Administrativa

Kai Goebel
Bill Cheetham

RPI/GE Global Research

goebel@cs.rpi.edu
cheetham@cs.rpi.edu

Administrativa (1)

1 Course Name:
 Soft Computing
1 Course Number:
 CSCI-6967, 4962 Soft Computing
1 Credit-hours:
 3 (4)
1 Schedule:
 Tuesday 6pm-8:50pm
1 Lecture Room:
 LOW 3112
Administrativa (2)

1. Course web site:
 http://www.cs.rpi.edu/courses/fall03/soft

1. Instructor Names:
 Kai Goebel
 Bill Cheetham

1. Instructor Email:
 goebel@cs.rpi.edu
 cheetham@cs.rpi.edu

(*** Preferred and fastest communication medium ***)

1. Instructor Websites:
 www.cs.rpi.edu/~goebel
 www.cs.rpi.edu/~cheetham

Administrativa (3)

1. Instructor Phone:
 Office Voice:
 1. Kai: (518) 387-4194
 1. Bill: (518) 387-5222
 Office Fax: (518) 387-6104

1. Office hours:
 by appointment, before class on Tue 5:30pm

1. T.A.:
 ?
Administrativa (4)

1 Grading:
 – 65% based on homework (mostly programming) assignments.
 – 30% based on research project.
 – 5% based on paper presentation

1 Prerequisites:
 – Official course prerequisite: None

1 Implicit prerequisites:
 – Proficiency in some High Level Language
 – Access to matlab
 – Past experience: need to be at least upper division undergrad to get the most out of this course

Integrity Policy

1 See our web site (standard RPI policy)

1 In particular, you may
 – discuss approaches to the homework assignments.

1 You must not
 – give someone else the exact answer to a homework question.
 – show or copy the code or write-up.

1 We will
 – find out – it’s awkward for everybody
 – give you a failing grade
 – report cases of dishonesty.
Administrativa (5)

1 Textbooks:

1 Required

“Neuro-Fuzzy and Soft Computing”
J.-S.R. Jang, C.-T. Sun, E. Mizutani;

“Applying Case-Based Reasoning”
I. Watson;

1 Optional

“Essential MATLAB for Scientists and Engineers”

Administrativa (6)

1 Final Project:

1 Imagine that you are writing a paper for a conference proceedings
 – Abstract (Executive Summary)
 – Problem description (what, why, specs, val. criteria)
 – Related work (who, how)
 – Solution Description (how does it work,
 – assumptions, architecture)
 – Solution Analysis (of computer runs)
 – Post-mortem Remarks (how should it work?)
 – Conclusions and Poss. Future Work (what’s next?)
 – References
 – Appendix: Source code and sample runs
Project Proposal

Submit 1 page with:

1. Problem Description
2. Data Source
3. Assumptions
4. Proposed Solution
5. Proposed Validation