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1. “Old” computer vision and learning work



Object recognition for computer vision:
(personal) historical perspective

- >
Face detection ,9?3
b®
@ [0}
g ¢
Res @°
@ &
N
T
. . &9
Pedestrian detection S S
< IS
) ) . (2o} o
Multi-class / multi-objects ,\030" Qbe
@ <2
Digit t &S
igit recognition & &
5 @ >’
N S N
) S S Q
N RS ) v
Q;o', Q\ Q b@
5 < .
foqo 03\ é\ \;d fz§\(b N Qq’
O.)V NZ D N O O >
Q) N % O N o
N o > 3 J N NN
XS Qb O N & RN > v
. X
‘b‘Q S N4 oé} QQ & » & & ol P
S @ N N @ S S N
S RGN SN & O P8 S
| ) | < I %) \\\<Q AN
] | | | |
... Many more
1990 1995 2000 y

*Best CVPR’07 paper 10 yrs ago

excellent algorithms in
the past few years...



Examples: Learning Object Detection:
Finding Frontal Faces

* Training Database
* 1000+ Real, 3000+ VIRTUAL
« 50,0000+ Non-Face Pattern

Sung & Poggio 1995



~10 year old CBCL computer vision work:
SVM-based pedestrian detection system In

Mercedes test car...
now becoming a product (MobilEye, Israeli company)
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Parallel development of (classical) learning theory and
learning algorithms from perceptrons to learning theory
to Vapnik and to Smale (and many others...)



In the last few years the theoretical foundations of learning have
become part of mainstream mathematics (many papers/results on the
mathematical foundations and on algorithms)

BEULLETIN (Mew Series) OF THE

AMERICAN MATHEMATICAL SOCIETY
Valume a8, Numbar 1, Pages 1-49

5 DOTEDATI{01) DM 3.5

Article electronically published an Oevaber 5, 2001

ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AND STEVE SMALE

The problem of learming 15 arguably af the

very corve af bhe problem of inbelligence,
bath biological and artificual,
1. Pogzio and C R, Shelton

IXNTRODUCTION

(1) A main theme of this report is the relationship of appros;imation to learning and
the primary role of sampling (inductive ul.tumun:f_*]l We try to emphasize relations
of the theory of learning to the mainstre; qnatics. In particular, there
are large roles for probabilitv theory, for algorithms such as leasfsguares, and for
tools and ideas trom linear algehra ' s adbvartage of doing this
15 that communication i1s facilitated and the power of core mathematies 15 more
easily bronght to bear.




2. Now: recent work in neuroscience of recognition can
account for cell properties, human performance and
provide good computer vision —and perhaps learning --
algorithms



The problem:
recognition in natural images
(e.g., “is there an animal in the image?”)




The hypothesis is that visual cortex has a key role in solving
this problem: how?

\ TEO

TF

ventral

stream:

“‘what”
AreaTE i

Desimone & Ungerleider 1989



Neuron basics

INPUT= pulses or
graded potentials

{ COMPUTATION

= Analog

Synapse




Some numbers

 Human Brain
— 10"-1072 neurons (1 million flies ©)
— 10'4- 107% synapses

« Neuron

— Fundamental space dimensions:

 fine dendrites : 0.1 py diameter; lipid bilayer membrane : 5 nm
thick; specific proteins : pumps, channels, receptors,
enzymes

— Fundamental time length : 1 msec



It turns out the brain may teach us something about
computer vision and learningq:
a model of the ventral stream of visual cortex
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Theory of Object Recognition: Computations and Circuits in the Feedforward path of the Ventral
Stream in Primate Visual Cortex
Thomas Serre, Minjoon Kouh, Charles Cadieu, UIf Knoblich
and Tomaso Poggio, December 2005



Models of Visual Recognition
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Two key computations,
suggested by physiology

Unit types

Simple

Complex

Pooling

>|—

P

Computation

Selectivity /
template
matching

Invariance

Operation

Gaussian-
tuning /
AND-like

Soft-max /
OR-like



» Gaussian-like tuning
operation (and-like)

»Simple units
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Task-specific circuits (from IT to PFC)

- Supervised learning: ~ Gaussian
RBF

* (Generic, overcomplete
dictionary of reusable shape
components (from V1 to IT)
provide unique representation

— Unsupervised learning (from
~10,000 natural images) during a
developmental-like stage

see also (Foldiak 1991; Perrett et al 1984; Wallis & Rolls,
1997; Lewicki and Olshausen, 1999; Einhauser et al
2002; Wiskott & Sejnowski 2002; Spratling 2005)




Supervised learning

« Hierarchy — and related unsupervised
learning (layer-by-layer — decreases
sample complexity for classifier at the

top




Can the model explain tuning and
iInvariance properties of neurons in the
ventral stream?




