Chapter 5: Kernel Methods

Mohammed J. Zaki1 Wagner Meira Jr.2

1Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

2Department of Computer Science Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

$k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$
For mining and analysis, it is important to find a suitable data representation. For example, for complex data such as text, sequences, images, and so on, we must typically extract or construct a set of attributes or features, so that we can represent the data instances as multivariate vectors.

Given a data instance \(x \) (e.g., a sequence), we need to find a mapping \(\phi \), so that \(\phi(x) \) is the vector representation of \(x \).

Even when the input data is a numeric data matrix a nonlinear mapping \(\phi \) may be used to discover nonlinear relationships.

The term input space refers to the data space for the input data \(x \) and feature space refers to the space of mapped vectors \(\phi(x) \).
A full kernel matrix is represented by a square matrix of size $n \times n$, where n is the number of samples. The computational complexity for operations involving this matrix is $O(n^2)$. The matrix is denoted as K and includes terms K_{ij} for $i, j = 1, 2, ..., n$. The diagonal terms correspond to self-kernel values for each sample, and the off-diagonal terms represent kernel values between different samples.
Sequence-based Features

Consider a dataset of DNA sequences over the alphabet $\Sigma = \{A, C, G, T\}$. One simple feature space is to represent each sequence in terms of the probability distribution over symbols in Σ. That is, given a sequence x with length $|x| = m$, the mapping into feature space is given as

$$\phi(x) = \{P(A), P(C), P(G), P(T)\}$$

where $P(s) = \frac{n_s}{m}$ is the probability of observing symbol $s \in \Sigma$, and n_s is the number of times s appears in sequence x.

For example, if $x = ACAGCAGTA$, with $m = |x| = 9$, since A occurs four times, C and G occur twice, and T occurs once, we have

$$\phi(x) = \left(\frac{4}{9}, \frac{2}{9}, \frac{2}{9}, \frac{1}{9}\right) = (0.44, 0.22, 0.22, 0.11)$$

We can compute larger feature spaces by considering, for example, the probability distribution over all substrings or words of size up to k over the alphabet Σ.
Consider the mapping ϕ that takes as input a vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ and maps it to a “quadratic” feature space via the nonlinear mapping

$$
\phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)^T \in \mathbb{R}^3
$$

For example, the point $\mathbf{x} = (5.9, 3)^T$ is mapped to the vector

$$
\phi(\mathbf{x}) = (5.9^2, 3^2, \sqrt{2} \cdot 5.9 \cdot 3)^T = (34.81, 9, 25.03)^T
$$

We can then apply well-known linear analysis methods in the feature space.
Kernel Method

Let \mathcal{I} denote the input space, which can comprise any arbitrary set of objects, and let $\mathbf{D} = \{x_i\}_{i=1}^n \subset \mathcal{I}$ be a dataset comprising n objects in the input space. Let $\phi: \mathcal{I} \rightarrow \mathcal{F}$ be a mapping from the input space \mathcal{I} to the feature space \mathcal{F}.

Kernel methods avoid explicitly transforming each point x in the input space into the mapped point $\phi(x)$ in the feature space. Instead, the input objects are represented via their pairwise similarity values comprising the $n \times n$ kernel matrix, defined as

$$
K = \begin{pmatrix}
K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_n) \\
K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_n) \\
\vdots & \vdots & \ddots & \vdots \\
K(x_n, x_1) & K(x_n, x_2) & \cdots & K(x_n, x_n)
\end{pmatrix}
$$

$K: \mathcal{I} \times \mathcal{I} \rightarrow \mathbb{R}$ is a kernel function on any two points in input space, which should satisfy the condition

$$
K(x_i, x_j) = \phi(x_i)^T \phi(x_j)
$$

Intuitively, we need to be able to compute the value of the dot product using the original input representation x, without having recourse to the mapping $\phi(x)$.
Let $\phi(x) \rightarrow x$ be the *identity kernel*. This leads to the *linear kernel*, which is simply the dot product between two input vectors:

$$\phi(x)^T \phi(y) = x^T y = K(x, y)$$

For example, if $x_1 = (5.9 \ 3)^T$ and $x_2 = (6.9 \ 3.1)^T$, then we have

$$K(x_1, x_2) = x_1^T x_2 = 5.9 \times 6.9 + 3 \times 3.1 = 40.71 + 9.3 = 50.01$$
Kernel Trick

Many data mining methods can be *kernelized* that is, instead of mapping the input points into feature space, the data can be represented via the $n \times n$ kernel matrix K, and all relevant analysis can be performed over K.

