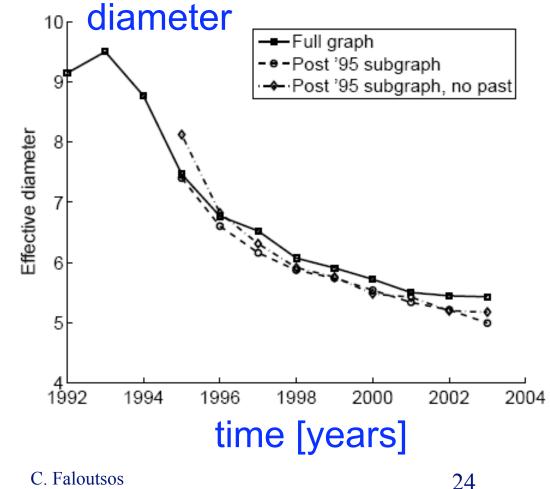
Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:

 - $\text{ diameter} \sim (\ln n)$ $\text{ diameter} \sim O(\log n)$
- What is happening in real data?
- Diameter shrinks over time

Diameter – ArXiv citation graph

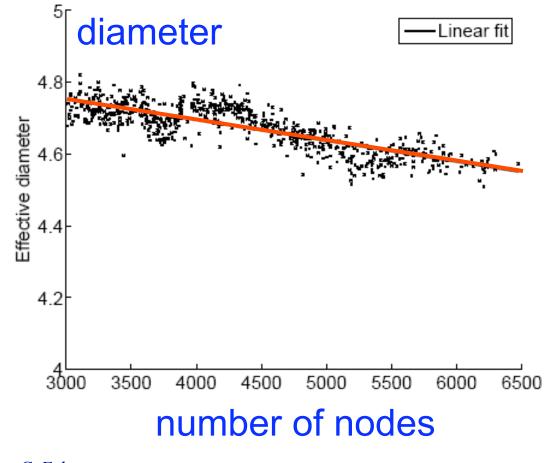
- Citations among physics papers
- 1992 2003
- One graph per year



C. Faloutsos

Diameter – "Autonomous Systems"

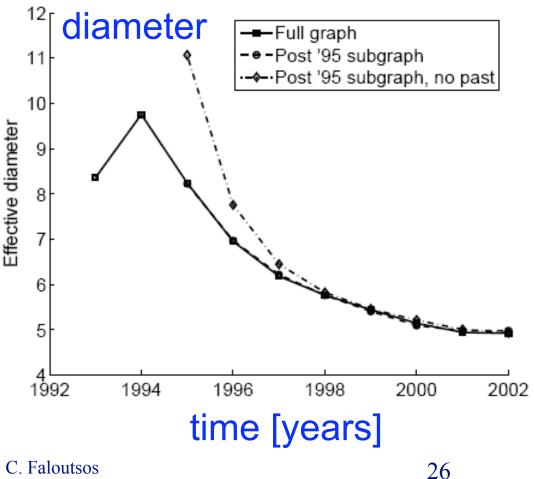
- Graph of Internet
- One graph per day
- 1997 2000



C. Faloutsos

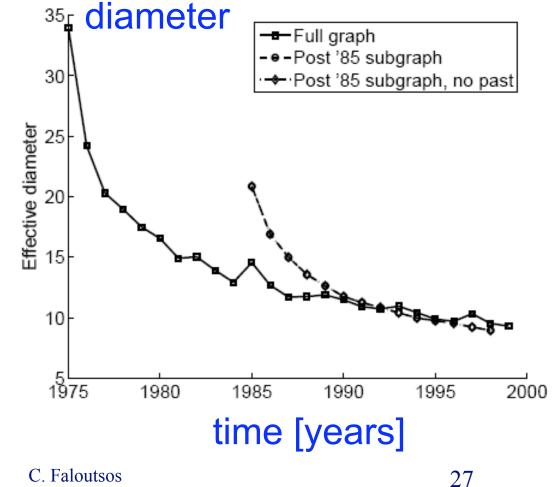
Diameter – "Affiliation Network"

- Graph of collaborations in physics – authors linked to papers
- 10 years of data



Diameter – "Patents"

- Patent citation network
- 25 years of data



Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for E(t+1) =? 2 * E(t)

Temporal Evolution of the Graphs

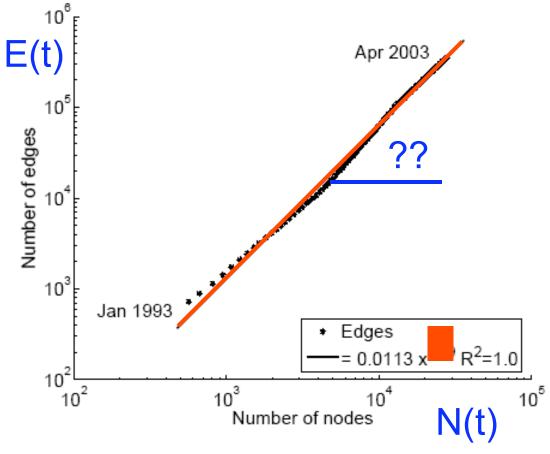
- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

- Q: what is your guess for E(t+1) * E(t)
- A: over-doubled!
 - But obeying the ``Densification Power Law''

