Tree of Life: phylogenetic tree

Input: set of sequences \((n) \)

Distance Matrix \(n \times n \)

1. Distance Based

2. Parsimony-based
 - minimize the change
 - "simplest" solution

3. Probabilistic:

\[P(T | \text{data}) = \frac{P(\text{data} | T) P(T)}{P(\text{data})} \]

\[= \frac{P(\text{data} | T) P(T)}{\sum_{T'} P(\text{data} | T') P(T')} \]

Distance-Based

Data = set of sequences

\(\rightarrow \) hierarchical clustering with clock/time

Constant
UPGMA: Unweighted Pair Group Method using Averages

Given **n** sequences, create a **n x n** distance matrix:

\[d_{ij} = \text{dist}(S_i, S_j) \]

\[d_{ij} = d_{ji} \quad \text{Symmetric} \]

1. **Distance between two sequences**
 \[d_{ij} = \frac{d_{ij}}{2} \text{ or } Hennings' distance \]

2. **Distance between two clusters**
 \[C_a \quad C_b \]
 \[n_a = |G| \quad n_b = |B| \]

 \[d_{ab} = \text{dist}(C_a, C_b) = \frac{1}{n_a n_b} \sum_{i \in A} \sum_{j \in B} d_{ij} \]

 Average pairwise distance

\[\left(d_{13} + d_{14} + d_{23} + d_{24} + d_{34} + d_{34} \right) \]

Given a cluster:

\[s_{ij} \]

Distance between two sequences:

\[d_{ij} \]

Distance between clusters:

\[d_{ab} \]
\[\frac{1}{6} \cdot \left(d_{i3} + d_{i4} + d_{i8} + d_{i2} + d_{i4} + d_{i8} \right) \]

If we merge \(C_i \) & \(C_j \) into \(C_k \)

\[C_k = C_i \cup C_j \]

Recompute the distances from \(C_k \) to everyone in

\[d_{kl} = \frac{d_{ij} \cdot |C_i| + d_{jk} \cdot |C_j|}{|C_i| + |C_j|} \]

before merging...
Neighbour-Joining method

\[D_{ij} = d_{ij} - (\gamma_i + \gamma_j) \]

Pair with the smallest "adjusted" distance should be merged

\[\gamma_1 = \frac{1.4}{2} = 0.7 \]
\[\gamma_2 = 0.7 \]
\[\gamma_3 = \frac{2.0}{2} = 1.0 \]
\[\gamma_4 = \frac{2.3}{2} = 1.0 \]

\[D_{12} = d_{12} - (\gamma_1 + \gamma_2) = 0.3 - (1.4) = -1.1 \]
\[D_{13} = d_{13} - (\gamma_1 + \gamma_3) = 0.5 - (1.7) = -1.2 \]
\[D_{14} = d_{14} - (\gamma_1 + \gamma_4) = 0.1 - (1.7) = -1.6 \]

\[d_{ij} = \frac{1}{2} (d_{ij} + r_i r_j) \]
\[d_{jk} = d_{ij} - d_{ik} \]
\[\frac{1}{2} (0.5 + 0.7 - 1) \]
Parsimony

Given T, can we compute the score (T)

$$\text{score}(T) = \sum_{pos \ i} \text{score for}(f, i)$$

$$\Sigma = \{A, G\}$$

Dynamic Programming

$$\Sigma \times \Sigma = \begin{bmatrix} 1 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Simple

match = 0

mismatch = 1
\[\sum = \{A, G\} \]

\[S_0(A) = \min \left(\text{node } 5 \right) \]

\[S_i(C) = \left(\frac{1}{2} \right)^i \]

\[S_i(C) = \left(\frac{1}{2} \right)^i \]

\[S_i(a) = \min_{b \in \sum} \left(S_j(b) + S(a, b) \right) + \min_{b \in \sum} \left(S_k(b) + S(a, b) \right) \]

Score for symbol \(a\) **at node** \(i\)

\[\text{Cost for symbol } b \text{ at child} \]

Enumerate \(T\)

Given a tree \(T\)

1. \(\sum \) \(\min \) \# of changes for \(p_i, i = \text{root} (T) \)

1. **Greedy approach**

\[S_i \quad S_j \]

do for all pairs \(s_i, s_j\)

All we need sequence \(s_k\)
try all extensions by branching from and visiting branch
do for remaining sequence
Close the leaf
repeat

2) Branch & Bound
guarantees optimality

Minimum cost so far

10
9

3) Nontree Cuts search

Search space over all trees
No guarantee of optimality.