Add \((x, y)\)

\[x \\
 y \]

2 integers \(\rightarrow\) decimal
\[\downarrow \]
convert \(x, y\) to binary

What is the max value
\[x \cdot y \leq N \]

\[N = \mathcal{O}(2^n) \]
\[n = \log N \]

\[2^x \]

Double \(\exp(n)\)

\[\text{or } m \text{ bits} \]
\[m = \log n \]

\[\exp(x, y) : x^y \]
\[x, y \text{ are values } \leq N \]
\[x \text{ takes } m \text{ bits} \]
\[y \text{ takes } n \text{ bits} \]
\[m = \log x \]
\[n = \log y \]

Analysis based on the "size" of the inputs vs

"value"
RSA: Rivest - Shamir - Adleman

Alice → Bob

↑

Eve

X is some message (X is a "huge" number)

1) Encoding (x)

Alice: \[y = x^e \]

She sends \(y \) to Bob

2) Decoding (y)

\[x = y^d = (x^e)^d \]

Eve: \[y \]

\(e \) is a public key

\[y^d = 1 \]

Bob:

- Generate a pair of numbers
- Public key \(e \)
- Private key \(d \)

RSA: \(y, e \) are public
RSA: \(y, e\) are public

It is hard to "crack" \(x\)

figure out \(d\) given \(y, d, e\)

RSA: details

Bob: select 2 large prime numbers \(p\) and \(q\)

\[N = p \cdot q\]

(\(N\) is very hard to factorize into the correct \(p \cdot q\))

\(e:\) public key

choose some integer \(e\)

(there is no known efficient also for factorization)

that is relatively prime to \((p-1)(q-1)\)

\(\gcd(e, (p-1)(q-1)) = 1\)

d: private key

\(d\) is \(e\) mod \((p-1)(q-1)\)

\[d \cdot e = 1 \text{ mod } (p-1)(q-1)\]

1. Bob publishes \(N\) and \(e\)
2. Alice wants to send \(x\)

\[\text{Encoding: } y = x^e \text{ mod } N\]

send \(y\) to Bob

3. Bob:

\[\text{decode } y^d \text{ mod } N\]

\[= (x^e)^d \text{ mod } N\]

Eve:

\(N, e, y\)

encrypted message

\(\) largest \(x\) to have been cracked

lecture7 Page 3
\[
\left(x^e \right)^d \equiv x \pmod{N}
\]

We know that \(d e \equiv 1 \pmod{(p-1)(q-1)} \).

Show that
\[
x^e \equiv x \pmod{N}, \quad x^e - x \equiv 0 \pmod{N}
\]

we know that
\[
de \equiv 1 \pmod{(p-1)(q-1)}
\]

\[
\Rightarrow \quad d = k(p-1)(q-1) + 1
\]

\[
\Rightarrow \quad k \cdot (p-1)(q-1) + 1
\]

in divisible by \(p \cdot q \)

\[
\Rightarrow \quad 1 \) show that \(x, x \pmod{N} \)
\]

\[
\Rightarrow \quad \text{in divisible by } p
\]
1) Show that \(k(p-1)(q-1) \) is divisible by \(p \).

2) Since \(p \) and \(q \) are prime,

\(\Rightarrow \) \(x \cdot k(p-1)(q-1) - x \) is divisible by \(p \).

Show:

\(x \cdot x^{k(p-1)(q-1)} - x \) is divisible by \(p \).

We know that \(x^{p-1} \equiv 1 \pmod{p} \leftarrow \text{Fermat's little theorem} \).

Whether

\(x \cdot x^{k(p-1)(q-1)} - x \equiv 0 \pmod{p} \)

\(x \cdot (x^{p-1})^{k(q-1)} - x \pmod{p} \)

\(x \cdot (1)^k - x \equiv 0 \pmod{p} \)

\(x - x \equiv 0 \pmod{p} \).

2) \(x^{q-1} \equiv 1 \pmod{q} \).

Second: knowing \(p, q, e \), we have to find the \(d \) such as \(pdq + 1 \).

RSPA Example
Bob: \[p = 5, \ q = 11 \]
\[N = p.q = 55 \]
\[\phi = 3 \times 10 = 30 \]
\[e = 3 \rightarrow \ d = 3^{-1} \mod 30 = 13 \mod 30 = 27 \]

Alice: \(x = 13 \)
\[y = 13^3 \mod 55 = 169 \times 13 \mod 55 \]
\[= y \times 13 \mod 55 \]
\[= 52 \mod 55 \]
\[y = 5^2 \]

Bob: \[y^d \mod 55 \]
\[(52)^{27} \mod 55 \]
\[= 52 \times (52^2)^{13} \mod 55 \]
\[= 52 \times (27^2)^{13} \]
\[= 52 \times (9)^{13} \]
\[= 13 \]

Diffie-Hellman Key Exchange

Alice ↔ Bob

1) Exchange same message
2) Both will compute the same "shared" key \(\Box \)
 (This key will never have been exchanged)
3) Use \(d \) for a one-time message encoding & decoding
3) Use d for a one-time message encoding & decoding
 (one time pad)

Details

1) Alice and Bob both agree on a prime P
 and some $2 < g < P - 2$

 P & g are public

2) Alice chooses a number a, $1 < a < P - 1$

 g is secret

 Bob chooses a number b, $1 < b < P - 1$

 b is secret

3) Alice computes

 $A = (g^a) \mod P$

 Bob computes

 $B = g^b \mod P$

 Alice sends A to Bob

 Bob sends $B + A$

4) Alice: \[(B^b) \mod P = (g^b)^a \mod P = (g^{ab} \mod P)^b = d \]

 Bob: \[A^b \mod P = (g^a)^b \mod P = (g^{ab} \mod P)^b = d \]

 Alice & Bob now have their own shared secret d

5) $[\text{key}]$ is known only to Alice & Bob

X
Alice: Encoding: $y = x \oplus d$, compute the XOR of x and d

Alice sends $y + b$

Bob: Decode: $y \oplus d = x$, XOR of y and d

1) $p = 23$, $2 \leq g \leq p - 2$, $g = 14$

public

2) Alice: $a = 3$

Bob: $b = 4$

3) Alice $A = g^a \mod 23$

$= 14^3 \mod 23$

$= 7 \mod 23$

Bob $B = g^b \mod 23 = 14^b \mod 23 = 6 \mod 23$

4) Alice: $B^a = 6^3 \mod 23 = 216 \mod 23 = 9$

Bob: $A^b = 7^4 \mod 23 = 2401 \mod 23 = 9$

5) $d = 9$ is shared secret.

$d = 00001001 \leftarrow 9$ in 8 bits

Alice needs to send $x = 10101010$

Encoding: $x \oplus d = 10100011 = y$
Encoding: \[x \oplus d = 10100011 = y \]

Alice sends \(y \) to Bob.

Bob: decode
\[
\begin{align*}
00001001 & \leftarrow d \\
10100011 & \leftarrow y \\
\hline
x & \rightarrow 10101010 \quad d \oplus y \quad \text{xor}
\end{align*}
\]

\[A = g^x \mod p \]

we cannot figure \(x \) easily.

\[\log_g A = x \mod p \]

Diffie-Hellman rests on hardness of discrete log problem.