Exam III Syllabus

Clustering

- K-means, EM
- Hierarchical
- Density based
 - DBSCAN
 - DENCLUE
 - Density Estimation
 - Density gradient/attractors

- Spectral/Graph clustering
 - Graph Cuts — Laplacian, modularity
 - MCL (Markov)

Evaluation

- External
- Internal
- Relative

Frequent Pattern Mining

- Stemsets & Association Rule
- Sequence & substrings

- Graphs
 - graph isomorphism (duplicate elimination)
 - subgraph isomorphism (frequency counting) \(\text{NP-complete} \)
- Maximal & closed patterns
Candidate generation without duplicates (Prefix based extension)

\[A, B, C, D, E \]

\[AC, AE, BC, CE \]

Subtree checking

Graphs

\[G_1 \]

\[G_2 \]

Isomorphic

\[\overline{G}_1 \]

\[\overline{G}_2 \]
Sets

A B C

Sequence

A → B → C B → A → C

Order?

Trees: branching

XML documents

Phase transition

graph:

Cycle

Social network "substructure"
biological network

graph isomorphism
Frequent subgraphs

\[\text{DB:} \]

\[G_1: \]

\[G_2: \]

\[\text{MinSup} = 2 \]

\[\text{edge_growth} \]

\[\Sigma = \{ a, b \} \]

\[\begin{array}{c}
\text{2 Canonical} \\
(a\ b) < (b\ c)
\end{array} \]

\[\begin{array}{c}
\text{1 not Canonical} \\
\text{not frequent}
\end{array} \]

\[\text{Aut}(G) = \text{automorphism group of } G = \{ \text{all graphs isomorphic to } G \} \]

\[\text{Canonical} = \min \{ \text{Aut}(G) \} \]

\[G \rightarrow \text{Am I canonical?} \]
Transomism:

ode &
label
preserving
mapping

Forward extensions
(new vertex is added)

Backward extension
(only a new edge is added)
Given a frequent graph G, how to extend.

Rightmost Path Extensions

- Rightmost child (RMC)
- Path from RMC to the root is the RMP

$\text{RMP} = \{0, 1, 3\}$

1. **Forward extensions** allowed only from RMP nodes; ranked from bottom to top.

2. **Backward extensions**: from RMC to some node on RMP; ranked based on how close to the root the edge is.
3) all back edges come before forward edges

Impose a total order.

\[G \]

\[\text{DFS}(G) = (0, 1, a, a) \]
\[(0, 2, a, b) \]

Is this canonical?
No.

Looking for a smaller code.

\[G' \]

\[G_1 \]

\[G_2 \]

\[G_3 \]

\[G_4 \]

\[G_5 \]
$\text{Span} \ (DB = \{ G_1, G_2, \ldots, G_n \})$

$F_i \ : \ \text{find edge tree in lex order}$

\[\text{ac} \quad \text{bb} \quad \text{cc} \quad \text{aa} \quad \text{ac} \quad \text{bc} \]

for each edge graph $g_i \in F_i$

$\text{extend} \ (g_i)$

$\text{extend} \ (g_i, DB)$

If $\text{canonical} \ (g_i)$

then $\text{compute support of } g_i \ \text{in } DB$

if $\text{sup} (g_i) \geq \text{minsup}$

print g_i

Application:

local context $G(x)$

Large social network (labeled)

classify the node (Y, N)

$S \setminus \{v_1, v_2, \ldots, v_n\}$
\[D_B = \{ G_1, G_2, \ldots, G_N \} \]

Find all frequent subgraphs (similar local context) and narrow the closed ones.

\[C = \{ \text{closed frequent subgraphs} \} = \{ g_1, g_2, \ldots, g_m \} \]

\[G(v_1) \]
\[G(v_2) \]
\[G(v_n) \]

\[K(v_i, v_j) = \text{ # a common subgraph} \]

\[\mathbf{K} = N \times N \]