This is done via the *kernel trick*, that is, show that the analysis task requires only dot products $\phi(x_i)^T \phi(x_j)$ in feature space, which can be replaced by the corresponding kernel $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ that can be computed efficiently in input space.

Once the kernel matrix has been computed, we no longer even need the input points x_i, as all operations involving only dot products in the feature space can be performed over the $n \times n$ kernel matrix K.
A function K is called a **positive semidefinite kernel** if and only if it is symmetric:

$$K(x_i, x_j) = K(x_j, x_i)$$

and the corresponding kernel matrix K for any subset $D \subset \mathcal{I}$ is positive semidefinite, that is,

$$a^T K a \geq 0, \text{ for all vectors } a \in \mathbb{R}^n$$

which implies that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) \geq 0, \text{ for all } a_i \in \mathbb{R}, i \in [1, n]$$
If \(K(x_i, x_j) \) represents the dot product \(\phi(x_i)^T \phi(x_j) \) in some feature space, then \(K \) is a positive semidefinite kernel.

First, \(K \) is symmetric since the dot product is symmetric, which also implies that \(K \) is symmetric.

Second, \(K \) is positive semidefinite because

\[
\begin{align*}
 a^T K a &= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) \\
 &= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \phi(x_i)^T \phi(x_j) \\
 &= \left(\sum_{i=1}^{n} a_i \phi(x_i) \right)^T \left(\sum_{j=1}^{n} a_j \phi(x_j) \right) \\
 &= \left\| \sum_{i=1}^{n} a_i \phi(x_i) \right\|^2 \geq 0
\end{align*}
\]
Empirical Kernel Map

We now show that if we are given a positive semidefinite kernel \(K: \mathcal{I} \times \mathcal{I} \to \mathbb{R} \), then it corresponds to a dot product in some feature space \(\mathcal{F} \).

Define the map \(\phi \) as follows:

\[
\phi(x) = \left((K(x_1, x), K(x_2, x), \ldots, K(x_n, x)) \right)^T \in \mathbb{R}^n
\]

The empirical kernel map is defined as

\[
\phi(x) = K^{-1/2} \cdot \left((K(x_1, x), K(x_2, x), \ldots, K(x_n, x)) \right)^T \in \mathbb{R}^n
\]

so that the dot product yields

\[
\phi(x_i)^T \phi(x_j) = \left(K^{-1/2} K_i \right)^T \left(K^{-1/2} K_j \right)
\]

\[
= K_i^T (K^{-1/2}K^{-1/2}) K_j
\]

\[
= K_i^T K^{-1} K_j
\]

where \(K_i \) is the \(i \)\(^{th} \) column of \(K \).

Over all pairs of mapped points, we have

\[
\left\{K_i^T K^{-1} K_j\right\}_{i,j=1}^n = K K^{-1} K = K
\]
The Mercer kernel map also corresponds to a dot product in feature space. Since \(K \) is a symmetric positive semidefinite matrix, it has real and non-negative eigenvalues. It can be decomposed as follows:

\[
K = U \Lambda U^T
\]

where \(U \) is the orthonormal matrix of eigenvectors \(u_i = (u_{i1}, u_{i2}, \ldots, u_{in})^T \in \mathbb{R}^n \) (for \(i = 1, \ldots, n \)), and \(\Lambda \) is the diagonal matrix of eigenvalues, with both arranged in non-increasing order of the eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0 \):

The Mercer map \(\phi \) is given as

\[
\phi(x_i) = \sqrt{\Lambda} U_i
\]

where \(U_i \) is the \(i \)th row of \(U \).

