Fuzzy Inference Systems

(Chapter 4)

Kai Goebel, Bill Cheetham
GE Corporate Research & Development
goebel@cs.rpi.edu
cheetham@cs.rpi.edu

The Big Picture

Inference systems consist of three components:
• rule base
• data base (defines membership functions)
• reasoning mechanism (aggregation)
• defuzzification

Motivation

Fuzzy Reasoning left us with something similar to:

\[\begin{array}{c}
\text{C} \\
\text{z is C} \\
\text{Z} \\
\end{array} \]

Real world:
Sensor measurements are crisp (albeit imprecise)
Output to controller has to be crisp

Outline

Introduction/Motivation
Mamdani Model
TSK Model
Tsukamoto Model
et cetera

Fuzzy Inference System

Fuzzy Inference System

a.k.a.:
- fuzzy rule based system
- fuzzy expert system
- fuzzy model
- fuzzy associative memory
- fuzzy logic controller
- fuzzy system
Design of IS

Consistency:
no rules with the same antecedents but different consequents

Completeness:
for any $x \in X$
there is at least one rule j s.t. $\mu_{i,j} \neq 0$

Defuzzification Requirements

- Intuition:
 A crisp value should represent the fuzzy set from an intuitive point of view (e.g., max. membership grade)
- Computational Burden:
 simple (real-time constraints)
- Continuity: small changes in fuzzy sets should not result in large changes of z

Defuzzification: COA

Center of Area

\[z_{\text{COA}} = \frac{\int_{\mu_{A}} \mu_{A}(z)dz}{\int_{\mu_{A}} \mu_{A}(z)dz} \]

Defuzzification: BOA

Bisector of area:

\[z_{\text{BOA}} = \frac{\int_{\alpha}^{\beta} \mu_{A}(z)dz}{\int_{\mu_{A}} \mu_{A}(z)dz} \]

where

$\alpha = \min \{ z : \mu_{A}(z) \neq 0 \}$
$\beta = \max \{ z : \mu_{A}(z) \neq 0 \}$

Defuzzification: MOM

Mean of maximum:

\[z_{\text{MOM}} = \frac{\int_{\mu_{A}} z \mu_{A}(z)dz}{\int_{\mu_{A}} \mu_{A}(z)dz} \]

\[Z = \{ z : \mu_{A}(z) = \max \mu_{A}(z) \} \]
Fuzzy Rules and Fuzzy Reasoning

Center Average Defuzzifier

Approximation of COA Defuzzifier by average of center of areas of fuzzy sets s.t.

\[z_{CA} = \frac{\sum_{j=1}^{n} z_j w_j}{\sum_{j=1}^{n} w_j} \]

where

- \(z_j \): center of area of \(j \)th fuzzy set \(B \)
- \(w_j \): height of \(j \)th fuzzy set \(B \)

SISO: max-min composition centroid defuzzification

If \(X \) is small then \(Y \) is small
If \(X \) is medium then \(Y \) is medium
If \(X \) is large then \(Y \) is large

MISO: max-min composition centroid defuzzification

If \(X \) is small and \(Y \) is small then \(Z \) is negative large
If \(X \) is small and \(Y \) is large then \(Z \) is negative small
If \(X \) is large and \(Y \) is small then \(Z \) is positive small
If \(X \) is large and \(Y \) is large then \(Z \) is positive large

Sugeno Model (TSK)

Combines fuzzy sets in antecedents with crisp function in output:

- IF \(x \) is small AND \(y \) is \(B \) THEN \(z = f(x,y) \)
 - \(f \) does not follow compositional rule of inference

- IF \(x \) is small THEN \(Y = 4 \)
- IF \(X \) is medium THEN \(Y = 0.5X + 4 \)
- IF \(X \) is large THEN \(Y = X - 1 \)

Sugeno: MISO

IF \(X \) is small AND \(Y \) is small THEN \(z = x + y + 1 \)
IF \(X \) is small AND \(Y \) is large THEN \(z = y + 3 \)
IF \(X \) is large and \(Y \) is small \(z = x + 3 \)
IF \(X \) is large and \(Y \) is large THEN \(z = x + y + 2 \)

Tsukamoto Model

- Consequent of rule is represented by monotonical MF
- Crisp output is induced by firing strength
- Overall output: weighted average of rule output
- BUT: not as transparent
Tsukamoto Example

IF X is small THEN Y is C₁
IF X is medium THEN Y is C₂
IF X is large THEN Y is C₃

Summary

Fuzzy Inference:
- Mamdami
 Defuzzification derived from area via appropriate method
- Sugeno
 functional relation of output
- Tsukamoto