Strongly Connected Components

Observation 1:

If we start DFS at a sink "vertex" then we can identify the entire sink component.

Q: how to identify a vertex in the sink?

Observation 2:

Any sink in G is a source in G^R.

G^R is the reverse graph.

Observation 3:

We can identify source by decreasing order of DFS.
we can identify source by decreasing order of DFS post numbers.

1. \(\text{post}(v) > \text{all reachable node} \)

 \[\text{post}(c) > \text{post}(c') \]

2. what if we choose \(x \in C' \)

 \[\text{post}(v) > \text{post}(x) \]

 \[\text{post}(c) > \text{post}(c') \]

See Algorithm: \((G)\)

\[O(E+V) \]

1. Create \(G^k \)

\[O(E+V) \]

2. Use DFS post numbers on \(G^k \)

\[O(V) \]

[For all] \([\text{pick the highest unvisited } \text{post}(v)] \)

\[O(V+E) \]

[use DFS in G to mark all reachable vertices]

output this subset as \(\text{src} \)
\[O(V+E) \] output this substep as a set

- \(V \log V \) time to sort!
- \(E = O(|V|) \) then graph is sparse

\[O(V+E) = O(|V|) \]

BFS: Breadth First Search

Shortest path from a given vertex \(u \).

\[d(u, x) \quad \forall x \text{ in } G \]

- length of shortest path from \(u \) to \(x \)
- \# of hops

Generalize to cost based

\[d(u, x) = \infty \quad \text{if } u \text{ cannot reach } x. \]
Single Source BFS (u):

\[
\text{for all } x \in V \\
\quad d(u, x) = \infty \\
\quad d(u, u) = 0
\]

Insert u in queue Q

While Q not empty

\[
\nu = \text{dequeue}(Q)
\]

\[
\text{for all neighbors } x \in \text{u}
\]

\[
\text{if } d(u, x) = \infty \\
\quad d(u, x) = \text{dist}(u, u) + 1
\]

Extra edge over all vertices

Add x to the Q.

Induction to prove correctness.

Time for len(Q)

Total time \(O(V + E)\)
Dijkstra's Algorithm

Given a weighted graph

\(f(v, u) \) is the weight on edge \((v, u)\)

All weights are positive

Algorithm:

1. Start at \(A \)
2. Set distance to \(A \) as 0, and distance to all other vertices as \(\infty \)
3. Select the node \(x \) with the smallest distance from \(A \)
4. If \(\text{distance}(x) = \infty \), stop.
5. For each neighbor \(u \) of \(x \), calculate new distance to \(u \)
6. Update the distance to \(u \) if the new distance is smaller than the current distance
7. Repeat steps 3-6

Example:

\(Q = \{ A, B, C, D, E \} \)

Choose the children.

Every time we pick the node with the shortest distance.

From \(A \):

\[Q = \{ A \} \]

But we cannot just arbitrarily choose the children.
we will maintain a priority queue

1. pick the minimum cost node
2. change the distances.

Dijkstra (U)

\[\forall x \in V, \quad d(u, x) = \infty \quad \text{if} \quad d(x) = \infty \]
\[d(u) = 0 \]

Insert u in PQ. \(\leftarrow \) Priority Queue

while PQ not empty.

\[u = \min (PQ) \leftarrow \]
for all \(x \in \text{neighbours}(u) \):

\[d(x) = \min \{ d(x), d(u) + l(u, x) \} \]

Choose weight of \(x \) in PQ

PQ: Priority Queue

Array PQ

\[\begin{bmatrix}
1 & 2 & 3 & \cdots & n \\
\hline
d(1) & d(2) & \cdots & d(n)
\end{bmatrix} \]

Array of vertex and their weights

\[\mathcal{O}(N) \] to extract \(\min \)\

Changing the weight: \(\mathcal{O}(1) \)
Charging the washer: \(O(1) \)

While loop is called \(O(1V) \) time

there are \(|V| \) calls for \(\text{extract min PQ} \)

\(O(1V) \)

\(O(1V^2) \)

Total cost of charging weight is \(O(1E) \)

\(O(1V^2 + 1E) \)

\(O(1V^2 + 1E) \) \(\rightarrow \) good for dense graphs.

Very bad for sparse graphs.

Priority Queue based on binary trees

\(\text{extract min} : O(\log |V|) \)

\(\text{decrease key} : O(\log |V|) \)

\(|V| \) calls to \(\text{extract min} \)

\(|E| \) calls to \(\text{decrease weight} \)

\(O\left(\left(\frac{|V| + |E|}{\log |V|}\right)\right) \)

\(\frac{|V|}{\log |V|} \) factor

vertex \(x \) has child \(X \)

1. root is always the least/min of all node
2. any node is smaller than all children

Extract min:
1. return 3 as the min
2. after the tree:
 a) pick the last node (rightmost leaf)

worse case:
\(O(\log_2 |V|) \) \{

decrease key:
swap upwards until we reach the common level

worse case:
\(O(\log_2 |V|) \)

create the pq:

Idea 1: sort all vertices by weight & insert into pq.

1 2 3 4 5 6 7 8 9 10

\(o(|V| \log |V|) \)
\[9 7 1 0 3 1 5 4 2 6 8 \]

\[\text{(111)} \]

- For all node trickle up.
- \(O(111) \) time

1. From each node trickle up
2. Any node that is swapped, trickle down

\[2 \log |V| = O(\log |V|) \]