Fuzzy Data Fusion

Kai Goebel, Bill Cheetham
GE Corporate Research & Development
goebel@cs.rpi.edu
cheetham@cs.rpi.edu

Data Fusion

❖ Sensor measurements are imprecise
 – noise
 ▷ deficiency of complete understanding of the principles governing the operation of the sensor
 ▷ incomplete knowledge of the environment
 ▷ tolerances added during manufacturing
 ▷ receptiveness to environmental conditions
 – sensor failure (wear, …)
 – system dynamics

Redundant Sensor Systems

❖ Use several sensors measuring the same quantity
❖ Issues:
 what if they disagree?

Sensor Validation

❖ Ensure that measurement is correct within bounds
❖ Approach
 – Model system behavior
 – Compare sensor value to predicted value
 – Assign confidence
 – Adjust model

Sensor Fusion

❖ Integrate information from several sources
❖ Traditional Methods:
 – Voting
 ▷ Most likely one
 ▷ Best one
 ▷ Closest to model
 – Average
 – Weighted average
Sensor Validation & Fusion Scheme

- Sensor Validation
- Sensor Fusion
- Machine Level Controller
- Supervisory Controller
- Diagnosis

FUSVAF

- Fuzzy Sensor Validation and Fusion

1. Raw sensor readings
2. Fuzzy validation gate
3. Fuzzy sensor validation and fusion
4. Diagnoses
5. Machine level controller/supervisory controller

Validation Gates

- z_i: sensor measurements
- σ_i: sensor confidence values
- z(k): predicted value
- x(k-1): old value at previous time step

Operative Equation for Fusion

\[\hat{x}_k = \frac{\sum(z_i \sigma_i) \alpha_i}{\sum(z_i) \sigma_i} \]

- \(\hat{x}_k \): fused value
- z_i: measurements
- σ_i: confidence values
- \(\alpha \): adaptive parameter representing the system state
- \(\sigma \): constant scaling factor
- \(\hat{x} \): expected value

FEWMA

- Fuzzy Exponential Weighted Moving Average
 \[x(k+1) = \alpha x(k) + (1-\alpha)y(k) \]

- Make \(\alpha \) adaptive depending on system state
 - IF change of readings small THEN \(\alpha \) large
 - IF change of readings medium THEN \(\alpha \) medium
 - IF change of readings large THEN \(\alpha \) small.

Design of Membership Functions

- Maximum overlap
- Triangular shaped functions
- Need only two parameters
Intelligent Vehicles Highway Systems

- Intelligent Vehicle Highway System (IVHS)
- Increase safety and highway capacity
- Closely spaced automated vehicles traveling at high velocities
- Needs lots of sensors

Fusion Scheme Applied to IVHS

IVHS in action