Chapter 6: High-dimensional Data
Let D be a $n \times d$ data matrix. In data mining typically the data is very high dimensional. Understanding the nature of high-dimensional space, or *hyperspace*, is very important, especially because it does not behave like the more familiar geometry in two or three dimensions.

Hyper-rectangle: The data space is a d-dimensional hyper-rectangle

$$R_d = \prod_{j=1}^{d} \left[\min(X_j), \max(X_j) \right]$$

where $\min(X_j)$ and $\max(X_j)$ specify the range of X_j.

Hypercube: Assume the data is centered, and let m denote the maximum attribute value

$$m = \max_{j=1}^{d} \max_{i=1}^{n} \{|x_{ij}|\}$$

The data hyperspace can be represented as a *hypercube*, centered at 0, with all sides of length $l = 2m$, given as

$$H_d(l) = \left\{ \mathbf{x} = (x_1, x_2, \ldots, x_d)^T \mid \forall i, \ x_i \in [-l/2, l/2] \right\}$$

The *unit hypercube* has all sides of length $l = 1$, and is denoted as $H_d(1)$.

Hypersphere

Assume that the data has been centered, so that \(\mu = 0 \). Let \(r \) denote the largest magnitude among all points:

\[
r = \max_i \{ \| x_i \| \}
\]

The data hyperspace can be represented as a \(d \)-dimensional hyperball centered at \(0 \) with radius \(r \), defined as

\[
B_d(r) = \{ x \mid \| x \| \leq r \}
\]

or

\[
B_d(r) = \left\{ x = (x_1, x_2, \ldots, x_d) \mid \sum_{j=1}^{d} x_j^2 \leq r^2 \right\}
\]

The surface of the hyperball is called a hypersphere, and it consists of all the points exactly at distance \(r \) from the center of the hyperball

\[
S_d(r) = \{ x \mid \| x \| = r \}
\]

or

\[
S_d(r) = \left\{ x = (x_1, x_2, \ldots, x_d) \mid \sum_{j=1}^{d} (x_j)^2 = r^2 \right\}
\]
Iris Data Hyperspace: Hypercube and Hypersphere

$l = 4.12$ and $r = 2.19$
High-dimensional Volumes

Hypercube: The volume of a hypercube with edge length \(l \) is given as

\[
\text{vol}(H_d(l)) = l^d
\]

Hypersphere The volume of a hyperball and its corresponding hypersphere is identical. The volume of a hypersphere is given as

- In 1 dimension: \(\text{vol}(S_1(r)) = 2r \)
- In 2 dimensions: \(\text{vol}(S_2(r)) = \pi r^2 \)
- In 3 dimensions: \(\text{vol}(S_3(r)) = \frac{4}{3} \pi r^3 \)
- In \(d \)-dimensions: \(\text{vol}(S_d(r)) = K_d r^d = \left(\frac{\pi^{\frac{d}{2}}}{\Gamma \left(\frac{d}{2} + 1 \right)} \right) r^d \)

where

\[
\Gamma \left(\frac{d}{2} + 1 \right) = \begin{cases}
\frac{d}{2}! & \text{if } d \text{ is even} \\
\sqrt{\pi} \left(\frac{d!!}{2^{(d+1)/2}} \right) & \text{if } d \text{ is odd}
\end{cases}
\]
With increasing dimensionality the hypersphere volume first increases up to a point, and then starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere with $r = 1$,

$$\lim_{d \to \infty} \text{vol}(S_d(1)) = \lim_{d \to \infty} \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2} + 1\right)} \to 0$$
Hypersphere Inscribed within Hypercube

Consider the space enclosed within the largest hypersphere that can be accommodated within a hypercube (which represents the dataspace).

The ratio of the volume of the hypersphere of radius \(r \) to the hypercube with side length \(l = 2r \) is given as

\[
\frac{\text{vol}(S_d(r))}{\text{vol}(H_d(2r))} = \frac{\frac{\pi r^d}{2}}{2^d r^d} = \frac{\pi}{2^d d!} \rightarrow 0 \quad \text{as} \quad d \rightarrow \infty
\]

As the dimensionality increases, most of the volume of the hypercube is in the “corners,” whereas the center is essentially empty.
Hypersphere Inscribed inside a Hypercube
All the volume of the hyperspace is in the corners, with the center being essentially empty.

High-dimensional space looks like a rolled-up porcupine!

