Given a directed graph G, with positive capacities on the edges, also given source & target node; maximize the flow.

\[
\text{max flow out of } S = \frac{100 + 10 + 2}{\text{sum of capacities}} = 112
\]

\[
\text{max flow into } T = \frac{10 + 70 + 10}{\text{sum of capacities}} = 90
\]

\[
\text{max flow} \leq \min\{40, 112\} = 40
\]

\[
\text{max flow} \leq \min\left\{\text{capacity of}(S, T) \text{ cuts}\right\}
\]

\[
V = S \cup T
\]
\[V = S \cup T \]
\[T = V - S \]
\[x \in S \]
\[t \in T \]

\[(s, t) \text{ cuts} \]

Capacity of an \((s, t)\) cut is:
\[
\sum_{x \in S} \sum_{y \notin T} c(x, y)
\]

Max flow \(\leq \) min \(S-T \) cut in \(G \)

Ford-Fulkerson Max Flow Algorithm

1) Compute the residual graph
2) Find an \(S-T \) path (any path from \(s \) to \(t \))
3) Add this path to existing flow, using the min capacity edge
Add this path to existing flow, using the min capacity edge.

\[\text{Flow} = \emptyset \]

Residual

Residual

No more \(s-t \) path. Stop!

Value (flow) = \(\sum \text{flow}(u,v) \)

\(u \neq x \)

\[S = \{ s \} \]

\[T = \{ t \} \]
\[x = 90 + 10 = 100 \leq \text{max flow} \]

1) \(\text{max-flow} \leq \text{min ST cut} \)

In fact, \(\text{max-flow} = \text{min ST cut} \)

Worst-case time for Ford-Fulkerson:

1) \(\text{time to compute the residual graph } G_f \)
\[2m \rightarrow O(\mid E \mid) \text{ or } O(m) \]

2) Finding \(s-t \) path in \(G_f \)

- Do a BFS from \(s \) and check if \(t \) can be reached

\[O(n + m) \quad n = \mid V \mid \quad m = \mid E \mid \]

Each iteration: \(O(m + n) \)

How many steps in the worst case?
Every time the flow value increases by at least 1,

\[\Rightarrow \text{total \# of iterations} \leq \text{max capacity edge in } G \]

\[= C \]

Total time: \(C \cdot (m+n) \)

\[\text{max capacity value} \]

Pseudo-polynomial!

\[PF(G, C) \]

\(b \) bits to represent \(C \)

\[\Rightarrow \text{value } C = O(2^b) \]

\(O(2^b \cdot (n+m)) \)

Exponential in input size.

Correction of Ford-Fulkerson (FF)

1) \(G^f \) does not violate any capacities
2) Any \(s-t \) path we find, respect the conservation of flow
3) Value of the current flow \(l \)
3) Value of the current flow keeps on increasing with each iteration.

$log \text{ will eventually stop with some }$

"local" max flow

4) "local" max flow = "global" max flow

Proof: In the final residual graph G, there is no st path!

1) all edge (x,y) such that $x \in S$ and $y \in T$

are at full capacity
are at full capacity

\[\implies \text{flow on that edge} = \text{capacity of that edge in } G \]

2) If there exist any "forward" edge from \(T \) to \(S \) then the flow on that edge is 0

\[(y, x) \in G, \quad \text{Capacity} (y, x) \]

\[\implies \text{reservs} \exists \text{edge} (x, y) \in G^f \]

\[\iff y \text{ can be reached from } T \]

\[\implies \text{ all "forward" edges are flowing at full capacity} \]

& there is no base flow from \(T + S \)

\[F F \rightarrow \text{Completion } G^f \]

\[\text{All nodes reachable from } y \]

\[(S, T) \] is a certificate!

\[\max \text{flow across } (S, T) = \] min or possible in \(G \)
ST cut value $= 7$

FF is pseudo-polynomial or $O(b(m+n))$ time

b is # of bits to represent max capacity.

1) try to find "heavy" paths

where the min capacity edge is
\[\Delta \text{- phase FF} \]

\[\text{flow} = \phi \]

\[\Delta = \text{least power of } 2 \text{ such that we do not exceed the max capacity out of } \{x, \ldots, C\} \]

\[\text{vertex } G \rightarrow G(\Delta) \]

\[\text{run FF on } G(\Delta) \]

\[\Delta = \Delta / 2 \]

\[\text{try to restrict the graph to edge with or less } \Delta \text{ capacity.} \]

\[\Rightarrow \text{any flow value will increase by or less } \Delta \text{ in each step.} \]

\[\Delta = \frac{512}{2} \]

\[\text{max flow} \]

\[G(\Delta) = \]

\[\text{max flow} \]

\[\text{vertex } G \rightarrow G(\Delta) \]

\[\text{run FF on } G(\Delta) \]

\[\Delta = \Delta / 2 \]

\[\text{try to restrict the graph to edge with or less } \Delta \text{ capacity.} \]

\[\Rightarrow \text{any flow value will increase by or less } \Delta \text{ in each step.} \]
At most \(\log C \) \(\Delta \)-phase \(\checkmark \)

\[
\begin{align*}
\text{FF on } G(\Delta) & \rightarrow \text{how many steps due regular FF do on } G(\Delta) \\
\text{each step } O(m+n) & \rightarrow \text{FF will never exceed } 2m \text{ steps}
\end{align*}
\]

\[
\text{total time: }
\log C \left[\begin{array}{c}
2m(m+n) \\
\Delta \text{-phase} \\
\Rightarrow G(\Delta)
\end{array} \right]
\]

\[
O \left(b \cdot \frac{2^2 + mn}{m+n} \right) \quad b = \log C
\]

truly polynomial.

Maximum Bipartite Matching

Bipartite graph: \(X \quad Y \)
Bipartite graph
\[V = X \cup Y \]
\[X \cap Y = \emptyset \]
\[e(a, b) \Rightarrow a \in X, \quad b \in Y \]

Matching
\[1 \to 1 \]
mapping from a subset of \(X \)
\[x \to y \]
subset of \(Y \)
\[x_1 \to y_1 \]
\[x_3 \to y_3 \]

Maximum size matching
\[\# \text{of matched pairs} \]

\[G = \left[\text{Bipartite graph} + \{ a, x_i \} + \{ y_i, t \} \right] \]

Find a max flow in \(G \) = max matching in bipartite graph