Feedforward models:
comparison w| some neural data

V1.
« Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

« MAX-like operation in subset of complex cells (Lampl et al 2004)

V4:

» Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
MAX-like operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)

Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

* Tuning and invariance properties (Logothetis et al 1995, paperclip objects)

+ Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

+ Read out data (Hung Kreiman Poggio & DiCarlo 2005)

» Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:
» Rapid categorization (Serre Oliva Poggio 2007)

* Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)



« Just one example...:
Read out data (Hung Kreiman Poggio & DiCarlo 2005)




IT Readout data
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005




Example of one AIT cell




Decoding the neural code ...
population response (using a classifier)

. cat/dog

Population activity human face
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So...we can decode the brain’s code and
read-out from neural activity what the monley is
seeing

We can also read-out with similar results from the
model !



We can decode from model units as well as from IT
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Agreement of model w| IT Readout data

Reading out category and identity invariant to position and scale
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Can the (feedforward) model then

account for rapid categorization by human
subjects?



Rapid categorization task (with mask to test
feedforward model)

Image
Interval
Image—-Mask
Mask
1 /f noise

30 ms ISI

80 m\ Animal present

~ ?
« Ornot:

Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005 \




Head Close-body

(Torralba & Oliva, 2003)



Model “predicts” human
“feedforward” performance

2.67 Model 82%
=)
@ 2.4
» d’~ standardized error E Human 80%
rate =
. L 1.87
« the higher the d’, the o = Model
better the perf. = w = Human-observers
1.4°
JI | | L

Head Close- Medium- Far-
body body body

- -

Serre Oliva & Poggio 2007
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Further comparisons

» Image-by-image correlation:
— Heads: p=0.71 Mod: 100% Hum: 969
— Close-body: p=0.84 y '
— Medium-body: p=0.71 B W
- Far-body. p=0.60 B 5 *g' ' .

* Model predicts level of performanc rotated
iImages (90 deg and inversion)

Serre Oliva & Poggio PNAS 2007



...a surprise for me was that the neuroscience model worked well

compared with several good machine vision systems (in 2005) on a

variety of databases (Caltech 101, faces, Weizman) including our
own Scene Street database...



The street scene database

Source: Bileschi, Wolf & Poggio



StreetScenes Database. Subjective Results




Examples
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car detection ROC curve pedestrian detection ROC curve
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True positive rate

True positive rate

building texture detection
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Future: recognition in videos, a new learning theory
iInspired by cortex and extending approach to image
inference tasks



The problem: action recognition

Training Videos

bend jack jump

jump run walk

side wavel wave2

*each video~4s, 50~100 frames

Testing videos

Dataset from (Blank et al, 2005)




A new model of the dorsal stream (motion)
following the ventral stream model

dorsal ventral
stream stream

Parallel Pathways
in Visual Cortex

dorsal stream

ventral stream

Adapted from (Merigan & Maunsell, 1993; Maunsell & Newsome 1987)



Motion features: Spatio-temporal filters (S1 units in “V17)
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Using a large dictionary of MT-like units for
action recognition works well!

(Dog'ggf)t 41 model | chance —
KTH Human 81.3% 91.6% | 16.7%
UCSD Mice 75.6% 79.0% | 20.0%
Weiz. Human 86.7% 96.3% | 11.1%

L] Cross-validation: 2/3 training, 1/3 testing, 10 repeats

| Source code for benchmark graciously provided by Piotr Dollar

(Jhuang Serre Wolf & Poggio ICCV

2007)






A twist: a vision system derived from visual cortex may help biology:
Automatic classification of abnormal
behavior in mutant vs. wild mice

drink eat groom

over 95% correct
for 6 class-
classification

hang rear walk

Serre, Steele, Jhuang, Garrote & Poggio




Future: , @ hew learning theory
iInspired by cortex



From a model to a theory



Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

How then do the learning machines described in the theory compare with brains?

0 One of the most obvious differences is the ability of people and animals to
learn from very few examples.

O A comparison with real brains offers another, related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures

with more layers justifiable in terms of learning theory?

a Why hierarchies?