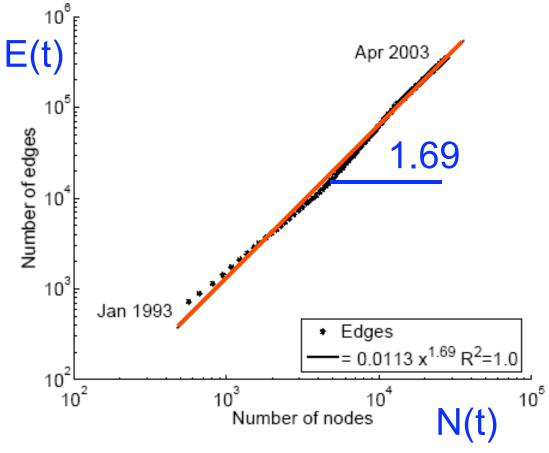
RPI 08

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations



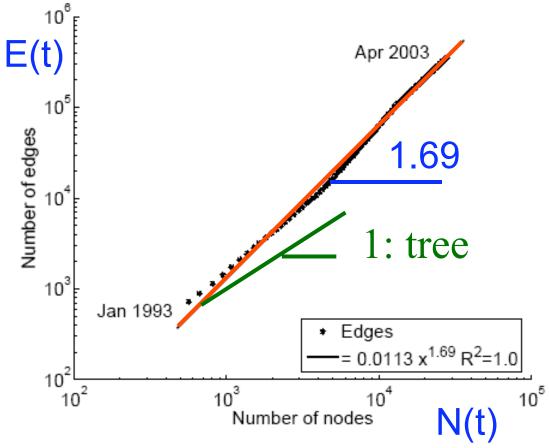
C. Faloutsos

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations



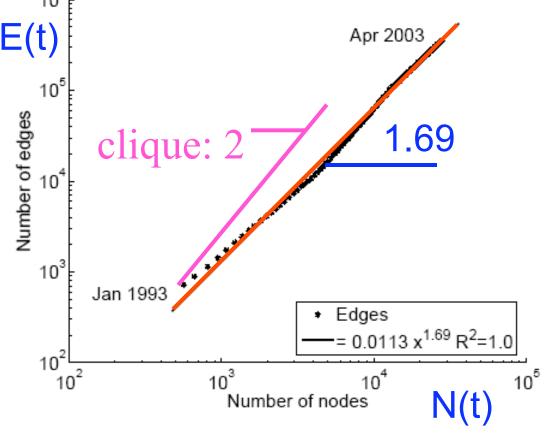
C. Faloutsos

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations



C. Faloutsos

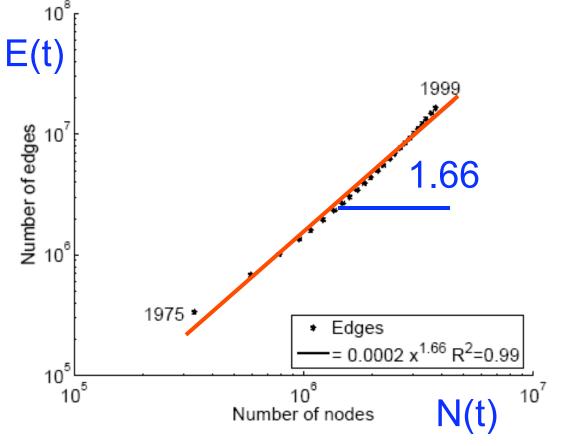
- Citations among 10⁶ [E(t)]
 physics papers E(t)
 2003: 10⁵ [
 - 29,555 papers,
 352,807
 citations



C. Faloutsos

Densification – Patent Citations

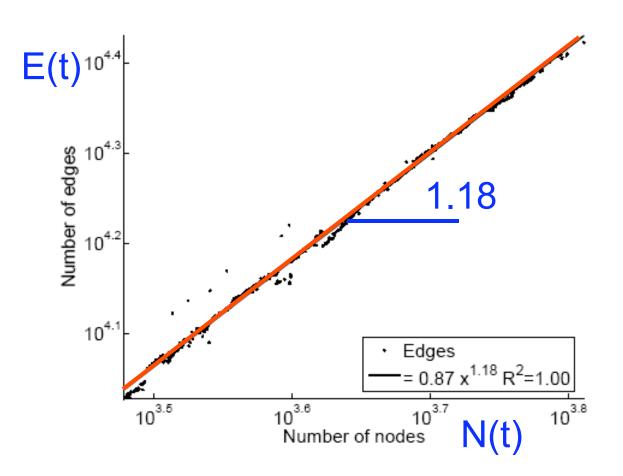
- Citations among patents granted
- 1999
 - 2.9 million nodes
 - 16.5 million
 edges
- Each year is a datapoint



C. Faloutsos

Densification – Autonomous Systems

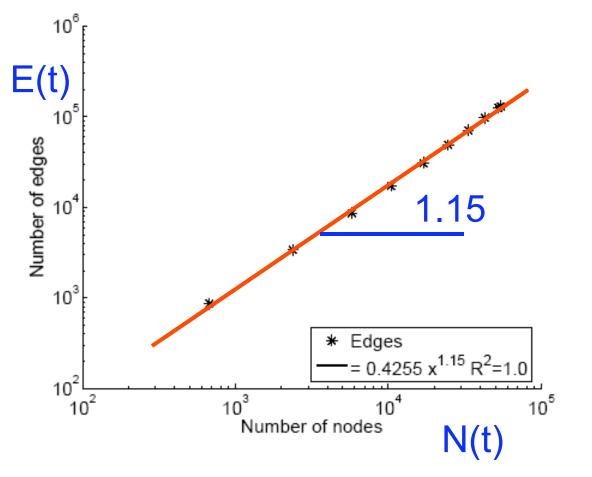
- Graph of Internet
- 2000
 - 6,000 nodes
 - 26,000 edges
- One graph per day



C. Faloutsos

Densification – Affiliation Network

- Authors linked to their publications
- 2002
 - 60,000 nodes
 - 20,000 authors
 - 38,000 papers
 - 133,000 edges



C. Faloutsos

Motivation

Data mining: ~ find patterns (rules, outliers)
Problem#1: How do real graphs look like?
Problem#2: How do they evolve?

- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Track communities over time

Problem#3: Generation

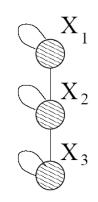
- Given a growing graph with count of nodes N_l , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns

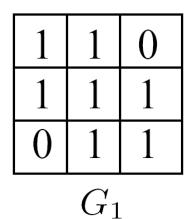
Problem Definition

- Given a growing graph with count of nodes N_l , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - Power Law Degree Distribution
 - Power Law eigenvalue and eigenvector distribution
 - Small Diameter
 - Dynamic Patterns
 - Growth Power Law Shrinking/Stabilizing Diameters

Problem Definition

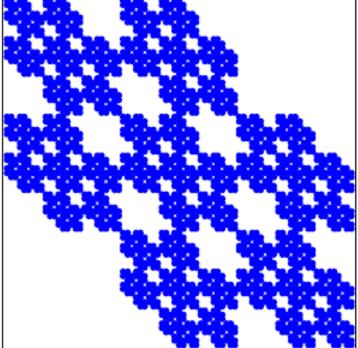
- Given a growing graph with count of nodes N_1, N_2, \dots
- Generate a realistic sequence of graphs that will obey all the patterns
- Idea: Self-similarity
 - Leads to power laws
 - Communities within communities



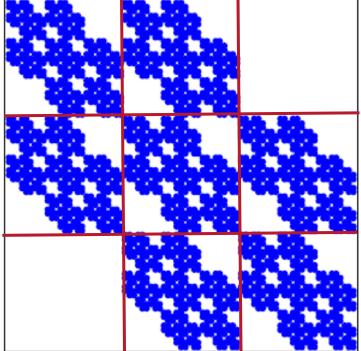


Adjacency matrix

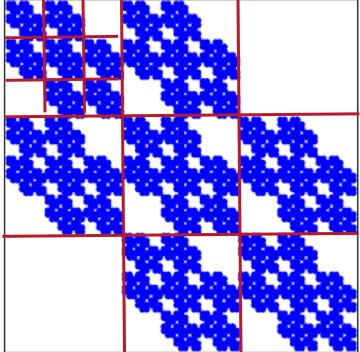
• Continuing multiplying with G_1 we obtain G_4 and so on ...



• Continuing multiplying with G_1 we obtain G_4 and so on ...



• Continuing multiplying with G_1 we obtain G_4 and so on ...



Properties:

- We can PROVE that
 - Degree distribution is multinomial ~ power law
 - Diameter: constant
 - Eigenvalue distribution: multinomial
 - First eigenvector: multinomial
- See [Leskovec+, PKDD'05] for proofs

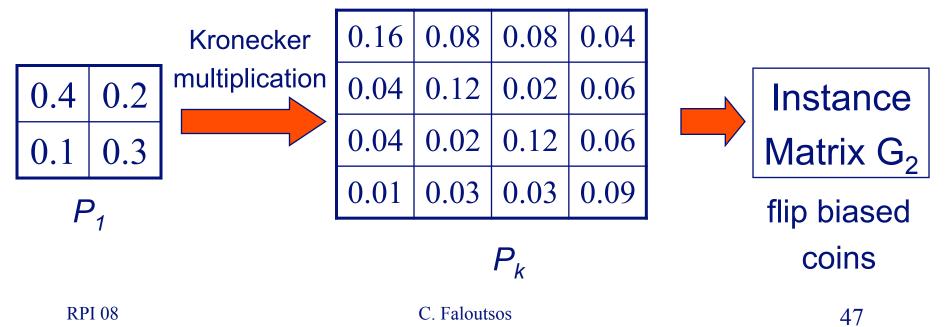
Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First and only generator for which we can **prove** all these properties

RPI 08

Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix P_1
- Compute the k^{th} Kronecker power P_k
- For each entry p_{uv} of P_k include an edge (u,v) with probability p_{uv}



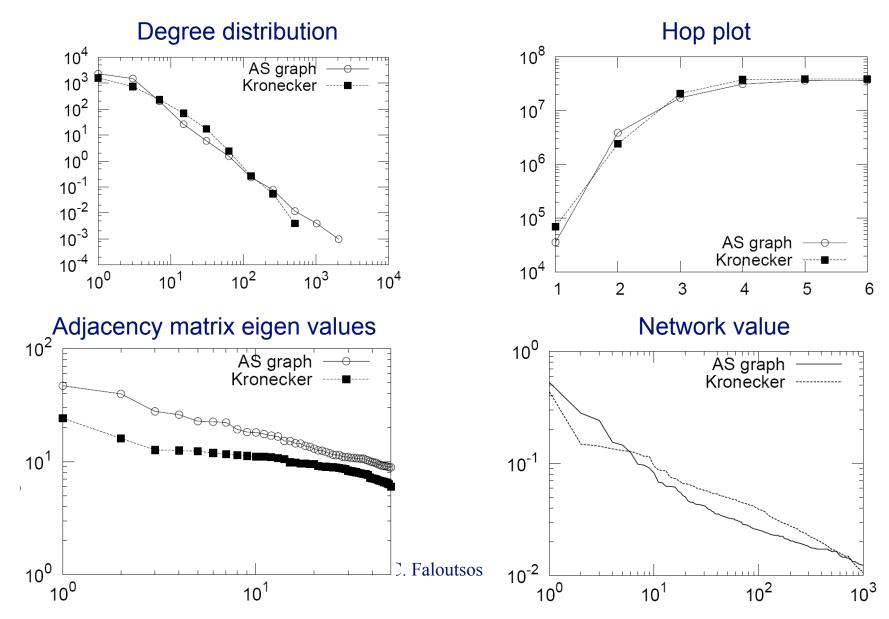
Experiments

- How well can we match real graphs?
 - Arxiv: physics citations:
 - 30,000 papers, 350,000 citations
 - 10 years of data
 - U.S. Patent citation network
 - 4 million patents, 16 million citations
 - 37 years of data
 - Autonomous systems graph of internet
 - Single snapshot from January 2002
 - 6,400 nodes, 26,000 edges
- We show both static and temporal patterns

(Q: how to fit the parm's?)

- A:
- Stochastic version of Kronecker graphs +
- Max likelihood +
- Metropolis sampling
- [Leskovec+, ICML'07]

Experiments on real AS graph



Conclusions

- Kronecker graphs have:
 - All the static properties
 - ✓ Heavy tailed degree distributions
 - ✓ Small diameter
 - ✓ Multinomial eigenvalues and eigenvectors
 - All the temporal properties
 - ✓ Densification Power Law
 - Shrinking/Stabilizing Diameters
 - We can formally prove these results

Motivation

Data mining: ~ find patterns (rules, outliers)
Problem#1: How do real graphs look like?
Problem#2: How do they evolve?
Problem#3: How to generate realistic graphs
TOOLS

- Problem#4: Who is the 'master-mind'?
 - Problem#5: Track communities over time

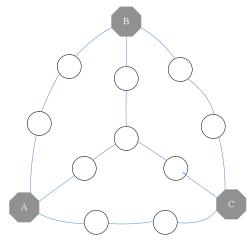
Problem#4: MasterMind – 'CePS'

