Foundations of Computer Science
Lecture 3
Making Precise Statements

Propositions
Compound Propositions and Truth Tables
Predicates and Quantifiers
Last Time

1. Sets, \{3, 5, 11\}

2. Sequences, 100111001

3. Graphs,

```
\begin{tikzpicture}
  \node (A) at (0,0) {A};
  \node (B) at (1,1) {B};
  \node (C) at (0,-1) {C};
  \node (D) at (1,0) {D};
  \node (E) at (2,0) {E};
  \node (F) at (1,-1) {F};
  \draw (A) -- (B);
  \draw (B) -- (D);
  \draw (D) -- (E);
  \draw (E) -- (F);
  \draw (F) -- (C);
\end{tikzpicture}
```

4. Examples of basic proofs.
 - In 4 rounds of group dating, no one meets more than 12 people.
 - \(x^2 \) is even “is the same as” \(x \) is even.
 - In any group of 6 people there is an orgy of 3 mutual friends or a war of 3 mutual enemies.
 - **Axiom:** The Well-Ordering Principle
 - \(\sqrt{2} \) is not rational.
Today: Making Precise Statements

1. Making a precise statement: the proposition

2. Complicated precise statements: the compound proposition
 - Truth tables

3. Claims about many things
 - Predicates
 - Quantifiers
 - Proofs with quantifiers
Statements can be Ambiguous

- 2+2=4.
Statements can be Ambiguous

2 + 2 = 4.

T
2 + 2 = 4.

2 + 2 = 5.
Statements can be Ambiguous

1. $2 + 2 = 4.$
 T

2. $2 + 2 = 5.$
 F
Statements can be Ambiguous

1. \(2+2=4. \quad \text{T} \)
2. \(2+2=5. \quad \text{F} \)
3. You may have cake OR ice-cream.
Statements can be Ambiguous

1. 2 + 2 = 4. T
2. 2 + 2 = 5. F

You may have cake OR ice-cream. (Can you have both?)
Statements can be Ambiguous

1. $2+2=4$.
2. $2+2=5$.
3. You may have cake **OR** ice-cream.
4. **IF** pigs can fly **THEN** you get an A.

(T)
(F)
(Can you have both?)
Statements can be Ambiguous

1. $2+2=4.$ \hspace{1cm} T

2. $2+2=5.$ \hspace{1cm} F

3. You may have cake or ice-cream. (Can you have both?)

4. If pigs can fly then you get an A. (Pigs can’t fly. So, can you get an A?)
Statements can be Ambiguous

1. $2 + 2 = 4$.
2. $2 + 2 = 5$.
3. You may have cake OR ice-cream.
4. IF pigs can fly THEN you get an A.
5. There is one soulmate for EVERY person.

T
F

(Can you have both?)

(Pigs can’t fly. So, can you get an A?)
Statements can be Ambiguous

1. $2+2=4$.
 T

2. $2+2=5$.
 F

3. You may have cake OR ice-cream.
 (Can you have both?)

4. **IF** pigs can fly **THEN** you get an A.
 (Pigs can’t fly. So, can you get an A?)

5. **There is** one soulmate for **EVERY** person.
 - There is a single soul mate that **EVERY** person shares.
Statements can be Ambiguous

1. 2+2=4. \[T \]
2. 2+2=5. \[F \]
3. You may have cake OR ice-cream. (Can you have both?)
4. IF pigs can fly THEN you get an A. (Pigs can’t fly. So, can you get an A?)
5. There is one soulmate for EVERY person.
 a. There is a single soul mate that EVERY person shares.
 b. EVERY person has their own special soul mate.
Statements can be Ambiguous

1. 2 + 2 = 4.
 \[T \]

2. 2 + 2 = 5.
 \[F \]

3. You may have cake OR ice-cream.
 (Can you have both?)

4. IF pigs can fly THEN you get an A.
 (Pigs can’t fly. So, can you get an A?)

5. There is one soulmate for EVERY person.
 - There is a single soul mate that EVERY person shares.
 - EVERY person has their own special soul mate.

Why is ambiguity bad? **Proof!**
Statements can be Ambiguous

1. 2+2=4. \hfill T

2. 2+2=5. \hfill F

3. You may have cake OR ice-cream. \hfill (Can you have both?)

4. IF pigs can fly THEN you get an A. \hfill (Pigs can’t fly. So, can you get an A?)

5. There is one soulmate for EVERY person.
 - There is a single soul mate that \textit{EVERY} person shares.
 - \textit{EVERY} person has their own special soul mate.

Why is ambiguity bad? \textbf{Proof!}

We asked questions of our friends to prove 5(b).

\begin{itemize}
 \item \textit{A} says Sue’s their soul mate;
 \item \textit{B} says Joe’s their soul mate;
 \item \textit{C} says Sue’s their soul mate;
 \item \textit{D}’s soul mate is a red Porshe;
 \item \textit{E} says Sue’s their soul mate;
 \item \textit{F} says Sam’s their soul mate.
\end{itemize}
Statements can be Ambiguous

1. \(2 + 2 = 4.\)
 \(-\) True

2. \(2 + 2 = 5.\)
 \(-\) False

3. You may have cake OR ice-cream.
 \(-\) (Can you have both?)

4. If pigs can fly THEN you get an A.
 \(-\) (Pigs can’t fly. So, can you get an A?)

5. There is one soulmate for EVERY person.
 - There is a single soul mate that EVERY person shares.
 - EVERY person has their own special soul mate.

Why is ambiguity bad? **Proof!**

We asked questions of our friends to prove 5(b).

Pop Quiz How to prove 5(a)?