(a) 2D
(b) 3D
(c) 4D
(d) \(dD\)
The volume of a thin hypershell of width ϵ is given as

$$\text{vol}(S_d(r, \epsilon)) = \text{vol}(S_d(r)) - \text{vol}(S_d(r - \epsilon)) = K_d r^d - K_d (r - \epsilon)^d.$$

The ratio of volume of the thin shell to the volume of the outer sphere:

$$\frac{\text{vol}(S_d(r, \epsilon))}{\text{vol}(S_d(r))} = \frac{K_d r^d - K_d (r - \epsilon)^d}{K_d r^d} = 1 - \left(1 - \frac{\epsilon}{r}\right)^d$$

As d increases, we have

$$\lim_{d \to \infty} \frac{\text{vol}(S_d(r, \epsilon))}{\text{vol}(S_d(r))} = \lim_{d \to \infty} 1 - \left(1 - \frac{\epsilon}{r}\right)^d \to 1$$
Diagonals in Hyperspace

Consider a \(d\)-dimensional hypercube, with origin \(0_d = (0_1, 0_2, \ldots, 0_d)\), and bounded in each dimension in the range \([-1, 1]\). Each “corner” of the hyperspace is a \(d\)-dimensional vector of the form \((\pm 1_1, \pm 1_2, \ldots, \pm 1_d)^T\).

Let \(e_i = (0_1, \ldots, 1_i, \ldots, 0_d)^T\) denote the \(d\)-dimensional canonical unit vector in dimension \(i\), and let \(1\) denote the \(d\)-dimensional diagonal vector \((1_1, 1_2, \ldots, 1_d)^T\).

Consider the angle \(\theta_d\) between the diagonal vector \(1\) and the first axis \(e_1\), in \(d\) dimensions:

\[
\cos \theta_d = \frac{e_1^T 1}{\|e_1\| \|1\|} = \frac{e_1^T 1}{\sqrt{e_1^T e_1 \sqrt{1^T 1}}} = \frac{1}{\sqrt{1} \sqrt{d}} = \frac{1}{\sqrt{d}}
\]

As \(d\) increases, we have

\[
\lim_{d \to \infty} \cos \theta_d = \lim_{d \to \infty} \frac{1}{\sqrt{d}} \to 0
\]

which implies that

\[
\lim_{d \to \infty} \theta_d \to \frac{\pi}{2} = 90^\circ
\]
In high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all the coordinates axes! Each of the 2^{d-1} new axes connecting pairs of 2^d corners are essentially orthogonal to all of the d principal coordinate axes! Thus, in effect, high-dimensional space has an exponential number of orthogonal “axes.”
Density of the Multivariate Normal

Consider the standard multivariate normal distribution with $\mu = 0$, and $\Sigma = I$

$$f(x) = \frac{1}{(\sqrt{2\pi})^d} \exp \left\{ -\frac{x^T x}{2} \right\}$$

The peak of the density is at the mean. Consider the set of points x with density at least α fraction of the density at the mean

$$\frac{f(x)}{f(0)} \geq \alpha$$

$$\exp \left\{ -\frac{x^T x}{2} \right\} \geq \alpha$$

$$x^T x \leq -2 \ln(\alpha)$$

$$\sum_{i=1}^{d} (x_i)^2 \leq -2 \ln(\alpha)$$

The sum of squared IID random variables follows a chi-squared distribution χ^2_d. Thus,

$$P \left(\frac{f(x)}{f(0)} \geq \alpha \right) = F_{\chi^2_d}(-2 \ln(\alpha))$$

where $F_{\chi^2_d}$ is the CDF.
Density Contour for α Fraction of the Density at the Mean: One Dimension

Let $\alpha = 0.5$, then $-2 \ln(0.5) = 1.386$ and $F_{\chi^2_1}(1.386) = 0.76$. Thus, 24% of the density is in the tail regions.
Density Contour for α Fraction of the Density at the Mean: Two Dimensions

Let $\alpha = 0.5$, then $-2 \ln(0.5) = 1.386$ and $F_{\chi^2}(1.386) = 0.50$. Thus, 50% of the density is in the tail regions.
Chi-Squared Distribution: $P\left(\frac{f(x)}{f(0)} \geq \alpha\right)$