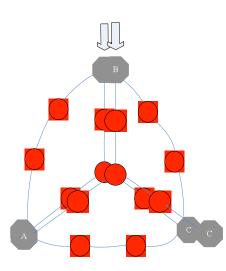
- w/ Hanghang Tong, KDD 2006
- htong <at> cs.cmu.edu

Center-Piece Subgraph(Ceps)

- Given Q query nodes
- Find Center-piece ($\subseteq b$)
- App.
 - Social Networks
 - Law Inforcement, ...
- Idea:

Proximity -> random walk
 with restarts
 C. Faloutsos



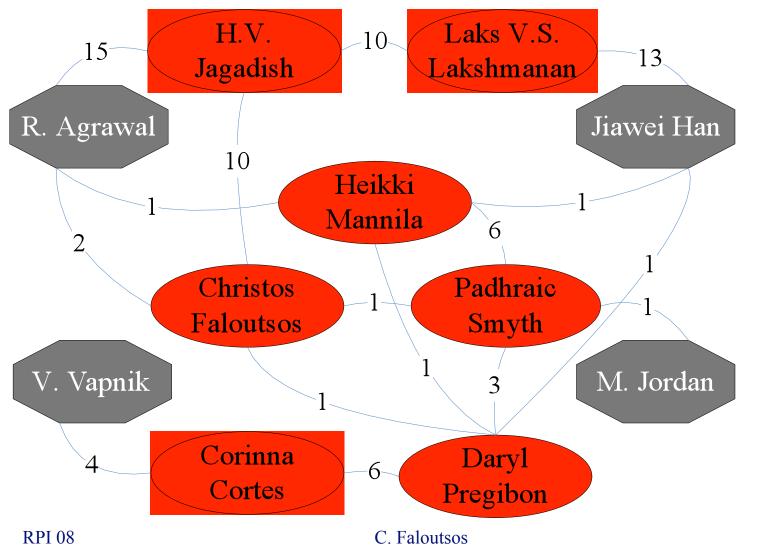


Case Study: AND query

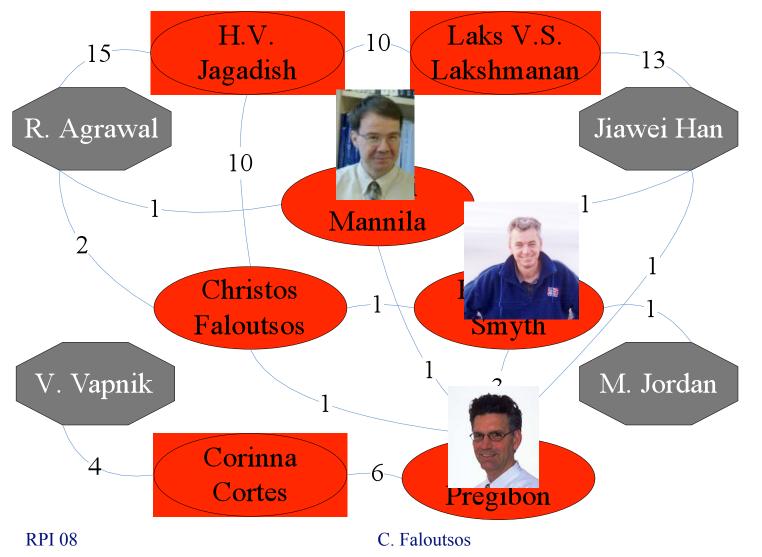
RPI 08

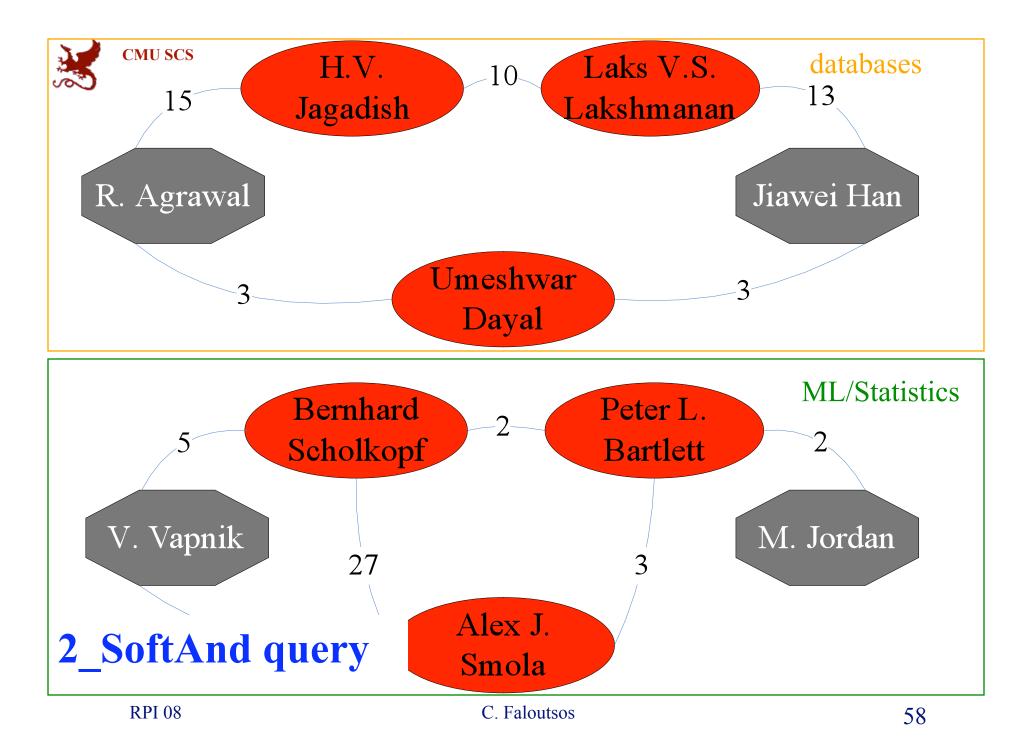
C. Faloutsos

Case Study: AND query

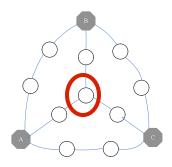


Case Study: AND query





Conclusions



- Q1:How to measure the importance?
- A1: RWR+K_SoftAnd
- Q2:How to do it efficiently?
- A2:Graph Partition (Fast CePS)
 - $-\sim 90\%$ quality
 - 150x speedup (ICDM'06, b.p. award)

Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; <u>Tensors</u>
- Other projects (Virus propagation, e-bay fraud detection)
- Conclusions

Motivation

Data mining: ~ find patterns (rules, outliers)
✓ Problem#1: How do real graphs look like?
✓ Problem#2: How do they evolve?
✓ Problem#3: How to generate realistic graphs
TOOLS
✓ Problem#4: Who is the 'master-mind'?

