Linear time $O(|V| + |E|)$

\[
\begin{bmatrix}
\ldots
\end{bmatrix}
\]

\begin{align*}
5 & 6 & 7 & 8 \\
p_{\text{pre}(u)} & & & \\
p_{\text{post}(u)} & & &
\end{align*}

1. Any descendant of u has its interval as a subset of $[\text{pre}(u), \text{post}(u)]$

2. $\left[\ldots \right] \cup \left[\ldots \right] = \emptyset$

x and y are sibling nodes.
x and y are sibling nodes,
\[\exists y \]
share a common ancestor

How to detect cycles?

1. Use DFS to create the $[pre(x), post(x)]$ intervals
 \[O(|V| + |E|) \]
 \[\text{Interval}(x) \]

2. \(\forall \text{edge} \ e \in E \)
 \[e = (u, v) \]
 \[\text{if} \ Interval \ [u] \subseteq \text{Interval} \ (v) \]
 \[O(|E|) \]
 \[\text{then output} \ "\text{cycle found}" \]

Directed Graph $\xrightarrow{\text{how to detect cycles}}$ Directed Acyclic Graph (DAG) $\xrightarrow{\text{deadlocks}}$

Directed Graph

Directed Acyclic Graph (DAG)

Scheduling

Linearize the graph: for every node u,

- **topological**
- its ancestors must
 \[\ldots \]
Topological Sorting

In-degree

![Diagram of a directed acyclic graph (DAG) with nodes A, B, C, D, E, F and their in-degrees]

1. Any DAG has at least one source node with no incoming edges.
2. Any DAG has at least one sink node with no outgoing edges.

Algorithm 1 (Topo sort)

\[TS(G) \]

1. Find a source, output it.
2. Delete the source and its outgoing edges, resulting in \(G' \).
3. Call \(TS(G') \).

```plaintext
source queue: B A D F
output: B A D C E F
```

\[\text{Time: } O(V + E) \]

1. Compute all in-degrees \(O(V + E) \).
2. Any node with in-degree 0 is a source, add it to the queue.
3. For all neighbors of a source node.
for all neighbors of a source node
 decrement the indegree
if indegree = 0 add to queue

$O(M + E)$

Topological sort using DFS numbering

If you list the nodes
 in decreasing post(x)
order, then we get a
 topological sort!

B D A C E

any node x that can reach y

will have a higher post number

$\text{post}(x) > \text{post}(y)$
$O(|V| + |E|)$ time.

Strongly Connected Components of a Directed Graph

$scc(G)$

scc_1, scc_2, scc_3

scc: there is a directed path between each pair of vertices and the set is maximal.

Directed Graph

Undirected graph

Connected component is a maximal set of reachable nodes.

\implies

Yielded representation

$\overrightarrow{DA}\overrightarrow{G}$

over Scc_5

Black edges: G^R

lecture12 Page 5
Alg: SCC(G)

Input: G is a directed graph

Output: the list of SCCs.

1. Create the reverse graph G^R

2. DFS numbering on G^R

3. Identify source node by the largest post number (in G)

4. Any source in G^R is a sink in G