Breadth First Search

\[G = (V, E) \]

\[w(x, y) = \text{weight on the edge } (x, y) \]

positive

"length" = weight = cost of the entire path

Task: finding shortest paths

\[\rightarrow \text{Dijkstra's method (weighted, +ve)} \]

\[\rightarrow \text{BFS (0/1, e,g,o)} \]

\[G, \text{ source } x, \text{ find shortest path to all other vertices} \]

BFS:
Dijkstra's Algorithm

Replace # of hops with weighted hops.

Always pick the current smallest cost vertex and expand from.

\[\text{PQ: Array} \quad \text{delete min: } O(1) \]
\[\text{insert/decrease: } O(1) \]

\[\text{Dijkstra's: } O(|V|) \quad \text{delete mins} \]

\[\text{Total cost: } O((|V| + |E|) \log |V|) \]
Dijkstra's: $O(|V|) \text{ delete mins}$
$O(|V| + |E|) \text{ decrease keys}$

Binary PQ

$|V| \log |V| + (|E| \log |V|)$ vs $O(|V|^2)$

Good for sparse graphs

$|E| = O(|V|)$

$\approx O(|V| \log |V|)$

Dense:

$|E| = O(|V|^2)$

$|V|^2 \log |V| \approx O(|V|^2)$

Array PQ

Negative weights

Counting example to Dijkstra's
Bellman-Ford method

Update the weights of all vertices in each iteration:

For all vertices \(u \in V \) for all neighbors \(y \) of \(u \), update weight:

\[
\text{cost}(u) + w(u, y) \leq \text{cost}(y)
\]

\[
\text{cost}(y) = \text{cost}(u) + w(u, y)
\]

Max # of edges in any path from \(x \): \(|V| - 1 \)

Exact \(|V| - 1 \) iterations
Exactly \(|V|-1\) iterations

In each iteration we update all edges

Total cost: \((|V|-1) \times (|V| + |E|)\)

\[= \frac{|V|^2 + |V| \cdot |E|}{|V|} \]

Sparse: \(O(|V|)\)

Dense: \(O(|V| \cdot |E|)\)

\(\implies O(|V|^2)\)
If we restrict to "paks" Bellman Ford will not work

1) Find all possible paths between any pair (X, Y)
 choose the min cost path

Exponential time method

Greedy Algorithms

"Local" information

-> pick the best available option

O(1V^2 1E)
Minimum Spanning Tree

Output: \(G = (V, E) \), with weights

Output:

1) Tree

2) Span all the vertices

\[T = (V', E') \]

Spanning tree: set of vertices in \(T \) include all vertices in \(G \)

\[E' \subseteq E \]

Cost of \(T = (V', E') \)

\[\text{Cost}(T) = \sum_{e \in E'} w(e) \]

Find a tree \(T \) with smallest possible \(\text{Cost}(T) \)

\[T_1 \text{ is a spanning tree} \]

\[\text{Cost}(T_1) = 23 \]
Prim's Algorithm (similar to Dijkstra's)

- \(O(|E_1| \log |E_1|) \)
 1) sort the edge in increasing order

 2) \(T = \{ \text{1st edge in sorted order} \} \)

 for each edge in sorted order \(e \in E_1 \)

 add 'if and only if one end point in T'

 add edge to \(T \)

 if one end point in \(T \) & we do not create a cycle

- \(O(|E_1| \log |E_1| + |E_1|) \)

(\(G \) is undirected)

1) \(ac, cd, ad, ab, be, bd, ef, ef, df \)

2) \(T \)

\(T = \{ \{a, c\} \} \)

picture

1) sort the edges

\(|T_2| = 16 \)
picture

\[
\begin{align*}
\{a, c, d\} \\
\{a, c, d, b\} \\
\{a, c, d, b, f\} \\
\{c, c, d, b, f\}
\end{align*}
\]

1) sort the edges
2) \(T = \{ \text{smallest edge} \} \)

Iteratively add the least weight edge with one end point not in \(T \)

greedy: add the least cost edge