Chap. 20: Linear Discriminant Analysis
Given labeled data consisting of d-dimensional points x_i along with their classes y_i, the goal of linear discriminant analysis (LDA) is to find a vector w that maximizes the separation between the classes after projection onto w.

The key difference between principal component analysis and LDA is that the former deals with unlabeled data and tries to maximize variance, whereas the latter deals with labeled data and tries to maximize the discrimination between the classes.
Let D_i denote the subset of points labeled with class c_i, i.e., $D_i = \{x_j | y_j = c_i\}$, and let $|D_i| = n_i$ denote the number of points with class c_i. We assume that there are only $k = 2$ classes.

The projection of any d-dimensional point x_i onto a unit vector w is given as

$$x'_i = \left(\frac{w^T x_i}{w^T w} \right) w = (w^T x_i) w = a_i w$$

where a_i specifies the offset or coordinate of x'_i along the line w:

$$a_i = w^T x_i$$

The set of n scalars $\{a_1, a_2, \ldots, a_n\}$ represents the mapping from \mathbb{R}^d to \mathbb{R}, that is, from the original d-dimensional space to a 1-dimensional space (along w).
Projection onto \mathbf{w}: Iris 2D Data

iris-setosa as class c_1 (circles), and the other two Iris types as class c_2 (triangles)
\begin{align*}
\frac{\sigma_1^2}{\sigma_2^2} &= \frac{1}{n} \sum (x_i - \mu)^2 \\
S_1^2 &= \sum (x_i - \mu)^2 \\
J &= \frac{m_{Gx}}{\beta} \left\{ \frac{2}{\frac{(M_1 - M_2)}{S_1^2 + S_2^2}} \right\}
\end{align*}
Optimal Linear Discriminant Direction
Optimal Linear Discriminant

The mean of the projected points is given as:

\[m_1 = \mathbf{w}^T \mu_1 \quad \quad \quad m_2 = \mathbf{w}^T \mu_2 \]

To maximize the separation between the classes, we maximize the difference between the projected means, \(|m_1 - m_2|\). However, for good separation, the variance of the projected points for each class should also not be too large. LDA maximizes the separation by ensuring that the scatter \(s_i^2 \) for the projected points within each class is small, where scatter is defined as

\[s_i^2 = \sum_{x_j \in D_i} (a_j - m_i)^2 = n_i \sigma_i^2 \]

where \(\sigma_i^2 \) is the variance for class \(c_i \).
\[w^T \left(\mathbf{r}_1 \times \mathbf{r}_2 \right) \left(\mathbf{r}_1 - \mathbf{r}_2 \right) \]

\[\mathbf{W}^T \left(\begin{array} \mathbf{B} \\ \end{array} \right) \mathbf{w} \]
We incorporate the two LDA criteria, namely, maximizing the distance between projected means and minimizing the sum of projected scatter, into a single maximization criterion called the *Fisher LDA objective*:

\[
\max_w J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}
\]

In matrix terms, we can rewrite \((m_1 - m_2)^2\) as follows:

\[
(m_1 - m_2)^2 = \left(w^T (\mu_1 - \mu_2) \right)^2 = w^T B w
\]

where \(B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T\) is a \(d \times d\) rank-one matrix called the *between-class scatter matrix*.

The projected scatter for class \(c_i\) is given as

\[
s_i^2 = \sum_{x_j \in D_i} (w^T x_j - w^T \mu_i)^2 = w^T \left(\sum_{x_j \in D_i} (x_j - \mu_i)(x_j - \mu_i)^T \right) w = w^T S_i w
\]

where \(S_i\) is the *scatter matrix* for \(D_i\).
The combined scatter for both classes is given as

\[s_1^2 + s_2^2 = \mathbf{w}^T \mathbf{S}_1 \mathbf{w} + \mathbf{w}^T \mathbf{S}_2 \mathbf{w} = \mathbf{w}^T (\mathbf{S}_1 + \mathbf{S}_2) \mathbf{w} = \mathbf{w}^T \mathbf{S} \mathbf{w} \]

where the symmetric positive semidefinite matrix \(\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2 \) denotes the *within-class scatter matrix* for the pooled data.

