Dijkstra's Shortest Path

G is directed, with positive weights

Priority & data structure to select the next min node

PQ: binary tree

1) root has the least value (min)
2) every node has a value less than its children

\[9 \ 7 \ 10 \ 3 \ 1 \ 5 \ 4 \ 2 \ 6 \ 8 \]

Making the heap in linear time

- Each node \[\log n \] work
- \[n \] nodes
- \[n \log n \] work

\[k \geq n \]

\[\log_{2} n \]

Total # steps/time: \[\frac{\log_{2} n}{h \cdot (\log_{2} n - h)} \]
Total # steps/time:

$$\sum_{i=0}^{\infty} \gamma^i = \frac{1}{1-\gamma}$$

$|\gamma| < 1$

geometric series

$$\sum_{i=0}^{\infty} i \cdot \gamma^i = \frac{\gamma}{(1-\gamma)^2}$$

$$\sum_{h=0}^{\left\lceil \frac{\log_2 n}{\gamma} \right\rceil} h \cdot \left(\frac{1}{2}\right)^h = n \cdot \frac{h}{\left(1-h^2\right)^2} = n \cdot \frac{1}{2} / \frac{1}{4}$$

$$= \frac{2n}{4} = 2 \cdot n$$

Dijkstra's Algorithm

$|V|$ delete min operations

$|E|$ decrease key ops

$(|V| + |E|) \cdot \log(|V|)$

Bellman-Ford:

$O(|E| \cdot |V|)$

handle negative weights

(no negative cycle)

Exercises

which offset to choose?

C

$\omega(u,v) + C$
longest possible path is \(|V| - 1 \)

negative cycle: sum of the weights on edges in the cycle is negative

Dijkstra's

Expanding search region/frontier

\[1 \] we can always update the dist of a vertex
$d(x) = \min \{ d(x), d(u) + l(u, x) \}$

2. Since the max path len is $|V| - 1$, after this many steps, we will have the shortest paths.

Bellman-Ford (G, s)

$\forall x \in V, d(x) = \infty$

$d(s) = 0$

$O(|V|)$

$\left(\begin{array}{c}
O(|E|) \\
\text{for } |V| - 1 \text{ steps} \\
\text{for every edge } e = (u, v) \in E
\end{array} \right)$

Update weight for v

$d(v) = \min \{ d(v), d(u) + l(u, v) \}$

Total: $O(|E| \cdot |V|)$

Checking negative cycle

- $D \leftarrow \emptyset$
- For $|V| - 1$ times
 - $D \leftarrow \emptyset$
 - End

lecture14 Page 4
1. Run Bellman-Ford (for |V| - 1) steps
 \[d_{\text{Bellman-Ford}}(s, x) \neq d(s, x) \quad \forall x \in V. \]
2. Run one more step of BF algo.
 If any distance changes, then there is a negative cycle.

Can you prove this? We have |V| - 1 as the max length of a shorter path.

Greedy Algorithms

Choose the best step with only local information.

Minimum Spanning Tree

Input: Undirected graph \(G = (V, E) \) with positive weights on edges (Connected)

Output: A tree \(T = (V_T, E_T) \)

\[V_T = V \quad \text{Spanning condition} \]

\[E_T \leq E \]
\[w(T) = \sum_{e \in E_T} w(e) \]

Choose the minimum weight tree among all possible trees.

Kruskal’s Algorithm for MST

1. One time sorting of the edges by weight
2. Pick edge in increasing order and add to \(T \) (tree)

If \(G \) is disconnected, we run MST on each component.

\(\text{MST: Min spanning forest} \)
and add to \((T)\) \(\leftarrow\) tree

(reject an edge \(y\) if introduce a cycle)

\[
T = \emptyset
\]

\[
= \{ A-C, C-D, A-B, C-E, E-F \}
\]

\(|E| - 1\) edge

\(w(T) = 16\)

Why should this work?

1. Sorting \(|E|\) edges

2. Each edge once

\(|E|\) steps

we have to check for cycle in \(T\)

\(O(|E|)\) time

\(|E| = |V|\)

\(|\log|E| = 2 \log |V|\)

\(O(|E| \log |V|)\)
Naive approach:

Run a DFS on T each time
at most T has $|V| - 1$ edges
and it has $|V|$ nodes

$O(|E| + |V|) = O(|V|)$ time

Total time
$|E| \cdot O(|V|)$ time

$\#$ steps

$O(|E| \cdot |V|)$

$(|E| \log |V| + |E| |V|) = O(|E| \cdot |V|)$

Union-find data structure \leftarrow fast cycle checking

$\log |V|$ time

Kruskal: $O(|E| \log |V|)$ time