Huffman Coding

Variable length prefix free code.

\[\Sigma \subseteq \text{alphabet} \]

\[|\Sigma| = n \]

n characters

Probability

for each character \(i \in \Sigma \)

\[f_i \Rightarrow \text{Count} \]

\[f_i \Rightarrow \text{Probability} \]

\[f_i \times n = \text{Count} \]

String length

Alternatively merge the two smallest "frequencies".

Mississippi

Given: \(\Sigma, S \) (alphabet \& string to encode)

1) Compute \(f_i \) for all \(i \in \Sigma \)

2) Create a PQ \((i, f_i)\) \(\forall i \in \Sigma \)

3) While \(|\text{PQ}| \neq 1 \)

\[O(n) \text{ steps} \]

\[O(\log n) \] steps

\[X = \text{deleteMin} (\text{PQ}) \]

\[Y = \text{deleteMin} (\text{PQ}) \]

Create a new node \(Z = X \cup Y \)

\[f_z = f_x + f_y \]

\[Z \in \text{PQ} \]

\[O(\log n) \]

\[m = 0 \quad v = 0 \]

\[m = 0 \quad v = 0 \]
Huffman coding: $O(n \log n) \leq$ If frequency are already given

$O(1)$ + $O(n \log n)$

Proof of correctness: There may be several min-cost encoding tree.

Show that the cost of the Huffman encoding tree is also minimum.

$$\text{Cost}(T) = \sum_{i=1}^{n} f_i \cdot l_i$$

When f_i is probability, then $\text{Cost}(T) = \text{Expected encoding length per character}$

Assumption: some min encoding tree T

Our tree

$X \leftarrow \text{deterministic}$

$y \leftarrow \text{deterministic}$

X is the least freq node

y is the lowest key

$f_x \leq f_y$

Create a new tree T', switch x & y

$\text{Cost}(T') \leq \text{Cost}(T)$
\[\text{Lecture 17 Page 3} \]

2) Create \(T'' \) from \(T' \), where we switch \(y \) and \(z \).

\[C_{\mathcal{S}_X}(T'') \leq C_{\mathcal{S}_X}(T') = C_{\mathcal{S}_X}(T) \]

\[\Rightarrow C_{\mathcal{S}_X}(T'') = C_{\mathcal{S}_X}(T) \]

Some optimal tree \(T \):

- \(a \) and \(b \) are at the larger depth.
- \(d_T(y) \) : depth of \(y \) in tree \(T \)
- \(d_T(x), d_T(a), d_T(b) \)

\[C_{\mathcal{S}_X}(T) - C_{\mathcal{S}_X}(T') \]

\[= \left(d_T(x) \cdot f_X + d_T(a) \cdot f_a \right) - \left(d_T(x) \cdot f_X + d_T(a) \cdot f_x \right) \]

\[= \left(d_T(x) - d_T(x) \right) \cdot f_X + \left(d_T(a) - d_T(a) \right) \cdot f_a \]

\[= (d_T(x) - d_T(x)) \cdot f_X + (d_T(a) - d_T(a)) \cdot f_a \]

\[= (f_a - f_X) \cdot (d_T(a) - d_T(x)) \]

\[\geq 0 \quad \text{because} \quad f_X \leq f_a \quad \text{and} \quad d_T(a) - d_T(x) \geq 0 \]

\[\Rightarrow C_{\mathcal{S}_X}(T) - C_{\mathcal{S}_X}(T') \geq 0 \]

\[\Rightarrow C_{\mathcal{S}_X}(T) \geq C_{\mathcal{S}_X}(T') \]
Set Cover Problem

- NP Complete -> hard
 - no polynomial time solution

Greedy algo -> give us an approximate solution
 - close to the optimal value

Assume there is a graph
Optimization:
Choose the least # of
nodes/cities
to build a
hospital

Sort the vertices by decreasing degree, select one or
a line until all nodes are "covered," making sure
adjust the degrees by removing already covered vertex!
K < optimal value
Is K = 3 optimal?

Input: \(G = (V, E) \)
- \(N_x \) = neighborhood of \(x \) (all neighbors of \(x \))

Problem statement:
Find the minimal number \(k \) of nodes
\(\{1, 2, \ldots, k\} \)
Such that \(\bigcup_{i=1}^{k} N_i = V \)

Greedy is not optimal
Our the greedy solution is \(O(k \log n) \) factor
away from the optimal.

\(\Rightarrow \) if the optimal solution is \(k \)
then the greedy solution value is \(O(k \log n) \)

If \(k \) is optimal value
\[O = \{1, 2, \ldots, k\} \]

Total vertex in \(G \) is \(|V| = n \).

Observation: There is a vertex \(v \) in \(O \) that covers at least \(\frac{n}{k} \) other vertices.

Proof: Assume that for all \(x \in O \)
\[
|N_x| < \frac{n}{k}
\]

\[
\sum_{x \in O} |N_x| < \frac{n}{k} + \frac{n}{k} + \ldots + \frac{n}{k} = \frac{n}{k} \cdot k = \frac{n}{k} \cdot \frac{n}{k} < \frac{n}{k}
\]

That is a contradiction.

\[n_t : \# of uncovered vertices after \(t \) steps. \]

\[n_0 = n \leftarrow \text{Initially, every node is uncovered} \]

\[n_1 \leq n - \left(\frac{n}{k} \right) \]

\[n_1 \leq n \left(1 - \frac{1}{k} \right) \]

\(n_1 \) nodes remaining, \(k - 1 \) Choice remaining or least higher degree node will cover at least \(\frac{n}{k-1} \) other vertices.

\[\geq \frac{n_1}{k-1} \geq \frac{n_1}{k} \]

\[n_2 \leq n_1 - \frac{n_1}{k} = n \left(1 - \frac{1}{k} \right) \leq n \left(1 - \frac{1}{k} \right) \left(1 - \frac{1}{k} \right) \]

\[n_2 \leq n \left(1 - \frac{1}{k} \right)^2 \]
\[
\begin{align*}
\eta_t & \leq \eta \left(\frac{1 - \frac{1}{k}}{k} \right)^t \leq \eta \left(e^{-\frac{1}{k}} \right)^t \\
\eta_t & \leq \eta \left(e^{-\frac{1}{k}} \right)^t \leq e^{\frac{1}{k}} \\
\text{the solution is} \quad t &= k \log n \\
\eta \left(e^{-\frac{1}{k}} \right)^t & \leq \eta \log n \\
n \cdot e^{-\frac{1}{k}} &= \frac{n}{e^{\log n}} = \frac{n}{n} = 1
\end{align*}
\]

Greedy solution takes at most
\[
t = k \log n \quad \text{steps} = \# \text{ greedy steps}
\]