The LDA objective function in matrix form is

\[
\max_{\mathbf{w}} \quad J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{B} \mathbf{w}}{\mathbf{w}^T \mathbf{S} \mathbf{w}}
\]

To solve for the best direction \(\mathbf{w} \), we differentiate the objective function with respect to \(\mathbf{w} \); after simplification it yields the *generalized eigenvalue problem*

\[\mathbf{B} \mathbf{w} = \lambda \mathbf{S} \mathbf{w} \]

where \(\lambda = J(\mathbf{w}) \) is a generalized eigenvalue of \(\mathbf{B} \) and \(\mathbf{S} \). To maximize the objective \(\lambda \) should be chosen to be the largest generalized eigenvalue, and \(\mathbf{w} \) to be the corresponding eigenvector.
Linear Discriminant Algorithm

****LinearDiscriminant** $\{(x_i, y_i)\}_{i=1}^{n}$:

1. $D_i \leftarrow \{x_j \mid y_j = c_i, j = 1, \ldots, n\}$, $i = 1, 2$ // class-specific subsets
2. $\mu_i \leftarrow \text{mean}(D_i)$, $i = 1, 2$ // class means
3. $B \leftarrow (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$ // between-class scatter matrix
4. $Z_i \leftarrow D_i - 1/n_i \mu_i^T$, $i = 1, 2$ // center class matrices
5. $S_i \leftarrow Z_i^T Z_i$, $i = 1, 2$ // class scatter matrices
6. $S \leftarrow S_1 + S_2$ // within-class scatter matrix
7. $\lambda_1, \mathbf{w} \leftarrow \text{eigen}(S^{-1}B)$ // compute dominant eigenvector
The between-class scatter matrix is

\[
B = \begin{pmatrix}
1.587 & -0.693 \\
-0.693 & 0.303
\end{pmatrix}
\]

and the within-class scatter matrix is

\[
S_1 = \begin{pmatrix}
6.09 & 4.91 \\
4.91 & 7.11
\end{pmatrix}
\]
\[
S_2 = \begin{pmatrix}
43.5 & 12.09 \\
12.09 & 10.96
\end{pmatrix}
\]
\[
S = \begin{pmatrix}
49.58 & 17.01 \\
17.01 & 18.08
\end{pmatrix}
\]

The direction of most separation between \(c_1\) and \(c_2\) is the dominant eigenvector corresponding to the largest eigenvalue of the matrix \(S^{-1}B\). The solution is

\[
J(w) = \lambda_1 = 0.11
\]
\[
w = \begin{pmatrix}
0.551 \\
-0.834
\end{pmatrix}
\]
Linear Discriminant Analysis: Two Classes

For the two class scenario, if \mathbf{S} is nonsingular, we can directly solve for \mathbf{w} without computing the eigenvalues and eigenvectors.

The between-class scatter matrix \mathbf{B} points in the same direction as $(\mu_1 - \mu_2)$ because

$$
\mathbf{Bw} = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T \mathbf{w} = b(\mu_1 - \mu_2)
$$

The generalized eigenvectors equation can then be rewritten as

$$
\mathbf{w} = \frac{b}{\lambda} \mathbf{S}^{-1}(\mu_1 - \mu_2)
$$

Because $\frac{b}{\lambda}$ is just a scalar, we can solve for the best linear discriminant as

$$
\mathbf{w} = \mathbf{S}^{-1}(\mu_1 - \mu_2)
$$

We can finally normalize \mathbf{w} to be a unit vector.
Kernel Discriminant Analysis

The goal of kernel LDA is to find the direction vector \mathbf{w} in feature space that maximizes

$$\max_{\mathbf{w}} J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

It is well known that \mathbf{w} can be expressed as a linear combination of the points in feature space

$$\mathbf{w} = \sum_{j=1}^{n} a_j \phi(x_j)$$

The mean for class c_i in feature space is given as

$$\mu_i^\phi = \frac{1}{n_i} \sum_{x_j \in D_i} \phi(x_j)$$

and the covariance matrix for class c_i in feature space is

$$\Sigma_i^\phi = \frac{1}{n_i} \sum_{x_j \in D_i} \left(\phi(x_j) - \mu_i^\phi \right) \left(\phi(x_j) - \mu_i^\phi \right)^T$$
Kernel Discriminant Analysis

The between-class scatter matrix in feature space is

$$B_\phi = (\mu_1^\phi - \mu_2^\phi)(\mu_1^\phi - \mu_2^\phi)^T$$

and the within-class scatter matrix in feature space is

$$S_\phi = n_1 \Sigma_1^\phi + n_2 \Sigma_2^\phi$$

S_ϕ is a $d \times d$ symmetric, positive semidefinite matrix, where d is the dimensionality of the feature space.

