Network Flows

\[G = (V, E) \]

\[f \leq c(A, B) \]

\[f \leq 2 \]

\[\max \text{ flow} = c(A', B') \]

\[b' = \{ b \}, h' = \{ x, y, z \} \]

\[\text{capacities are integers} \]

Goal: maximize "flow" from \(x \) to \(t \)

1) for each edge \(e \), find a integer

\[c(e) \geq f(e) \geq 0 \]

2) flow has to be conserved at each node

\[f^\text{in} (v) = \sum_{e = (x, v)} f(e) \]

\[f^\text{out} (v) = \sum_{e = (v, u)} f(e) \]

\[\text{incoming flow at } v \]

\[\text{outgoing flow at } v \]
\[f^{\text{out}}(v) = \sum_{e = (v, y)} f(e) \]

\[f^{\text{in}}(v) = f^{\text{out}}(v) \quad \forall v \in V \text{ except for } s \text{ and } t \]

\[f^{\text{out}}(s) = f^{\text{in}}(t) \]

3. Value of the flow:
\[f^{\text{out}}(s) = f^{\text{in}}(t) \leftarrow \text{maximizing task} \]

Max-flow value = min-cut in the graph

If a flow matches the capacity of the minimum cut, then the flow is maximum.

\[V, \text{ a cut is } A, B = V - A \]

such that \(x \in A, t \in B \)

Capacity of cut
\[c(A, B) = \sum_{e = (x, y)} c(x, y) \]

\(x \in A \quad y \in B \)
\[f_{\text{flow}} \leq c(A, B) \quad \forall \text{ cuts} \]

\[\Rightarrow \quad f_{\text{flow}} \leq \text{minimum cut in } G \]

\[\text{Max-flow in } G = \text{min-cut in } G \]

\[f = 20 \]

Keep track of residual capacities:
\[c(e) - f(e) \]

\[e = (y, u) \quad c(e) = 20 \quad f(e) = 20 \]

Negative path

Capacity of s-t path is bounded by the least capacity of any edge on that path

Residual (temp) graph
Stopping criteria:
If no A-T path exists in the residual graph

Ford-Fulkerson Algorithm

1) Find A-T paths in the residual graph (also called augmenting paths)

Also called "virtual" edge (includes a new type of backward edge)

G_f : residual graph
$e = (x,y)$
\[f(e) > 0 \]
Ford - Fulkerson

\[f(e) = 0 \quad \forall e \in E \]

While there is an s-t path in \(G_f \) (residual graph)

\[\# \exists \Gamma \left(\text{P: s-t path} \right) \quad \text{Residual} \]
of Iterations

\[
\text{while } \quad \begin{align*}
P &: \text{s-t path} \\
c(P) &: \text{capacity of } P \\
(\text{in each capacity edge in } P) \\
\text{Augment the flow using } P \& c(P) \\
\text{Update } G
\end{align*}
\]

\[G^f:\quad \text{twice as many edges } \quad 2|E| \]

\[\Rightarrow \text{run a BFS on } G^f \text{ to find some } s-t \text{ path} \\
O(1V + 2|E|) \]

\[= O(1V + |E|)
\]

Each iteration therefore takes \(O(1V + |E|)\) time.

How many iterations?

\[\Rightarrow \text{any edge in } G^f \text{ has to have capacity } \geq 1
\]

Each iteration will increase the flow by at least 1 unit.

\[
\text{any flow } f \leq \sum \frac{c(\gamma, x)}{e = (\gamma, x)} = C
\]
Any flow \(+ \leq \sum_{e=(y,x)} c_x = \sum_{e=(y,x)} c_x \)

In the worst case \(O(C) \) iterations

\[O(C) \times O(|V|+|E|) \]

= \(O(C \cdot (|V|+|E|)) \) \(\leftarrow \) total cost

\(\leftarrow \) pseudo-polynomial algorithm

because it depends on the value \(C \) by \(C \) bits to store true value

\[O \left(2^m \cdot (|V|+|E|) \right) \text{ where } m = \log_2 C \]

\[\text{Exponential in size } \] (size of \(\log \) bits) to store \(C \)

\(\Delta \) scaling \(\widehat{FF} \)

1) try high capacity path first
\[\Delta = \text{largest power of 2 that is less than } C \]
\[\Delta = 2^m \leq C \]

\[\text{while } \Delta \geq 1 \]
\[\text{G}(\Delta): \text{ keep only those edges that have capacity at least } \Delta \]
\[\text{run FF on } G(\Delta) \]
\[\Delta = \Delta/2 \]

\[\frac{O(\log C)}{\text{outer loop}} \times \frac{2|E|}{\text{while loop}} \times \frac{|V| + |E|}{\text{cost per } FF \text{ iteration on } G(\Delta)} \]

\[O\left(\log C \left(\frac{|E|^2 + |E| \cdot |V|}{\log C} \right) \right) \]
\[= O\left(\log C \cdot |E|^2 \right) \]
\[= O\left(m \cdot |E|^2 \right) \]
\[= \frac{1}{\log_2 C} \]

Note: the convention

\[G(\Delta) \downarrow \Delta \uparrow \Delta/2 \]

\[G(\Delta) \]

\[G(\Delta/2) \]
C = \sum_{e} \psi(x) = 1050 \quad \Delta = 512

G(\Delta) =

G(\Delta)_{f}
Next $\Delta = \Delta/2 = \frac{812}{2} = 257$, and so on.