Fuzzy Data Fusion

Kai Goebel
Bill Cheetham

RPI/GE Global Research

goebel@cs.rpi.edu
cheetham@cs.rpi.edu

Information Fusion

- Data Fusion
- Feature Fusion
- Decision Fusion
Data Fusion

- Sensor measurements are imprecise
 - noise
 - deficiency of complete understanding of the principles governing the operation of the sensor
 - incomplete knowledge of the environment
 - tolerances added during manufacturing
 - receptiveness to environmental conditions
 - sensor failure (wear, …)
 - system dynamics

Redundant Sensor Systems

- Use several sensors measuring the same quantity
- Issues:
 - what if they disagree?
Sensor Validation

- Ensure that measurement is correct within bounds

Approach
- Model system behavior
- Compare sensor value to predicted value
- Assign confidence
- Adjust model

Sensor Fusion

- Integrate information from several sources

Traditional Methods:
- Voting
 - Most likely one
 - Best one
 - Closest to model
- Average
- Weighted average
Sensor Validation & Fusion Scheme

- Sensor Fusion
- Sensor Validation
- Machine Level Controller
- Supervisory Controller
- Diagnosis

FUSVAF
- Fuzzy Sensor Validation and Fusion

- raw sensor readings
- determine confidence values for sensor readings
- fuse sensor readings
- fused value for machine level controller/supervisory controller

- calculate new predicted value
- calculate new α
Validation Gates

- z_i: sensor measurements
- σ_i: sensor confidence values
- $\hat{x}(k)$: predicted value
- $x(k-1)$: old value at previous time step

Operative Equation for Fusion

\[
\hat{x}_f = \frac{\sum_{i=1}^{n} z_i \sigma(z_i) + \alpha \hat{x}}{\sum_{i=1}^{n} \sigma(z_i) + \omega}
\]

- \hat{x}_f: fused value
- z_i: measurements
- σ: confidence values
- α: adaptive parameter representing the system state
- ω: constant scaling factor
- \hat{x}: expected value
FEWMA

- **Fuzzy Exponential Weighted Moving Average**

\[\hat{x}(k+1) = \alpha \hat{x}(k) + (1 - \alpha) y(k) \]

- Make \(\alpha \) adaptive depending on system state

 - *IF* change of readings small *THEN* \(\alpha \) large
 - *IF* change of readings medium *THEN* \(\alpha \) medium
 - *IF* change of readings large *THEN* \(\alpha \) small.

Design of Membership Functions

- maximum overlap
- triangular shaped functions
- need only two parameters

Intelligent Vehicles Highway Systems

- Intelligent Vehicle Highway System (IVHS)
- Increase safety and highway capacity
- Closely spaced automated vehicles traveling at high velocities
- Needs lots of sensors

Fusion Scheme Applied to IVHS
IVHS in action

last slide