The kernel value is simply the dot product between scaled rows of \(U \):

\[
\phi(x_i)^T \phi(x_j) = \left(\sqrt{\Lambda} U_i \right)^T \left(\sqrt{\Lambda} U_j \right) = U_i^T \Lambda U_j
\]
Polynomial Kernel

Polynomial kernels are of two types: homogeneous or inhomogeneous. Let \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^d \). The (inhomogeneous) polynomial kernel is defined as

\[
K_q(\mathbf{x}, \mathbf{y}) = (\phi(\mathbf{x})^T \phi(\mathbf{y}))^q = (c + \mathbf{x}^T \mathbf{y})^q
\]

where \(q \) is the degree of the polynomial, and \(c \geq 0 \) is some constant. When \(c = 0 \) we obtain the homogeneous kernel, comprising only degree \(q \) terms. When \(c > 0 \), the feature space is spanned by all products of at most \(q \) attributes. This can be seen from the binomial expansion

\[
K_q(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^q = \sum_{k=1}^{q} \binom{q}{k} c^{q-k} (\mathbf{x}^T \mathbf{y})^k
\]

The most typical cases are the linear (with \(q = 1 \)) and quadratic (with \(q = 2 \)) kernels, given as

\[
K_1(\mathbf{x}, \mathbf{y}) = c + \mathbf{x}^T \mathbf{y} \\
K_2(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}^T \mathbf{y})^2
\]
\[d = 3 \]

\[
\begin{array}{cccc}
X_1 & X_2 & X_3 \\
\hline
0 & 1 & 0.5 & 2 \\
1 & 2 & 3 \\
\end{array}
\]

\[c = 1 \]

\[K(x, x') = \left(1 + \frac{x_1^T x_2}{\alpha} \right)^2 \]

\[= (1 + 7.1)^2 = (8.1)^2 \leq 67. \\
\]

\[q = 0 \quad q = 1 \quad q = 2 \]

\[
\begin{array}{cccccc}
1 & x_1 & x_2 & x_3 & x_1^2 & x_2^2 & x_3^2 & x_1x_2 & x_1x_3 & x_2x_3 \\
\hline
1 & 1 & 2 & 3 & 1 & 4 & 9 & 2 & 3 & 6 \\
\end{array}
\]

\[\phi(x_1) \phi(x_2) \]
The Gaussian kernel, also called the Gaussian radial basis function (RBF) kernel, is defined as

$$K(x, y) = \exp\left\{ -\frac{\|x - y\|^2}{2\sigma^2} \right\}$$

where $\sigma > 0$ is the spread parameter that plays the same role as the standard deviation in a normal density function.

Note that $K(x, x) = 1$, and further that the kernel value is inversely related to the distance between the two points x and y.

A feature space for the Gaussian kernel has infinite dimensionality.
Basic data analysis tasks that can be performed solely via kernels, without instantiating $\phi(x)$.

Norm of a Point: We can compute the norm of a point $\phi(x)$ in feature space as follows:

$$\|\phi(x)\|^2 = \phi(x)^T \phi(x) = K(x, x)$$

which implies that $\|\phi(x)\| = \sqrt{K(x, x)}$.

Distance between Points: The distance between $\phi(x_i)$ and $\phi(x_j)$ is

$$\|\phi(x_i) - \phi(x_j)\|^2 = \|\phi(x_i)\|^2 + \|\phi(x_j)\|^2 - 2\phi(x_i)^T \phi(x_j)$$

$$= K(x_i, x_i) + K(x_j, x_j) - 2K(x_i, x_j)$$

which implies that

$$\|\phi(x_i) - \phi(x_j)\| = \sqrt{K(x_i, x_i) + K(x_j, x_j) - 2K(x_i, x_j)}$$
Basic Kernel Operations in Feature Space

Kernel Value as Similarity: We can rearrange the terms in

\[
\|\phi(x_i) - \phi(x_j)\|^2 = K(x_i, x_i) + K(x_j, x_j) - 2K(x_i, x_j)
\]

to obtain

\[
\frac{1}{2} \left(\|\phi(x_i)\|^2 + \|\phi(x_j)\|^2 - \|\phi(x_i) - \phi(x_j)\|^2 \right) = K(x_i, x_j) = \phi(x_i)^T \phi(x_j)
\]

The more the distance \(\|\phi(x_i) - \phi(x_j)\|\) between the two points in feature space, the less the kernel value, that is, the less the similarity.