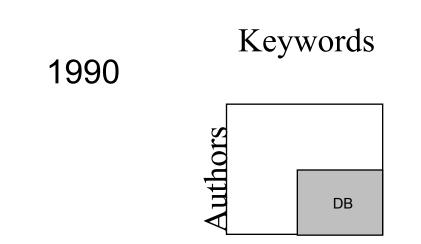
• Problem#5: Track communities over time

Tensors for time evolving graphs

- [Jimeng Sun+ KDD'06]
- [" , SDM'07]
- [CF, Kolda, Sun, SDM'07 tutorial]

Social network analysis

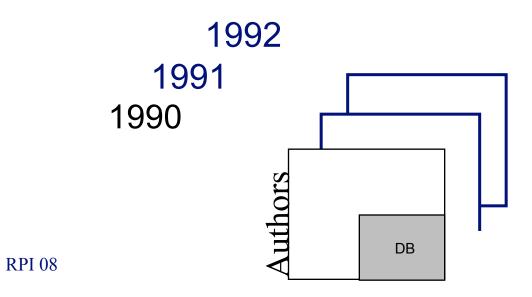
• Static: find community structures



RPI 08

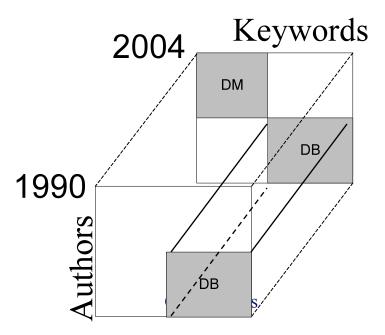
Social network analysis

• Static: find community structures

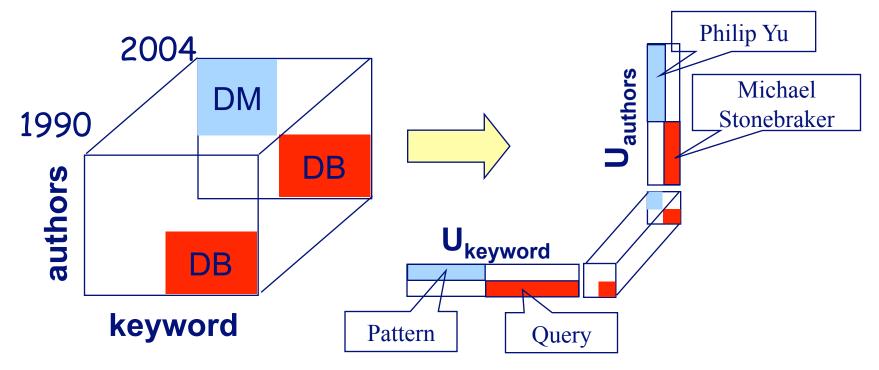


Social network analysis

- Static: find community structures
- **Dynamic**: monitor community structure evolution; spot abnormal individuals; abnormal time-stamps



Application 1: Multiway latent semantic indexing (LSI)



- Projection matrices specify the clusters
- Core tensors give cluster activation level

C. Faloutsos

Bibliographic data (DBLP)

- Papers from VLDB and KDD conferences
- Construct 2nd order tensors with yearly windows with <author, keywords>
- Each tensor: 4584×3741
- 11 timestamps (years)

Multiway LSI

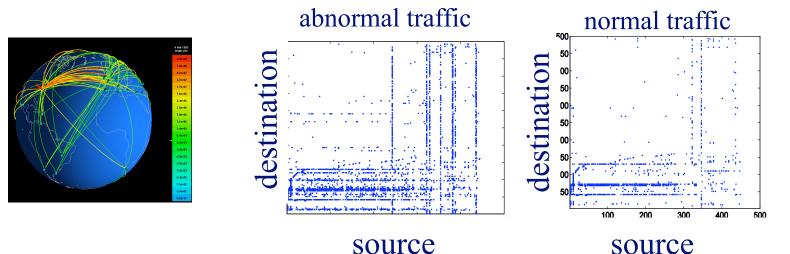
Authors	Keywords	Year
michael carey, michael stonebraker, h jagadish, hector garcia-molina	queri,parallel,optimization,concurr, objectorient	1995
surajit chaudhuri,mitch cherniack,michael stonebraker,ugur etintemel	ocess, cache	2004
jiawei han, jian pei, philip s. yu, jianyong wang, charu c. aggary	st ams pattern, support, cluster,	2004

- Two groups are correctly identified: Databases and Data mining
- People and concepts are drifting over time

RPI 08

Network forensics

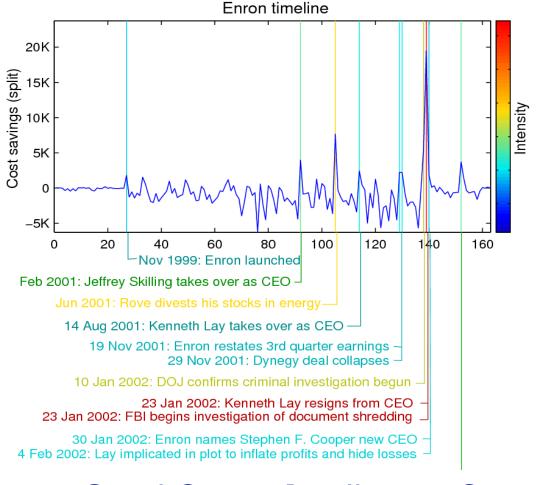
- Directional network flows
- A large ISP with 100 POPs, each POP 10Gbps link capacity [Hotnets2004]
 - 450 GB/hour with compression
- Task: Identify abnormal traffic pattern and find out the cause



