A BFS implementation in Scheme

General purpose BFS implementation:

\[(\text{bfs root-node at-goal? get-children})\]

where:

\[(\text{at-goal? node})\text{ returns } \#t \text{ if node is the goal}\]
\[(\text{get-children node})\text{ returns a list of child nodes}\]

The algorithm:

- put root node on a queue Q
- Repeat:
 - if Q is empty, return failure
 - remove first node N from Q
 - if N is the goal, return success
 - add children of N to end of Q

Missionaries & Cannibals problem in Scheme

State: \((\text{boat-side L-mis L-can R-mis R-can})\)
\(\text{boat-side} = \text{'left or 'right}\)

Node: \((\text{state parent-node})\)
\(\text{parent of root node is '()}\)

\(\text{(define mc-start '((left 3 3 0 0) ())}\)

\(\text{(define (mc-goal? node)}\)
\(\quad \text{(equal? (car node) ' (right 0 0 3 3)))}\)

Approach to \((\text{mc-children node})\):

- use \((\text{mc-child-states state})\)
- convert list of child states to nodes

Approach to \((\text{mc-child-states state})\):

- If boat is on left, compute child states
- If boat is on right
 - switch left and right sides
 - compute child states
 - switch left and right sides
- Enforce constraint \((\#\text{Can} \leq \#\text{Mis})\)
Heuristic searches

heuristic: a “rule of thumb,” for searching we a heuristic function $h(n)$ that gives an *estimate* of the cost from node n to the goal.

A simple example is *Greedy Search:*

- Put the root node on a queue Q
- Repeat:
 - if Q is empty, return failure
 - remove the node N with the lowest $h(\cdot)$ value from Q
 - if N is the goal, return success
 - add children of N to Q

Analysis:

- Optimal?
- Complete?
- Time complexity?
- Space complexity?

The A* search

A queue implementation:

- Put the root node on a queue Q
- Repeat:
 - if Q is empty, return failure
 - remove the node N with the lowest $f(\cdot) = g(\cdot) + h(\cdot)$ value from Q
 - if N is the goal, return success
 - add children of N to Q

where $g(n)$ is the cost from the root node to node n

Important properties:

- if $h(\cdot)$ is *admissible*, A^* is optimal
- if $h(\cdot)$ is also *monotonic*, A^* is *optimally efficient*

admissibility: A heuristic $h(n)$ is admissible if it *never overestimates* the cost to the goal from node n

monotonicity: A heuristic $h(n)$ is monotonic if for any nodes A and B, $h(B) \geq h(A) + c(A, B)$
A different formulation of the A^* algorithm

- Put the start node on a list OPEN
- Create an empty list CLOSED
- Repeat:
 - If OPEN is empty, return failure
 - Select the node N from OPEN with lowest $f(\cdot)$ value
 - Remove N from OPEN and add to CLOSED
 - If N is the goal, return success
 - Find the children C of N
 - For each child $c \in C$:
 * if c is not on OPEN or CLOSED, add to OPEN
 * if c is on OPEN, update $f(c)$ if necessary
 * if c is on CLOSED and must be updated, remove c from CLOSED and add to OPEN