Experimental Asymptotics: How Much Experimentation is Enough?

M. Goldberg, D. Hollinger, M. Magdon-Ismail

Computer Science Department
Rensselaer Polytechnic Institute
Maximum Independent Set

- Random Graphs $G(n, p)$

$$2\log\frac{1}{1-p} n \quad \text{[Bollobás and Erdös]}$$

- Trivial sequential algorithm $Random(G)$:

 $$I = \emptyset \text{ (the independent set).}$$

 while ($G \neq \emptyset$) do

 select a vertex v at random.

 add v to I and remove from G.

 remove all neighbors of v from G.

 end while

 It is easy to show that $Random$ finds sets of size $\log\frac{1}{1-p} n$.
Question: Is there any polynomial algorithm better than $Random$?

$$(1 + \epsilon) \log \frac{1}{1-p} n$$ for some $\epsilon > 0$

Experimental evaluation of simple algorithms should be easy?.

We start with the simplest modification to $Random$ we can think of.
Sequential Greedy algorithm \textit{Greedy}

At each step, select a vertex with minimum degree:

\[I = \emptyset \text{ (the independent set).} \]

while \(G \neq \emptyset \) do

\quad select a vertex \(v \) from among those in \(G \) with minimum degree.
\quad add \(v \) to \(I \) and remove from \(G \).
\quad remove all neighbors of \(v \) from \(G \).

end while
Experiments with fixed edge probability p

- For fixed edge probability p (we used $p = 0.1$) and various graph sizes n:
 - run both $Random$ and $Greedy$ on a number of randomly generated graphs.
 - compute the average ratio: $\frac{I_{Greedy}}{I_{Rand}}$

- Plot ratio vs. n
Ratio of Greedy to Random
Edge Probability 0.1
Ratio of Greedy to Random
Edge Probability 0.1

ratio

number of vertices

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.3 1.31

data
Ratio of Greedy to Random
Edge Probability 0.1

Ratio of Greedy to Random
Edge Probability 0.1

1/log
1/sqrt
data

ratio

number of vertices

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Conjecture

Experiments are not conclusive, but it appears that:

\[\text{Greedy} = \text{Random} \]

for random graphs with fixed edge probability \(p \).

We tried a number of different edge probabilities \(p \) - all had similar results.
Other Classes of Graphs

- For 3-regular graphs, *Greedy* is better than *Random* [Frieze and Suen].
- For d-regular graphs $d > 3$ the answer is unknown.
- For *average* degree graphs the answer is unknown.
- We worked on average degree $d = 3$.
Average Degree $d = 3$

Random finds independent sets of size:

$$1 + \log_{\frac{1}{1-p}} (1 + (n - 1)p) \approx .46n$$

$$p = \frac{3}{n - 1}$$
Fixed Average Degree Experiments

• For fixed average degree $d = 3$ and various graph sizes n:
 – run both $Random$ and $Greedy$ on a number of randomly generated graphs.
 – compute the average ratio: $\frac{I_{Greedy}}{I_{Rand}}$

• Plot ratio vs. n
Ratio of Greedy to Random
Average Degree 3

Measured

1/log

ratio

number of vertices

1e+06
Average degree $d = 3$ Combinatorics

\[I(n) = I_0 + I_1 + I_2 + I_3 + I_4 + \ldots \]

\[n = I_0 + 2I_1 + 3I_2 + 4I_3 + 5I_4 + \ldots \]

- $I(n)$ is the size of independent set found by *Greedy* on a graph with n vertices and average degree 3.

- I_k is the number of vertices with degree k: *when selected for inclusion in the independent set.*
I_k are Dynamic Degrees
Average degree $d = 3$ discovery

Discovery: *Greedy* never selects a vertex of degree 3 (or more).

\[
I(n) = I_0 + I_1 + I_2
\]

\[
n = I_0 + 2I_1 + 3I_2
\]
Degree 0 vertices

\[I_0 = I_0^{\text{initial}} + I_0^{\text{dynamic}} \]

- \(I_0^{\text{initial}} \) is number of vertices in the initial graph with degree 0.
 \[I_0^{\text{initial}} = n(1 - p)^{n-1} = n\left(1 - \frac{3}{n - 1}\right)^{n-1} \rightarrow \frac{n}{e^3} \]

- \(I_0^{\text{dynamic}} \) is number of additional vertices removed when their degree is 0
Distribution of Degrees (dynamic degrees)

average degree \(d = 3 \)
Conjecture for \textit{Greedy} on average degree random graphs $d = 3$

Independent set size found by \textit{Greedy} on random, average degree-3 graphs with n vertices:

$$I(n) = I_{0}^{initial} + I_{0}^{dynamic} + I_{1} + I_{2}$$

$$I(n) \rightarrow 0.53n$$
Issues

- Experimental analysis of the asymptotic behavior of algorithms can lead to the “always need to try larger inputs” syndrome.

- Experiments can sometimes be designed to illuminate asymptotic behavior indirectly. In our case, theoretical methods and results for 3-regular graphs provided necessary insights.
Degree 0 +

I_0^{dynamic} vertices selected
Average Degree 3 Graphs
Degree 1 vertices selected
Average Degree 3 Graphs

fraction of n

n

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Degree 2 vertices selected
Average Degree 3 Graphs