Decision Trees

\[\text{Decision}: \]

1. Which attribute?
2. Which value?

\[n = |D| \rightarrow p_c, p_{c_2}, \ldots, p_{c_k} \]

\[y_i \in \{c_1, c_2, \ldots, c_k\} \]

\[\tilde{z}_i \in \mathbb{R}^d \]

\[\text{Entropy} \]

\[\text{Split} \]

\[\text{feature space} \]

\[D \rightarrow \text{hyperplane/split} \]

\[\text{Ax}_a - \text{aligned} \] (parallel to one of the axes)
\[P_{c_i} = \frac{|\{x \mid y = c_i\}|}{n} \]

\[H(D) = -\sum_{i=1}^{k} P_{c_i} \log P_{c_i} \quad : \text{Amount of disorder in terms of labels} \]

Split: \(A_i \leq v_j \)

\[H(D_{y}, D_{N}) = \frac{|D_{y}|}{|D|} H(D_{y}) + \frac{|D_{N}|}{|D|} H(D_{N}) \quad \text{Entropy of the split} \]

\[\text{Info Gain} = H(D) - H(D_{y}, D_{N}) \quad (A_i \leq v_j) \]

\[D \left[\begin{array}{l}
\text{we have to try all possible } A_i \text{ & } v_j \text{ value}
\text{Compute } IG(A_i, v_j)
\text{Choose the best one of these and there is the decision at this node}
\end{array} \right. \]

\[\text{we'd have to try all categories : } A_1, A_2 \ldots A_d \]

<table>
<thead>
<tr>
<th>Temp</th>
<th>Pressure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C</td>
<td>1 atm</td>
<td>Hot</td>
</tr>
<tr>
<td>110°C</td>
<td>2 atm</td>
<td>Cold</td>
</tr>
</tbody>
</table>
Temp ≤ 5

For 5, choose all mid-points between observed value as the split values.

Temp ≤ 20
Temp ≤ 50
Temp ≤ 60.5
Temp ≤ 90

Gini Order:

\[G(D) = 1 - \sum_{i=1}^{k} (P_c_i)^2 \]

Decision Trees can easily handle categorical attributes

\[\text{A}_3 \in \{ R, B \} \]

\[\begin{array}{c|c|c|c}
 \text{A}_1 & \text{A}_2 & \text{A}_3 & \text{Class} \\
 5 & 10 & R & p \\
 6 & 12 & G & p \\
 20 & 1 & K & N \\
 15 & 100 & B & R \\
\end{array} \]
All possible classifiers

\(A_3 \in V \)

\(V \subseteq \{ \text{set of values for } A_3 \} \)

\(A_3 \in \{ R_3 \} \)

\(p_4 \quad 1p \quad \text{IN} \)

\(2p \)

Unsupervised approach

Clustering

Find "groups" in the data

Clusters

1) Distance vs Similarity

2) Internal / intra
 \(\Rightarrow \) high sim within a cluster

3) External / inter
 \(\Rightarrow \) low similarity between clusters

Flat vs

1) Hierarchical clustering

2) exclusive vs overlapping
 hard vs soft
 (probabilistic)

3) geometry of the group

1 \(\rightarrow \infty \)

\(d \)

\(n \)

\(\text{x} \in \)
3) geometry of the group

\[D = \{ \bar{x}_c \}_{c=1}^n \]

\[C_1 = \{ \} \quad C_2 = \{ \} \quad \ldots \quad C_K = \{ \} \]

Partitioning:
\[c_i \cap c_j = \emptyset \quad \forall i \neq j \]
\[\bigcup_{C_i} = D \]

Centroids / mean

\[\text{SSE:} \quad \sum_{i=1}^{K} \sum_{x_j \in C_i} \left(\bar{x}_j - \bar{\mu}_i \right)^2 \]

NP-hard problem to minimize.
NP-hard problem to minimize:

\[k \geq 2 \]

K - means, greedy,

Initialize means:

1. **a)** Choose \(M_1, M_2, \ldots, M_k \)
2. **b)** Max-dissimilarity approach:
 - \(M_1 \leftarrow \) a random point \(\tilde{z} \in D \)
 - \(M_2 \leftarrow \) furthest away from \(M_1 \)
 - \(M_i \leftarrow \) furthest away from \(M_1, M_2, \ldots, M_{i-1} \)

Iterative update to \(\tilde{M}_i \) value

1. **a)** A set \(\mathcal{X} \) means indicates a partition
2. **b)** Compute distance to \(M_j \) for \(j = 1, \ldots, k \)
3. **c)** Assign \(\tilde{x}_i \) to the closest cluster
 - \(C_i = C_i \cup \{ \tilde{x}_i \} \)
 - \(i^* = \arg \min \{ \| \tilde{x}_i - C_i \|_2^2 \} \)
 - \(j = 1, \ldots, k \)
4. **Recompute the mean for the partition**
 - \(\tilde{M}_i = \text{mean}(C_i) \) for all \(i \)

- **V** - points
- **k** - clusters
- **d** - dimensions
- **O(nkd)** per iteration
Repeat 1) and 2) until convergence

\[k = 3 \]

Convex clusters!

Non-linear / non-convex clusters:

Kernel k-means

\[\text{all operations have to be dot-products, i.e. using } \phi \]

x_i \rightarrow \phi(x_i)
Kernel k-means

1) $\mu^1, \mu^2, ..., \mu^k$
 - not allowed

$K \leftarrow$ Compute K

Growable:
 Create a random partitioning!

$\{C_1, C_2, ..., C_k\}$

Compute $d(x_i, \mu_j)$ for $j = 1 \ldots k$ and $i = 1 \ldots n$

Reassign x_i to the closest cluster C_l

$\{C_1', C_2', ..., C_k'\}$

Repeat until the clusters do not change too much

$m = \text{linear, regular k-means for 1 round}$

$k \leftarrow O(n^2)$

$n, k, n \over O(n^2 k)$ per iteration
for 1 round
then we start to see the
initial clusters

EM: expectation maximization

clustering

→ soft/probabilistic clustering

c_1, c_2, \ldots, c_K

$P(c_i | x_j)$

→ easy to get a hard clustering

k clusters \rightarrow multivariate normal shaped

$\tilde{\mu}_i, \Sigma_i; P(c_i)$

$P(c_i | x_j) = \frac{P(x_j | c_i) \cdot P(c_i)}{P(x_j)}$
Normal distribution

Estimate $\hat{\mu}_i, \hat{\Sigma}_i$

Given $\mu_i, \Sigma_i, p(c_i)$

\[
\begin{cases}
\text{Expectation:} & p(X_j|c_i) = w_{ji} \\
\text{Maximization:} & \mu_i, \Sigma_i, p(c_i) \end{cases}
\]

Weighted estimates