CSCI 4150 Introduction to Artificial Intelligence, Fall 2001
Assignment 1 (62 points): out Thursday August 30, due Thursday September 6

This assignment is to get you started programming in Scheme. The questions cover writing basic proce-
dures; using the mathematical procedures, the let and let* forms, and list creating/accessing procedures;
and writing mathematical recursive functions.

Notes on this assignment

• This assignment is to be turned in on paper.
• No handwritten solutions will be accepted. (You’re going to test your code on the computer anyway,
 aren’t you?)
• Turn in a computer printout of only your code. We don’t want a transcript of your Scheme session
testing all your procedures.
• You don’t have to typeset your code — a simple printout of a (reasonably formatted) ASCII file is fine.
• Indent your code properly! There will be deductions for improperly indented code.
• You may always assume (on all assignments in this class) that your procedures will be given valid
 inputs.

Questions

1. (10 points) Do Exercise 1 in Section 6.2 of “How to solve problems using Scheme” (HtSPUS). As the
 problem states, do not use conditionals (i.e. if, cond, and case). You should use a let or let* form in your solution.

2. (16 points) Do Exercise 1 of Section 9.1.4 of HtSPUS.

3. (16 points) Do Exercise 1 of Section 9.4 of HtSPUS. Note that you may only use procedures introduced
 in Section 9 for this problem.

4. (10 points) Do Exercise 2 in Section 8.1 of HtSPUS.

5. (10 points) Every irrational number can be represented as a continued fraction. For example:

\[\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} \]

Write a procedure (sqrt2approx n) that computes an approximation to \(\sqrt{2} \) using a truncated ver-
sion of the continued fraction above. For example:

<table>
<thead>
<tr>
<th>call</th>
<th>computes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sqrt2approx 0)</td>
<td>1</td>
</tr>
<tr>
<td>(sqrt2approx 1)</td>
<td>1 + \frac{1}{2}</td>
</tr>
</tbody>
</table>

Your procedure should work for any nonnegative integer \(n \). You will probably find it easiest to solve
this problem using two procedures (i.e. your sqrt2approx procedure would call your other proce-
dure).