\(G = (V, E) \)

\(V : \text{ vertex set} \)
\quad \text{or node}

\(E : \text{ edges} \)
\quad \text{if } E \subseteq V \times V \)

Undirected graph
\((u, v) \in \text{ unordered}\)

Directed graph
\((u, v) \in \text{ ordered}\)

(edges are ordered)
\((u, v) \in E \rightarrow u \rightarrow v\)

Weighted graphs
\(w(u, v) = \omega(v) \in \mathbb{R} \)
\((u, v) \in E \rightarrow \text{ nod number} \)

Labeled graphs
\(L(u) = \text{ label for node } u \)

Simple graph: there are no self-loops

Multigraph: multiple edges between two nodes
Let's analyze the given graph and its properties.

Definition:

A graph $G = (V, E)$ consists of a set of vertices V and a set of edges E.

Vertices:

$V = \{1, 2, \ldots, n\}$

Edges:

E: Adjacency matrix

Adjacency Matrix:

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 \\
3 & 1 & 0 & 0 \\
4 & 1 & 1 & 0 \\
\end{array}
$$

Degree of a vertex V:

$d(u) =$ number of vertices adjacent to u

$(u, x) \in E$ if and only if X is adjacent to u.

$d(u) = \# \text{of neighbors}$

Properties:

$|V| = n$

$d(u) \leq n - 1$
\[
\text{Space:} \quad \text{avg } d(u) = \Theta(1) \\
E = n \cdot \Theta(1) \\
= \Theta(n)
\]

Adjacency matrix: \(\Theta(n^2) \) **space**

regardless of sparsity

For sparse graphs

\(|E| = \Theta(n) \)

Adjacency list format

\[
2 \cdot |E| = \Theta(n) \\
2 \cdot \Theta(n) = \Theta(n^2) \\
\]

\[N(3) = \text{neighbors of 3?} \]
Consider the graph G and the set $N(3) = \text{neighbors of } 3$. The adjacency matrix A for G is given as:

$$A = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

The degree of a vertex u, denoted $\deg(u)$, is defined as the sum of the entries in the u-th row (in-degree) and in the u-th column (out-degree) of the adjacency matrix. For example:

- In-degree of 1: $\deg(1) = 0 + 1 = 1$
- Out-degree of 1: $\deg(1) = 1 + 0 = 1$

The set of vertices reachable from u via some path is denoted $\text{reachability}(u) = \{v \mid (u, v) \in E\}$. For instance, if G is a directed graph:

- $\text{reachability}(1) = \{2, 3\}$
- $\text{reachability}(3) = \{1\}$

In a directed graph, an "arc" is an ordered pair (u, v), which represents a directed edge from vertex u to vertex v. The adjacency list for G shows:

- Vertices: 1, 2, 3, 4
- Edges: 1: 2
- 2: 1, 3, 4
- 3: 4
- 4: 1

The adjacency matrix is asymmetric, indicating the directions of the edges.
Reachability: Whether u can reach v via some "path".

Walk: Any alternating sequence of vertex & edge

\[
\begin{align*}
2 & \xrightarrow{e_3} 4 \xrightarrow{e_4} 1 \xrightarrow{e_2} 2 \xrightarrow{e_1} 1 \\
2 & \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1
\end{align*}
\]

length (walk) = 6

of hops

Trail: A walk with no repeated edge

\[
\begin{align*}
2 & \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 1
\end{align*}
\]

Path: A repeated vertex (except for 1st & last vertex)

\[
1 \rightarrow 2 \rightarrow 1
\]

distance in a network

Shortest path between u, v
Airline Fares

AUS

SFO

$100

$200

$300

$400

$500

24h!

Shortest path
of hops
min total cost

"Reachability" "Connectedness"

DFS tree (G)

DFS (v):
- Input: v ∈ V
- Output: all vertices reachable from v

\[
\text{Visit}(v) = \top
\]

for each \(u \in N(v) \)

DFS (u)

DFS (x)
Connected Component

1. \(S \subseteq V \) such that for any \(x, y \in S \),
 - \(x \) and \(y \) are connected i.e., there is a path from \(x \) to \(y \) or \(y \) to \(x \).

2. \(S \) is maximal (largest in terms of subset of \(V \))
 - No vertex can be added.
 - No vertex can be deleted.

Maximal Subset \(S \)
- Mutually reachable vertices.

CC: Connected Component \((G = (V, E)) \):

1. \(\forall \, V \in V \)
 - \(\text{visited}(v) = F \)
 - \(d(v) = 0 \)
 - \(cnum = 0 \)

2. \(\forall \, u \in V \)
 - \(y \in V \)
 - \(\text{visited}(v) = F \)
 - \(d(v) = 0 \)
 - \(cnum < cnum + 1 \)

\[\sum_{u \in V} d(u) = 2 |E| = 2m \]
Sum of the degree = twice # of edge in Undirected G.

Total time: $O(M + |E|)$

Linear time in graphs $\mathbb{N} + m$

Pre-post numbers (DFS numbering)

Pre: count 1st time we enter (push)
Post: count when we leave the vertex (pop)

If u is reachable from v:

You can prove that

$\begin{bmatrix}
\text{pre}(v) & \text{pre}(u), \text{push}(u) & \text{push}(v) \\
\end{bmatrix}$

Interval of u is contained in interval of v.
Interval of u is contained in Interval of v for undirected graphs.

Find a sequence of containment:

Is u connected to v?

Find some x such that:

$\text{Interval}(u) \subseteq \text{Int}(x)$

$\text{Int}(v) \subseteq \text{Int}(x)$