MST: Minimum Spanning Tree

Given \(G = (V, E) \), with weights

so let a min \(G \) tree, \(T = (V, E') \), \(E' \subseteq E \)

\[
\text{cost}(T) = \sum_{e \in E'} w(e)
\]

Prim's Algorithm

1) sort edges \(G \) in increasing order of weight

\[|E| \log |E| \]

2) Add edges in sorted order, \(y \) exactly one end point is in \(T \)

\[
\sum \text{cost} 3
\]
Prim's:

Invariant:
The current partial MST is always connected.

Pick a start vertex \(u \)

- \(C_M(u_0) = 0 \)
- \(\gamma(u) \) all other vertices = \(\infty \)

0(\(|V| \)) Insert all vertices into a PQ (Priority Queue)

While PQ not empty

- \(u = \text{deleqmin}(PQ) \)
- For all neighbors \(x \) of \(u \)
 \(\gamma(x) > \gamma(x) \)

\[
\begin{array}{c|c|c}
A & 0 & 0 \\
\hline
\infty & -\infty & \times \\
B & 8 & y \\
\end{array}
\]
\[y (x) > w(u, x) \]
\[c(u, x) = w(u, x) \]
\[\text{decrease key } (x, c(u, x)) \]

\[O(|V|) \text{ delete min} \quad | \quad \text{binary tree PQ} \]
\[O(|E|) \text{ decrease key} \]
\[O(|V| \log |V|) \text{ cry} \]
\[O((|V| + |E|) \log |V|) \]

Why does greedy strategy work for MST?

CUT property:
If we have a cut, then we can always choose the smallest edge that crosses the cut.

\[G : \text{ graph} \]
\[S \subset V : \text{ subset of vertices} \]
\[(S, V - S) \text{ is a cut (or partition) of } G \]
Prove: Given \(G_j \) and given a partial MST, \(T \).

1. Select a cut \(T \) with respect to \(T \).
2. Pick the smaller weight edge \(e \) and add to \(T \).
3. We will show that \(T' \) is part of some MST.

\[\text{Prove: Given } G_j \text{ and given a partial MST, } T \]

\[T' = T \cup \{ e \} \]

We will show that \(T' \) is part of some MST.

\[\omega(e) \leq \omega(e) \]
Case 1: the is only one edge that cross the ar e1 in the only one, it is the smallest as well e1 has to be selected.

Case 2: if there are more edge crossing the ar show how selecting the least weight edge is OK!

Consider T':

$$\text{Cost}(T') = \text{Cost}(T_1) + \text{Cost}(T_2) + \omega(e_2)$$

Find T' that includes e_1.

$$T' = T_1 \cup \{e_1\} \cup T_2$$

$$\text{Cost}(T') = \text{Cost}(T_1) + \text{Cost}(T_2) + \omega(e_1)$$

$$\text{Cost}(T') \le \text{Cost}(T)$$

Because $\omega(e_1) \le \omega(e_2)$

but T is an MST, so at least $\text{Cost}(T)$

$$\text{Cost}(T') = \text{Cost}(T)$$
Kruskal’s Algorithm

we maintain a “forest”

Pick set of edge in increasing order of weights

Current “tree” can be disconnected, but there are no cycles

\[\text{SORT} \]

\[\checkmark \text{ac} = 1 \]
\[\checkmark \text{ef} = 1 \]
\[\checkmark \text{cd} = 2 \]
\[\checkmark \text{ab} = 4 \]

\[a - 3x \]
a) sum all edges

b) keep on adding edges in sorted order \(O(|E|) \)

1) check for cycle, each time! \(\text{DFS on the forest} \)

2) stop when we have a single tree & all vertices have been added.

Sorhig \(O(|E| \log |E|) \)

\[|E| = O(|V|^2) \]

\[\log |E| = \log |V|^2 = (2 \log |V|) \]

\[O(|E|) \leftarrow \text{outer for loop} \]

\[\text{detect cycle for each edge} \]

\[\text{DFS: } O(|V| + |E|) \]

\[= O(|V| + |V|) \]

\[= O(|V|) \]

Cost:

\[|E| \log |V| + |E| \cdot |V| \]

Sorhig + Cycle

\[\text{Pimb} \]

Final MST has exactly \(|V| - 1 \) edge, \(V \) vertex.

\(|E'| = |V| - 1 \) edge, \(V \) vertex.

\[\frac{\text{Pimb}}{|V| \log |V| + |E| \log |V|} \]
Correctness: Our property is given a cut that repeats the connector, adding the lower edge that crosses the cut, always leads to some MST.

Union-Find data structure:

Graph:

- a - c
- e - f
- c - d

Find operation: Are they part of the same component? $O(\log |V|)$ time.

Union operation: $O(1)$ merge 2 components into 1.

$|E| \log |V| + O(|E| \log |V|)$
\[|E| \log |V| + O(|E| \log |V|) \]

\[\sum_{e \in E} \quad \text{for each edge} \quad \text{find operations on cycles,} \]

\[= O(|E| \log |V|) \quad \text{Kruskal's time.} \]