1.

2. $(1 + 0)^* 11(1 + 0)^* + 11(1 + 0)^*$

3. Let’s assume for contradiction that L is a regular language. We apply the pumping lemma to L. Let m be the parameter of the pumping lemma. We choose to pump the string $a^m b^\lambda c^m$ which is in the language L. Since $xyz = a^m b^\lambda c^m$ and $|xy| \leq m$ we have that the string y is a substring of the first a^m. Therefore, the string y has the form $y = a^p$, for some integer p, $1 \leq p \leq m$ (since $|y| \geq 1$). Now, we pump up y once and we obtain the string $a^{m+p} b^\lambda c^m$. By the pumping lemma, we have that $a^{m+p} b^\lambda c^m$ is in the language L. However, $a^{m+p} b^\lambda c^m$ is not in the language L since $m + p \neq m$. Therefore, we have a contradiction, and thus the language L is not be regular.

4.

The initial stack symbol is $. State q_0 reads the a’s and pushes them into the stack. State q_1 reads the b’s and pops an a from the stack for each input
b. Finally, state q_3 is the accept state which the automaton enters only if there is an a in the stack, which means that the numbers of a’s was more than the number of b’s.

5.

(a)

\[S \rightarrow aSa|bSb|A \]
\[A \rightarrow aAb|\lambda \]

(b)

\[S \Rightarrow aSa \Rightarrow abSba \Rightarrow abAba \Rightarrow abaAbba \Rightarrow abaaAbba \Rightarrow abaaabbba \]

6. Yes, the grammar is ambiguous. The reason is that there is string generated by the grammar that has two different derivation trees. This string is $bbaa$. The two derivation trees are:

![Diagram of derivation tree 1]

![Diagram of derivation tree 2]
7.

\[S \rightarrow AV_1 \]
\[V_1 \rightarrow T_b V_2 \]
\[V_2 \rightarrow BT_a \]
\[A \rightarrow AV_3 \]
\[V_3 \rightarrow BT_a \]
\[A \rightarrow a \]
\[B \rightarrow BV_4 \]
\[V_4 \rightarrow T_a A \]
\[B \rightarrow b \]
\[T_a \rightarrow a \]
\[T_b \rightarrow b \]