Problem 1 Determine a formula for the minimal size of a maximal matching in a cycle C_n of length $n \geq 3$. Prove the formula.

The lengths of the maximal matchings in the cycles C_6, C_7, C_8, C_9 are 2, 3, 3, and 3, respectively.

Let $C_n = (x_0, x_1, \ldots, x_{n-1})$ be a cycle of length n. For any matching M in C_n, if $|M| < n/3$, then M contains at least one edge (x_i, x_{i+1}) such that the next two vertices, x_{i+2} and x_{i+3}, are weak (not saturated by M). Thus, M is not maximal. This implies that for every maximal matching M, its size $|M| \geq n/3$. Since, $|M|$ is an integer,

$$|M| \geq \left\lceil \frac{n}{3} \right\rceil.$$

The answer is $\left\lceil \frac{n}{3} \right\rceil$, since it is easy to construct a matching of this length in C_n. \qed

Problem 2 Let $\alpha(G)$ denote the maximal number of vertices such that no two of them are adjacent to each other. Let graph G have n vertices and let d be the maximal vertex degree in G. Prove that

$$\alpha(G) \geq \frac{n}{d + 1}.$$
Solution. Let S be a set of vertices such that no two are adjacent to each other. Then for every $x \in S$, all its neighbors are in $V - S$. Since the maximum vertex degree is d, the number of vertices in $V - S$ that are adjacent to vertices in S doesn’t exceed $d|S|$. Together with S itself, the number of vertices in S and its neighborhood $\leq |S|(d+1)$. If $|S|(d+1) < n$, then there would be a vertex x in $V - S$ which is not adjacent to any vertex in S. Thus S wouldn’t be a maximal size set of vertices no two adjacent to each other. Therefore, $\alpha(G) \times (d + 1) \geq n$. \hfill \blacksquare

Problem 3 Prove: every tree has at most one perfect matching.

Proof. If a tree T had two distinct perfect matchings M_1 and M_2, then their symmetric difference would be a collection of cycles, whose edges alternate between M_1 and M_2 (done in class). But no tree has cycles. \hfill \blacksquare