Formalizing the cortical hierarchy: towards a new
class of learning theories?

Derived Distance:

- lterated analysis with arbitrary
transforms and nonlinearities in
between layers.

- Template dictionaries at each
layer.

- First layer performs simple
template matching over the set
of allowed transformations.

- At higher layers, we work with
representations based on
previous layers’ templates.

Smale, S., T. Poggio, A.

Axiom: foh:v — [0, 1]isinIm(v)if f € Im(v')and h € H, Caponnett.o, and J Bouvrie.
that is the restriction of an image is an image and similarly for H'. Thus Derived D!Stance- towards a
mathematical theory of

visual cortex, CBCL Paper,
Massachusetts Institute of
Technology, Cambridge,
MA, November, 2007.

foh:v—[0,1] € Im(v)it f € Im(v')and h € H,
foh:v'—[0,1] € Im(v")if f € Im(R)and b’ = H".


http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf

Future:
extending approach to image
inference tasks



Future directions

« Normal vision is much more than categorization
or identification: it is image
understanding/inference/parsing

* Qur visual system can “answer” almost any kind
of question about an image: a Turing test...



Future Directions:
beyond feedforward models

Image inference:
at least two classes of possible models

o Attentional (with visual routines)
or

o Bayesian
?

Lee and Mumford, 2003; Dean,2005; Rao, 2004; Hawkins, 2004; Ullman, 2007, Hinton, 2005.......



Attention is needed for robust recognition in clutter
and for inspecting an image...

Wolfe, Tsotsos, ...



Biology of attention

Top-down
feature-based attention

= va

T

Bottom-up signal from lower areas

Saliency map
computation

1 PFC | F~-, J FEF LIP

Top-down
spatial
attention



Computational model: A Bayesian
approach



Bayesian Model

Object
Place/Scene
PFC/PPA l l
Position invariant
l features l
_ ~ Local shape ~
Saliency features
map l



Comparing this
top-down attentional model
with human eye fixations
In natural scenes

(we get better results than bottom-up
models such as Itti-Koch)



Pyschophysics

= Dataset

= 100 CBCL street-scenes images having cars & pedestrians

= 20 images with neither objects
» Experiment

= 8 subjects (drawn from the university undergraduate population) where
shown these 120 images in random order.
The stimuli extends about 12- visual angle.
Each image in the stimuli-set was presented twice
The subjects were asked to count the number of cars/pedestrians
For each of these block trials, the subject’'s eye movements were
recorded using an infra-red eye tracker.



Example Stimuli

2 edestrians

i




Example Stimuli

pedestrians
DO NOTYH AL

ENTER




The top-down attentional model
also seems to improve performance in
object recognition In clutter
(very preliminary results)



Future Directions:
beyond feedforward models

Image inference
(vision is more than categorization):
at least two classes of possible models

o Attentional (with visual routines)
or

o Bayesian
?

Lee and Mumford, 2003; Dean,2005; Rao, 2004; Hawkins, 2004; Ullman, 2007, Hinton, 2005.......



2. Bayesian models

Analysis-by-synthesis models, eg probabilistic inference in
the ventral stream: neurons represent conditional probabilities
of the bottom-up sensory inputs given the top-down
hypothesis and converge to globally consistent values

High-level abstract
representation of a face

b5,

Fainted edge located
in high-res. buffer

Lee and Mumford, 2003; Dean,2005; Rao, 2004; Hawkins, 2004; Ullman, 2007, Hinton, 2005



Discussion topics

Human vision is much better than feedforward models...

Are attentional models of the type we are exploring — and
which predict well human eye fixations and seem to
Improve recognition in clutter — likely to fully bridge the

gap?

Neurally plausible models may just beginning to provide
new insights on how to implement intelligence in
machines



Collaborators In recent work

T. Serre O Read-out
Q Comparison w| humans v E. Meyers
v A. Oliva v"W. Freiwald
O Action recognition O Attention
v' H. Jhuang v S. Chikkerur
v C.Tan

Also: C. Koch, D. Walther, C. Cadieu, U. Knoblich, M. Kouh, G. Kreiman. M.
Riesenhuber,T. Masquelier, S. Bileschi, L. Wolf, J. Dicarlo, E. Miller, B. Desimone, E. Connor.
D. Ferster, |. Lampl, A. Pasupathy
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