Mean in Feature Space: The mean of the points in feature space is given as

\[
\mu_\phi = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)
\]

Thus, we cannot compute it explicitly. However, the the squared norm of the mean is:

\[
\|\mu_\phi\|^2 = \mu_\phi^T \mu_\phi = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} K(x_i, x_j)
\]

(1)

The squared norm of the mean in feature space is simply the average of the values in the kernel matrix \(K\).
Input space

\[
M_\phi = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)
\]

\[
M_\phi^T M_\phi = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi(x_i)^T \phi(x_j) \cdot k(x_i, x_j)
\]
Total Variance in Feature Space: The total variance in feature space is obtained by taking the average squared deviation of points from the mean in feature space:

\[
\sigma_{\Phi}^2 = \frac{1}{n} \sum_{i=1}^{n} \| \phi(x_i) - \mu_{\phi} \|^2 = \frac{1}{n} \sum_{i=1}^{n} K(x_i, x_i) - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} K(x_i, x_j)
\]

Centering in Feature Space We can center each point in feature space by subtracting the mean from it, as follows:

\[
\hat{\phi}(x_i) = \phi(x_i) - \mu_{\phi}
\]

The kernel between centered points is given as

\[
\hat{K}(x_i, x_j) = \hat{\phi}(x_i)^T \hat{\phi}(x_j)
\]

More compactly, we have:

\[
\hat{K} = \left(I - \frac{1}{n} 1_{n \times n} \right) K \left(I - \frac{1}{n} 1_{n \times n} \right) \]

where \(1_{n \times n}\) is the \(n \times n\) matrix of ones.
$D \rightarrow \phi \rightarrow K = \frac{n \times n}{\phi(x_i)^T \phi(x_j)} \rightarrow \phi(x_i) - \mu \beta \rightarrow K^c = (\phi(x_i) - \mu \beta)^T (\phi(x_j) - \mu \beta)$
Normalizing in Feature Space: The dot product between normalized points in feature space corresponds to the cosine of the angle between them

\[\phi_n(x_i)^T \phi_n(x_j) = \frac{\phi(x_i)^T \phi(x_j)}{\| \phi(x_i) \| \cdot \| \phi(x_j) \|} = \cos \theta \]

If the mapped points are both centered and normalized, then a dot product corresponds to the correlation between the two points in feature space.

The normalized kernel matrix, \(K_n \), can be computed using only the kernel function \(K \), as

\[K_n(x_i, x_j) = \frac{\phi(x_i)^T \phi(x_j)}{\| \phi(x_i) \| \cdot \| \phi(x_j) \|} = \frac{K(x_i, x_j)}{\sqrt{K(x_i, x_i) \cdot K(x_j, x_j)}} \]

\(K_n \) has all diagonal elements as 1.
Spectrum Kernel for Strings

Given alphabet Σ, the l-spectrum feature map is the mapping $\phi: \Sigma^* \rightarrow \mathbb{R}^{|\Sigma|^l}$ from the set of substrings over Σ to the $|\Sigma|^l$-dimensional space representing the number of occurrences of all possible substrings of length l, defined as

$$\phi(x) = \left(\cdots, \#(\alpha), \cdots \right)_{\alpha \in \Sigma^l}^T$$

where $\#(\alpha)$ is the number of occurrences of the l-length string α in x.

The (full) spectrum map considers all lengths from $l = 0$ to $l = \infty$, leading to an infinite dimensional feature map $\phi : \Sigma^* \rightarrow \mathbb{R}^\infty$:

$$\phi(x) = \left(\cdots, \#(\alpha), \cdots \right)_{\alpha \in \Sigma^*}^T$$

where $\#(\alpha)$ is the number of occurrences of the string α in x.

The (l-)spectrum kernel between two strings x_i, x_j is simply the dot product between their (l-)spectrum maps:

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

The (full) spectrum kernel can be computed efficiently via suffix trees in $O(n + m)$ time for two strings of length n and m.
Diffusion Kernels on Graph Nodes

Let S be some symmetric similarity matrix between nodes of a graph $G = (V, E)$. For instance, S can be the (weighted) adjacency matrix A or the Laplacian matrix $L = A - \Delta$ (or its negation), where Δ is the degree matrix for an undirected graph G, defined as $\Delta(i, i) = d_i$ and $\Delta(i, j) = 0$ for all $i \neq j$, and d_i is the degree of node i.

Power Kernels: Summing up the product of the base similarities over all l-length paths between two nodes, we obtain the l-length similarity matrix $S^{(l)}$, which is simply the lth power of S, that is,

$$S^{(l)} = S^l$$

Even path lengths lead to positive semidefinite kernels, but odd path lengths are not guaranteed to do so, unless the base matrix S is itself a positive semidefinite matrix.