The best linear discriminant vector w in feature space is the dominant eigenvector, which satisfies the expression

$$\left(S_\phi^{-1} B_\phi \right) w = \lambda w$$

where we assume that S_ϕ is non-singular.
The projected mean for class c_i is given as

$$m_i = w^T \mu_i^\phi = \frac{1}{n_i} \sum_{j=1}^{n} \sum_{x_k \in D_i} a_j K(x_j, x_k) = a^T m_i$$

where $a = (a_1, a_2, \ldots, a_n)^T$ is the weight vector, and

$$m_i = \frac{1}{n_i} \left(\begin{array}{c} \sum_{x_k \in D_i} K(x_1, x_k) \\ \sum_{x_k \in D_i} K(x_2, x_k) \\ \vdots \\ \sum_{x_k \in D_i} K(x_n, x_k) \end{array} \right) = \frac{1}{n_i} K_{c_i} 1_{n_i}$$

where K_{c_i} is the $n \times n_i$ subset of the kernel matrix, restricted to columns belonging to points only in D_i, and 1_{n_i} is the n_i-dimensional vector all of whose entries are one.

The separation between the projected means is thus

$$(m_1 - m_2)^2 = (a^T m_1 - a^T m_2)^2 = a^T M a$$

where $M = (m_1 - m_2)(m_1 - m_2)^T$ is the between-class scatter matrix.
We can compute the projected scatter for each class, s_1^2 and s_2^2, purely in terms of the kernel function, as follows:

$$s_1^2 = \sum_{x_i \in D_1} \left\| w^T \phi(x_i) - w^T \mu_1 \phi \right\|^2 = a^T \left(\left(\sum_{x_i \in D_1} K_i K_i^T \right) - n_1 m_1 m_1^T \right) a = a^T N_1 a$$

where K_i is the ith column of the kernel matrix, and N_1 is the class scatter matrix for c_1.

The sum of projected scatter values is then given as

$$s_1^2 + s_2^2 = a^T (N_1 + N_2) a = a^T N a$$

where N is the $n \times n$ within-class scatter matrix.
Kernel LDA

The kernel LDA maximization condition is

$$\max_w J(w) = \max_a J(a) = \frac{a^T Ma}{a^T Na}$$

The weight vector a is the eigenvector corresponding to the largest eigenvalue of the generalized eigenvalue problem:

$$Ma = \lambda_1 Na$$

When there are only two classes a can be obtained directly:

$$a = N^{-1} (m_1 - m_2)$$

To normalize w to be a unit vector we scale a by $\frac{1}{\sqrt{a^T Ka}}$.

We can project any point x onto the discriminant direction as follows:

$$w^T \phi(x) = \sum_{j=1}^{n} a_j \phi(x_j)^T \phi(x) = \sum_{j=1}^{n} a_j K(x_j, x)$$
Kernel Discriminant Analysis Algorithm

Kernel Discriminant (D = {(x_i, y_i)}_{i=1}^n, K):

1. K ← \{K(x_i, x_j)\}_{i,j=1,...,n} // compute n × n kernel matrix
2. K^{c_i} ← \{K(j, k) | y_k = c_i, 1 \leq j, k \leq n\}, i = 1, 2 // class kernel matrix
3. m_i ← \frac{1}{n_i}K^{c_i}1_{n_i}, i = 1, 2 // class means
4. M ← (m_1 - m_2)(m_1 - m_2)^T // between-class scatter matrix
5. N_i ← K^{c_i}(I_{n_i} - \frac{1}{n_i}1_{n_i}1_{n_i}^T)(K^{c_i})^T, i = 1, 2 // class scatter matrices
6. N ← N_1 + N_2 // within-class scatter matrix
7. \lambda_1, a ← \text{eigen}(N^{-1}M) // compute weight vector
8. a ← \frac{a}{\sqrt{a^T K a}} // normalize w to be unit vector
Kernel Discriminant Analysis: Quadratic Homogeneous Kernel

Iris 2D Data: c_1 (circles; iris-virginica) and c_2 (triangles; other two Iris types).
Kernel Function: $K(x_i, x_j) = (x_i^T x_j)^2$.

Contours of constant projection onto optimal kernel discriminant.
Kernel Discriminant Analysis: Quadratic Homogeneous Kernel

Iris 2D Data: \(c_1 \) (circles; iris-virginica) and \(c_2 \) (triangles; other two Iris types).

Kernel Function: \(K(x_i, x_j) = (x_i^T x_j)^2 \).

Projection onto Optimal Kernel Discriminant
Kernel Feature Space and Optimal Discriminant

Iris 2D Data: c_1 (circles; \textit{iris-virginica}) and c_2 (triangles; other two Iris types). Kernel Function: $K(x_i, x_j) = (x_i^T x_j)^2$.