This probability decreases rapidly with dimensionality. For 2D, it is 0.5. For 3D it is 0.29, i.e., 71% of the density is in the tails. By $d = 10$, it decreases to 0.075%, that is, 99.925% of the points lie in the extreme or tail regions.
The point \(\mathbf{x} = (x_1, x_2) \) in polar coordinates

\[
\begin{align*}
x_1 &= r \cos \theta_1 = rc_1 \\
x_2 &= r \sin \theta_1 = rs_1
\end{align*}
\]

where \(r = ||\mathbf{x}||, \) and \(\cos \theta_1 = c_1 \) and \(\sin \theta_1 = s_1. \)

The **Jacobian matrix** for this transformation is given as

\[
J(\theta_1) = \begin{pmatrix}
\frac{\partial x_1}{\partial r} & \frac{\partial x_1}{\partial \theta_1} \\
\frac{\partial x_2}{\partial r} & \frac{\partial x_2}{\partial \theta_1}
\end{pmatrix} = \begin{pmatrix}
c_1 & -rs_1 \\
s_1 & r c_1
\end{pmatrix}
\]

Hypersphere volume is obtained by integration over \(r \) and \(\theta_1 \) (with \(r > 0, \) and \(0 \leq \theta_1 \leq 2\pi \)):

\[
\text{vol}(S_2(r)) = \int_0^r \int_0^{2\pi} \left| \det(J(\theta_1)) \right| \, dr \, d\theta_1
\]

\[
= \int_0^r r \, dr \, \int_0^{2\pi} d\theta_1 = \int_0^r r \, dr \int_0^{2\pi} d\theta_1
\]
Hypersphere Volume: Polar Coordinates in 3D

\[\mathbf{x} = (x_1, x_2, x_3) \] in polar coordinates

\[x_1 = r \cos \theta_1 \cos \theta_2 = r c_1 c_2 \]
\[x_2 = r \cos \theta_1 \sin \theta_2 = r c_1 s_2 \]
\[x_3 = r \sin \theta_1 = r s_1 \]

The Jacobian matrix is given as

\[
J(\theta_1, \theta_2) = \begin{pmatrix}
 c_1 c_2 & -r s_1 c_2 & -r c_1 s_2 \\
 c_1 s_2 & -r s_1 s_2 & r c_1 c_2 \\
s_1 & r c_1 & 0
\end{pmatrix}
\]

The volume of the hypersphere for \(d = 3 \) is obtained via a triple integral with \(r > 0, \) \(-\pi/2 \leq \theta_1 \leq \pi/2, \) and \(0 \leq \theta_2 \leq 2\pi \)

\[
\text{vol}(S_3(r)) = \int_r \int_{\theta_1} \int_{\theta_2} \left| \det(J(\theta_1, \theta_2)) \right| \, dr \, d\theta_1 \, d\theta_2
\]

\[
= \frac{4}{3} \pi r^3
\]
Hypersphere Volume in d Dimensions

The determinant of the d-dimensional Jacobian matrix is

$$\det(J(\theta_1, \theta_2, \ldots, \theta_{d-1})) = (-1)^d r^{d-1} c_1^{d-2} c_2^{d-3} \ldots c_{d-2}$$

The volume of the hypersphere is given by the d-dimensional integral with $r > 0$, $-\pi/2 \leq \theta_i \leq \pi/2$ for all $i = 1, \ldots, d - 2$, and $0 \leq \theta_{d-1} \leq 2\pi$:

$$\text{vol}(S_d(r)) = \int_0^r \int_{\theta_1}^{\pi/2} \int_{\theta_2}^{\pi/2} \ldots \int_{\theta_{d-1}}^{\pi/2} \left| \det(J(\theta_1, \theta_2, \ldots, \theta_{d-1})) \right| \, dr \, d\theta_1 \, d\theta_2 \ldots d\theta_{d-1}$$

$$= \int_0^r r^{d-1} dr \int_{-\pi/2}^{\pi/2} c_1^{d-2} d\theta_1 \ldots \int_{-\pi/2}^{\pi/2} c_{d-2} d\theta_{d-2} \int_0^{2\pi} d\theta_{d-1}$$

$$= \frac{r^d}{d} \frac{\Gamma \left(\frac{d-1}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{d}{2} \right)} \frac{\Gamma \left(\frac{d-2}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{d-1}{2} \right)} \ldots \frac{\Gamma \left(1 \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{3}{2} \right)} 2\pi$$

$$= \frac{\pi \Gamma \left(\frac{1}{2} \right)^{d/2-1}}{\frac{d}{2} \Gamma \left(\frac{d}{2} \right)} r^d$$

$$= \left(\frac{\pi^{d/2}}{\Gamma \left(\frac{d}{2} + 1 \right)} \right) r^d$$