(with Prof. Hui Zhang and Dr. Yinglian Xie)

69

MDL mining on time-evolving graph (Enron emails)



GraphScope [w. Jimeng Sun, Spiros Papadimitriou and Philip Yu, KDD'07]

RPI 08

Conclusions

Tensor-based methods (WTA/DTA/STA):

- spot patterns and anomalies on time evolving graphs, and
- on streams (monitoring)

Motivation

Data mining: ~ find patterns (rules, outliers) Problem#1: How do real graphs look like? Problem#2: How do they evolve? Problem#3: How to generate realistic graphs TOOLS Problem#4: Who is the 'master-mind'? Problem#5: Track communities over time

Outline

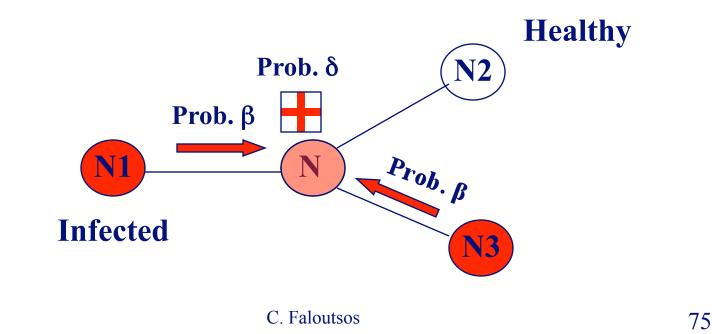
- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection, blogs)
 - Conclusions

Virus propagation

- How do viruses/rumors propagate?
- Blog influence?
- Will a flu-like virus linger, or will it become extinct soon?

The model: SIS

- 'Flu' like: Susceptible-Infected-Susceptible
- Virus 'strength' s= β/δ



Epidemic threshold $\boldsymbol{\tau}$

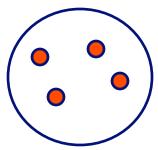
of a graph: the value of τ , such that if strength $s = \beta / \delta < \tau$ an epidemic can not happen Thus,

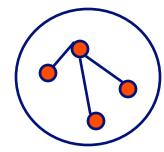
- given a graph
- compute its epidemic threshold

Epidemic threshold $\boldsymbol{\tau}$

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?





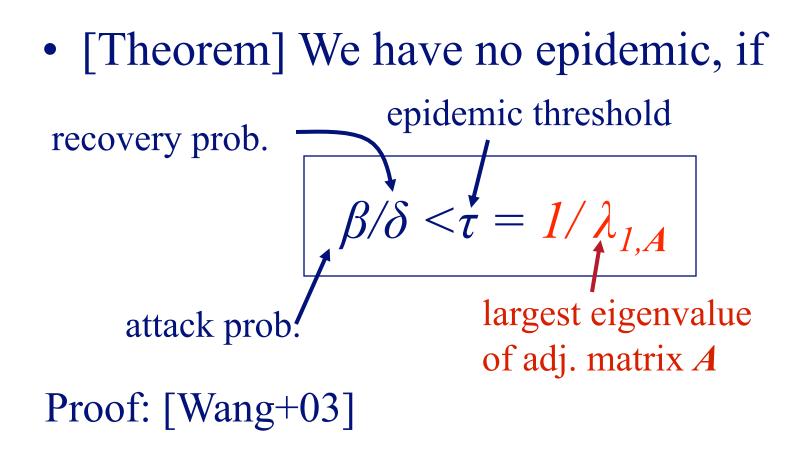
C. Faloutsos

Epidemic threshold

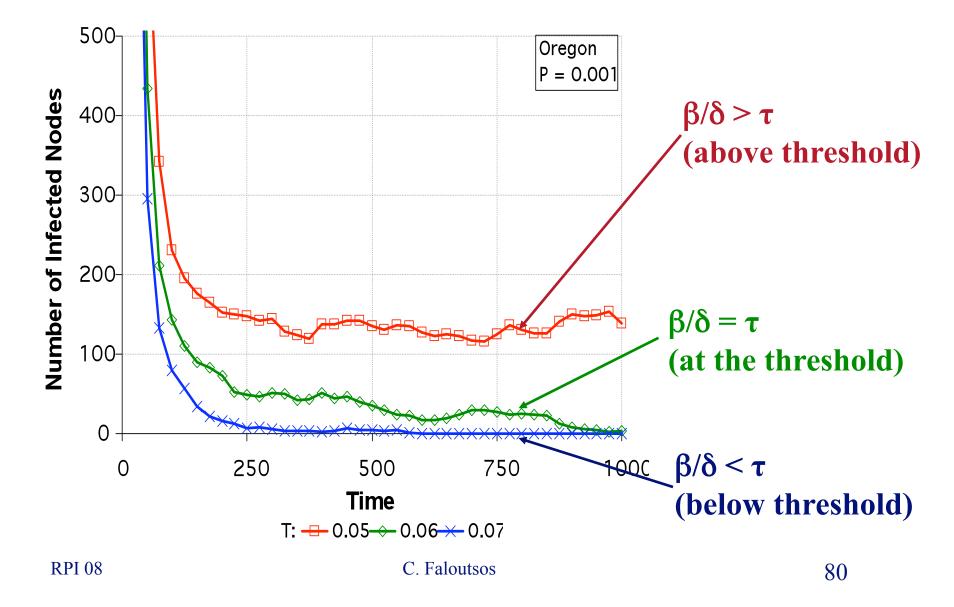
• [Theorem] We have no epidemic, if

$$\beta/\delta < \tau = 1/\lambda_{l,A}$$

Epidemic threshold



Experiments (Oregon)

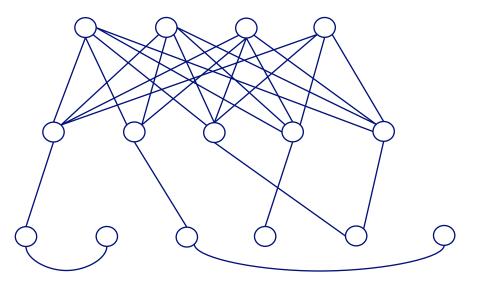


Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, <u>e-bay</u>
 <u>fraud detection</u>, blogs)
 - Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU

