CSCI 2400 – Models of Computation

Solution for Homework #5

1. Show language \(L = \{ a^n b^i c^k : k = jn \} \) is not context-free.

 \textit{Solution}

 Assume that \(L \) is a context free language.
 Let \(w = a^m b^n c^m \), \(w \in L \). By the Pumping Lemma, \(w \) can be decomposed as \(w = uvxyz \) with \(|vzx| \leq m \) and \(|vy| \geq 1 \) such that \(uv^i xy^i z \in L \), \(i \leq 0 \).

 \textit{case 1} \(\underbrace{a \ldots ab \ldots bc \ldots c}_{uvxy} z \)

 If \(i = 0 \), \(uv^0 xy^0 z = a^m - |vy| b^n c^m \not\in L \).

 \textit{case 2} \(\underbrace{a \ldots ab \ldots bc \ldots c}_{uv} \)

 If \(i = 0 \), \(uv^0 xy^0 z = a^m b^n c^m \not\in L \).

 \textit{case 3} \(\underbrace{a \ldots ab \ldots bc \ldots c}_{uv} \)

 If \(i = 0 \), \(uv^0 xy^0 z = a^m b^n c^m \not\in L \).

 \textit{case 4} \(\underbrace{a \ldots ab \ldots bc \ldots c}_{uv} \)

 If \(i = 0 \), \(uv^0 xy^0 z = a^m b^n c^m - |vy| \not\in L \).

 \textit{case 5} \(\underbrace{a \ldots ab \ldots bc \ldots c}_{uv} \)

 If \(i = 0 \), \(uv^0 xy^0 z = a^m b^n c^m - |vy| \not\in L \).

 \textit{case 6} \(v \) or \(y \) containing \(ab \) or \(bc \)

 If \(i > 1 \), \(uv^i xy^i z \) would be \(a \ldots ab \ldots ba \ldots ab \ldots b \ldots c \ldots c \) or \(a \ldots ab \ldots bc \ldots cb \ldots c \).

 This is contradictory to the assumption that language \(L \) is context free. Therefore \(L \) is not context free.

2. Show language \(L = \{ w \in \{a, b, c\}^* : n_a(w) + n_b(w) = 2n_c(w) \} \) is not context-free.

3. Show language \(L = \{ww^Ra^{|w|} : w \in \{a, b\}^* \} \) is not context-free.

 \textit{Solution}

 Assume that \(L \) is a context free language. Let \(w = a^m b^m \). Then \(ww^Ra^{|w|} = a^m b^m b^m a^m a^{2m} \in L \). By the Pumping Lemma, \(ww^Ra^{|w|} \) can be decomposed as \(ww^Ra^{|w|} = uvxyz \) with \(|vzx| \leq m \) and \(|vy| \geq 1 \) such that \(uv^i xy^i z \in L \), \(i \leq 0 \).

 \textit{case 1} \(\underbrace{a \ldots ab \ldots ba \ldots aa \ldots a}_{uvxy} z \)

 If \(i = 0 \), \(|w| = 2m - |vy| \) is less than \(|w^R| \). So \(uv^0 xy^0 z \not\in L \).

 \textit{case 2} \(\underbrace{a \ldots ab \ldots ba \ldots aa \ldots a}_{uv} \)

 If \(i = 0 \), \(|w^R| = 2m - |vy| \) is less than \(|w| \). So \(uv^0 xy^0 z \not\in L \).
case 3 \(u_{a...ab...bb...ba...aa...a} \)

If \(i = 0 \), \(|a^{|w|}| = 2m - |vx| \) is less than \(|w| \). So \(u^0 x y^0 z \notin L \).

case 4 \(u_{a...ab...bb...ba...aa...a} \)

If \(i = 0 \), \(|u w^R| = 4m - |vy| \) is less than \(2 * |a^{|w|}| = 4m \). So \(u^0 x y^0 z \notin L \).

case 5 \(u_{a...ab...bb...ba...aa...a} \)

If \(i = 0 \), \(|w^R a^{|w|}| = 4m - |vy| \) is less than \(2 * |w| = 4m \). So \(u^0 x y^0 z \notin L \).

This is contradictory to the assumption that language \(L \) is context free. Therefore \(L \) is not context free.

4. Construct a Turing machine that will accepts language \(L = \{a^n b^m : n \geq 1, n \neq m\} \).

 Solution

![Turing Machine Diagram]

Figure 1: Turing Machine that accepts \(L = \{a^n b^m : n \geq 1, n \neq m\} \)

5. Construct a Turing machine to compute the function

\[f(w) = w^R \]

where \(w \in \{0,1\}^+ \).

 Solution
Figure 2: Turing Machine to compute $f(w) = w^R$