Power kernel K can be obtained via the eigen-decomposition of S^l:

$$K = S^l = (U \Lambda U^T)^l = U (\Lambda^l) U^T$$
The exponential diffusion kernel we can obtain a new kernel between nodes of a graph by paths of all possible lengths, but damps the contribution of longer paths

\[
K = \sum_{l=0}^{\infty} \frac{1}{l!} \beta^l S^l
\]

\[
= I + \beta S + \frac{1}{2!} \beta^2 S^2 + \frac{1}{3!} \beta^3 S^3 + \cdots
\]

\[
= \exp\{\beta S\}
\]

where \(\beta\) is a damping factor, and \(\exp\{\beta S\}\) is the matrix exponential. The series on the right hand side above converges for all \(\beta \geq 0\).

Substituting \(S = U \Lambda U^T\) the kernel can be computed as

\[
K = I + \beta S + \frac{1}{2!} \beta^2 S^2 + \cdots
\]

\[
= U \begin{pmatrix}
\exp\{\beta \lambda_1\} & 0 & \cdots & 0 \\
0 & \exp\{\beta \lambda_2\} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \exp\{\beta \lambda_n\}
\end{pmatrix} U^T
\]

where \(\lambda_i\) is an eigenvalue of \(S\).
The von Neumann diffusion kernel is defined as

\[K = \sum_{l=0}^{\infty} \beta^l S^l \]

where \(\beta \geq 0 \). Expanding and rearranging the terms, we obtain

\[K = (I - \beta S)^{-1} \]

The kernel is guaranteed to be positive semidefinite if \(|\beta| < 1/\rho(S) \), where \(\rho(S) = \max_i \{|\lambda_i|\} \) is called the spectral radius of \(S \), defined as the largest eigenvalue of \(S \) in absolute value.
Graph Diffusion Kernel: Example

Adjacency and degree matrices are given as

\[A = \begin{pmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix} \quad \Delta = \begin{pmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix} \]
Let the base similarity matrix S be the negated Laplacian matrix $S = -L = A - D = \begin{pmatrix} -2 & 0 & 1 & 1 & 0 \\ 0 & -2 & 1 & 0 & 1 \\ 1 & 1 & -3 & 1 & 0 \\ 1 & 0 & 1 & -3 & 1 \\ 0 & 1 & 0 & 1 & -2 \end{pmatrix}$

The eigenvalues of S are as follows:

$\lambda_1 = 0 \quad \lambda_2 = -1.38 \quad \lambda_3 = -2.38 \quad \lambda_4 = -3.62 \quad \lambda_5 = -4.62$

and the eigenvectors of S are

$U = \begin{pmatrix} u_1 & u_2 & u_3 & u_4 & u_5 \\ 0.45 & -0.63 & 0.00 & 0.63 & 0.00 \\ 0.45 & 0.51 & -0.60 & 0.20 & -0.37 \\ 0.45 & -0.20 & -0.37 & -0.51 & 0.60 \\ 0.45 & -0.20 & 0.37 & -0.51 & -0.60 \\ 0.45 & 0.51 & 0.60 & 0.20 & 0.37 \end{pmatrix}$
Graph Diffusion Kernel: Example

Assuming $\beta = 0.2$, the exponential diffusion kernel matrix is given as

$$K = \exp\{0.2S\} = U \begin{pmatrix} \exp\{0.2\lambda_1\} & 0 & \cdots & 0 \\ 0 & \exp\{0.2\lambda_2\} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \exp\{0.2\lambda_n\} \end{pmatrix} U^T$$

$$= \begin{pmatrix} 0.70 & 0.01 & 0.14 & 0.14 & 0.01 \\ 0.01 & 0.70 & 0.13 & 0.03 & 0.14 \\ 0.14 & 0.13 & 0.59 & 0.13 & 0.03 \\ 0.14 & 0.03 & 0.13 & 0.59 & 0.13 \\ 0.01 & 0.14 & 0.03 & 0.13 & 0.70 \end{pmatrix}$$

Assuming $\beta = 0.2$, the von Neumann kernel is given as

$$K = U(I - 0.2\Lambda)^{-1}U^T = \begin{pmatrix} 0.75 & 0.02 & 0.11 & 0.11 & 0.02 \\ 0.02 & 0.74 & 0.10 & 0.03 & 0.11 \\ 0.11 & 0.10 & 0.66 & 0.10 & 0.03 \\ 0.11 & 0.03 & 0.10 & 0.66 & 0.10 \\ 0.02 & 0.11 & 0.03 & 0.10 & 0.74 \end{pmatrix}$$