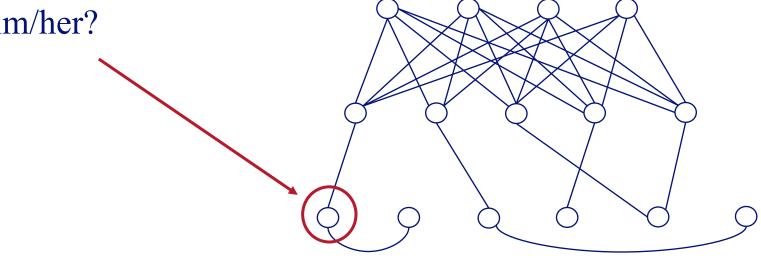


E-bay Fraud detection

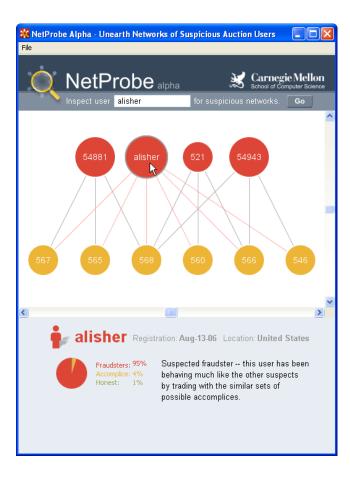
- lines: positive feedbacks
- would you buy from him/her?

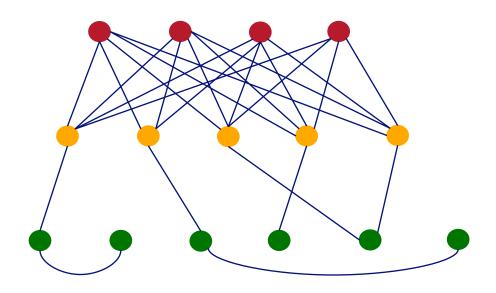
E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?
- or him/her?



E-bay Fraud detection - NetProbe





RPI 08

C. Faloutsos

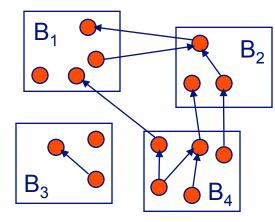
Outline

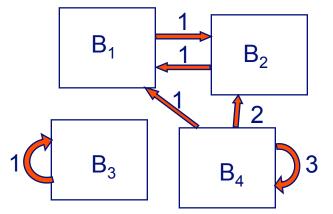
- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection, <u>blogs</u>)
 - Conclusions

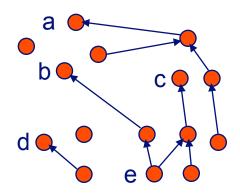
Blog analysis

- with Mary McGlohon (CMU)
- Jure Leskovec (CMU)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)
 [SDM'07]

Cascades on the Blogosphere





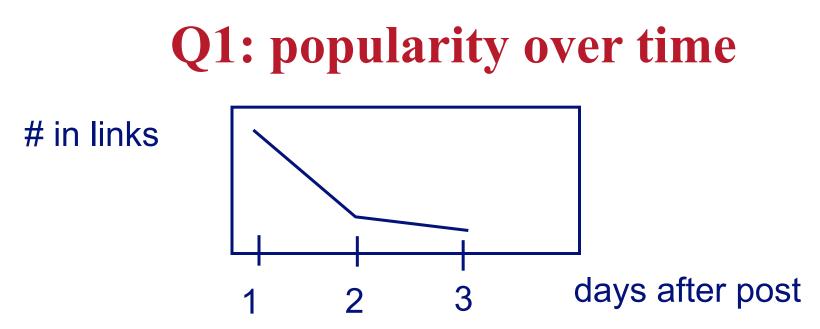


Blogosphere blogs + posts

Blog network links among blogs

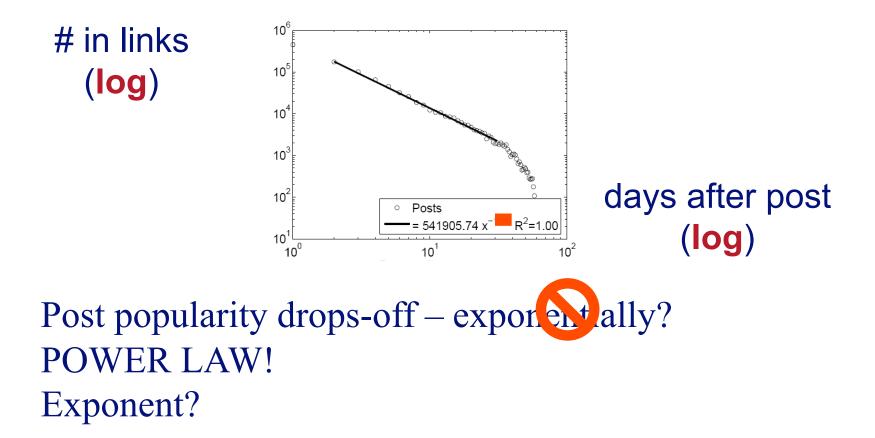
Post network links among posts

Q1: popularity-decay of a post? Q2: degree distributions?

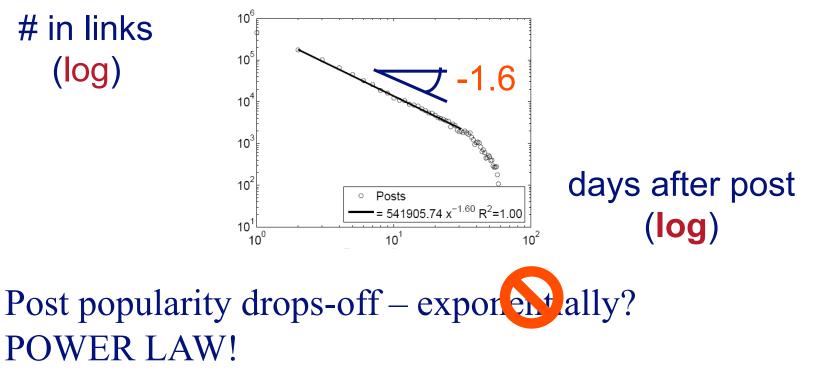


Post popularity drops-off – exponentially?

Q1: popularity over time



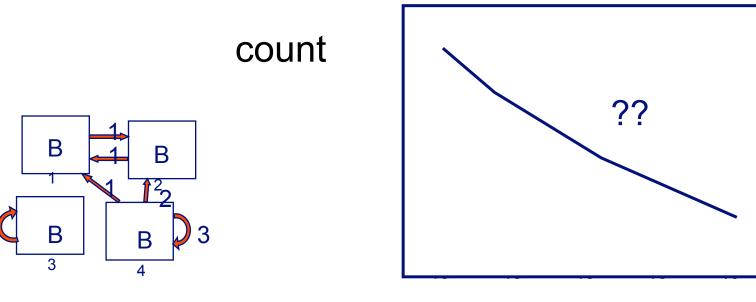
Q1: popularity over time



Exponent? -1.6 (close to -1.5: Barabasi's stack model)

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

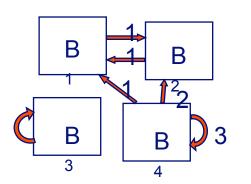


blog in-degree

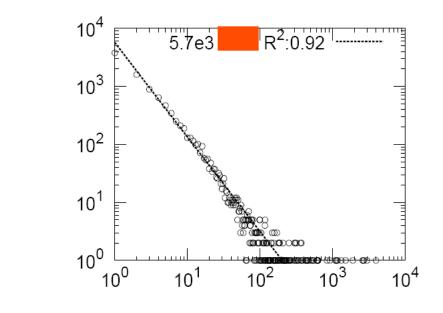
C. Faloutsos

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.



count

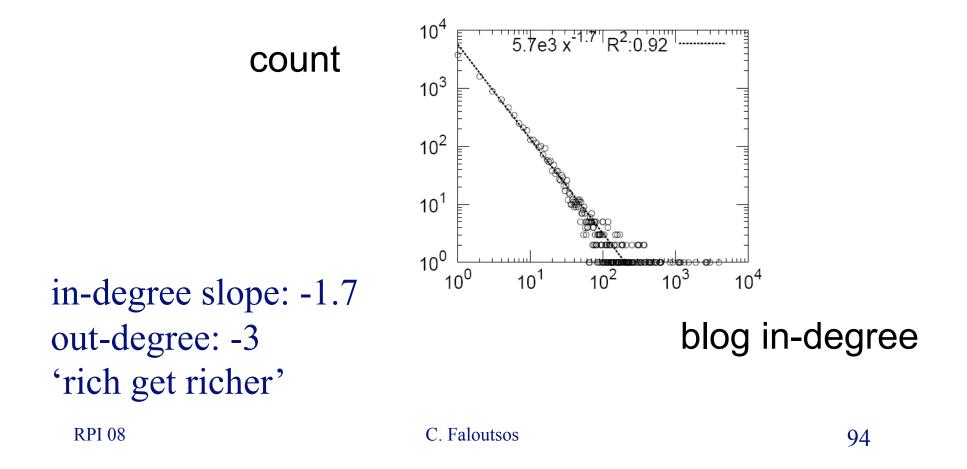


blog in-degree

C. Faloutsos

Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.



Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; Tensors
- Other projects (Virus propagation, e-bay fraud detection)
 - And research directions
- Conclusions

Next steps:

- edges with
 - categorical attributes and/or
 - time-stamps and/or
 - weights
- nodes with attributes [G-Ray, Tong et al]
- scalability (cloud computing)

E.g.: self-* system @ CMU

- >200 nodes
- 40 racks of computing equipment
- 774kw of power.
- target: 1 PetaByte
- goal: self-correcting, selfsecuring, self-monitoring, self-...

Cloud computing, D.I.S.C. and hadoop

- 'Data Intensive Scientific Computing' [R. Bryant, CMU]
 - 'big data'
 - http://www.cs.cmu.edu/~bryant/pubdir/cmucs-07-128.pdf
- Yahoo: ~5Pb of data [Fayyad'07]
- 'M45': 4K proc's, 3Tb RAM, 1.5 Pb disk
- Hadoop: open-source clone of map-reduce <u>http://hadoop.apache.org/</u>

OVERALL CONCLUSIONS

- Graphs pose a wealth of fascinating problems
- self-similarity and power laws work, when textbook methods fail!
- New patterns (shrinking diameter!)
- New generator: Kronecker
- SVD / tensors / RWR: valuable tools
- Scalability / cloud computing -> PetaBytes

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan <u>Fast Random Walk with Restart and Its</u> <u>Applications</u> ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos <u>Center-Piece</u> <u>Subgraphs: Problem Definition and Fast</u> <u>Solutions, KDD 2006, Philadelphia, PA</u>
- Hanghang Tong, Brian Gallagher, Christos Faloutsos, and Tina Eliassi-Rad <u>Fast Best-Effort</u> <u>Pattern Matching in Large Attributed Graphs</u> KDD 2007, San Jose, CA

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos <u>Graphs over Time: Densification Laws,</u> <u>Shrinking Diameters and Possible Explanations</u> KDD 2005, Chicago, IL. ("Best Research Paper" award).
- Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos <u>Realistic</u>, <u>Mathematically Tractable Graph Generation and</u> <u>Evolution, Using Kronecker Multiplication</u> (ECML/PKDD 2005), Porto, Portugal, 2005.

- Jure Leskovec and Christos Faloutsos, *Scalable Modeling of Real Graphs using Kronecker Multiplication*, ICML 2007, Corvallis, OR, USA
- Shashank Pandit, Duen Horng (Polo) Chau, Samuel Wang and Christos Faloutsos <u>NetProbe: A</u> <u>Fast and Scalable System for Fraud Detection in</u> <u>Online Auction Networks</u> WWW 2007, Banff, Alberta, Canada, May 8-12, 2007.
- Jimeng Sun, Dacheng Tao, Christos Faloutsos
 <u>Beyond Streams and Graphs: Dynamic Tensor</u> <u>Analysis, KDD 2006, Philadelphia, PA</u>

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007. [pdf]
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameterfree Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

THANK VOUL

Contact info: www.cs.cmu.edu /~christos (w/ papers, datasets, code, etc)