- \(A\) says Sue’s their soul mate;
- \(B\) says Joe’s their soul mate;
- \(C\) says Sue’s their soul mate;
- \(D\)’s soul mate is a red Porshe;
- \(E\) says Sue’s their soul mate;
- \(F\) says Sam’s their soul mate.
Propositions are T or F

We use the letters p, q, r, s, \ldots to represent propositions.

- p: Porky the pig can fly. \quad F
- q: You got an A. \quad T?
- r: Kilam is an American. \quad T?
- s: 4^2 is even. \quad T

To get complex statements, combine basic propositions using logical connectors.
Compound Propositions

\[p: \text{Porky the pig can fly.} \quad F \]
\[q: \text{You got an A.} \quad T? \]
\[r: \text{Kilam is an American.} \quad T? \]
\[s: 4^2 \text{ is even.} \quad T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>\neg p</td>
<td></td>
</tr>
</tbody>
</table>
Compound Propositions

\[p: ~\text{Porky the pig can fly.} \quad F \]
\[q: ~\text{You got an A.} \quad T? \]
\[r: ~\text{Kilam is an American.} \quad T? \]
\[s: ~4^2 \text{ is even.} \quad T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
</tbody>
</table>
Compound Propositions

\(p: \) Porky the pig can fly. \(\quad \text{F} \)
\(q: \) You got an \(A. \) \(\quad \text{T?} \)
\(r: \) Kilam is an American. \(\quad \text{T?} \)
\(s: \) \(4^2 \) is even. \(\quad \text{T} \)

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>(p \land q)</td>
<td></td>
</tr>
</tbody>
</table>
Compound Propositions

\[p: \text{Porky the pig can fly.} \quad F \]
\[q: \text{You got an A.} \quad T? \]
\[r: \text{Kilam is an American.} \quad T? \]
\[s: 4^2 \text{ is even.} \quad T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>(p \land q)</td>
<td>(Porky the pig can fly) AND (You got an A)</td>
</tr>
</tbody>
</table>
Compound Propositions

p: Porky the pig can fly. \[F \]

q: You got an A. \[T? \]

r: Kilam is an American. \[T? \]

s: 4^2 is even. \[T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>$\neg p$</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>$p \land q$</td>
<td>(Porky the pig can fly) AND (You got an A)</td>
</tr>
<tr>
<td>OR</td>
<td>$p \lor q$</td>
<td></td>
</tr>
</tbody>
</table>

Negation (NOT), $\neg p \rightarrow$
Compound Propositions

- **p**: Porky the pig can fly. \(\text{F} \)
- **q**: You got an \(A \). \(\text{T}? \)
- **r**: Kilam is an American. \(\text{T}? \)
- **s**: 4\(^2\) is even. \(\text{T} \)

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>(p \land q)</td>
<td>(Porky the pig can fly) AND (You got an (A))</td>
</tr>
<tr>
<td>OR</td>
<td>(p \lor q)</td>
<td>(Porky the pig can fly) OR (You got an (A))</td>
</tr>
</tbody>
</table>
Compound Propositions

p: Porky the pig can fly. \hspace{1cm} F
q: You got an A. \hspace{1cm} T?
r: Kilam is an American. \hspace{1cm} T?
s: 4^2 is even. \hspace{1cm} T

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>$\neg p$</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>$p \land q$</td>
<td>(Porky the pig can fly) AND (You got an A)</td>
</tr>
<tr>
<td>OR</td>
<td>$p \lor q$</td>
<td>(Porky the pig can fly) OR (You got an A)</td>
</tr>
<tr>
<td>IF... THEN...</td>
<td>$p \rightarrow q$</td>
<td></td>
</tr>
</tbody>
</table>
Compound Propositions

\[p: \text{Porky the pig can fly.} \quad F \]
\[q: \text{You got an A.} \quad T? \]
\[r: \text{Kilam is an American.} \quad T? \]
\[s: 4^2 \text{ is even.} \quad T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>(p \land q)</td>
<td>(Porky the pig can fly) AND (You got an A)</td>
</tr>
<tr>
<td>OR</td>
<td>(p \lor q)</td>
<td>(Porky the pig can fly) OR (You got an A)</td>
</tr>
<tr>
<td>IF...THEN...</td>
<td>(p \rightarrow q)</td>
<td>IF (Porky the pig can fly) THEN (You got an A)</td>
</tr>
</tbody>
</table>
The negation $\neg p$ is T when p is F, and the negation $\neg p$ is F when p is T.
Negation (NOT), \(\neg p \)

The negation \(\neg p \) is T when \(p \) is F, and the negation \(\neg p \) is F when \(p \) is T.

“Porky the pig can fly” is F
Negation (NOT), \(\neg p \)

The negation \(\neg p \) is T when \(p \) is F, and the negation \(\neg p \) is F when \(p \) is T.

“Porky the pig can fly” is F

So,

IT IS NOT THE CASE THAT (Porky the pig can fly) is T
Conjunction (AND), $p \land q$

Both p and q must be T for $p \land q$ to be T; otherwise $p \land q$ is F.
Conjunction (AND), $p \land q$

Both p and q must be T for $p \land q$ to be T; otherwise $p \land q$ is F.

“Porky the pig can fly” is F
Conjunction (AND), $p \land q$

Both p and q must be T for $p \land q$ to be T; otherwise $p \land q$ is F.

"Porky the pig can fly" is F

We don’t know whether “You got an A”.
Conjunction (AND), $p \land q$

Both p and q must be T for $p \land q$ to be T; otherwise $p \land q$ is F.

“Porky the pig can fly” is F

We don’t know whether “You got an A”.

It does not matter.
Conjunction (AND), $p \land q$

Both p and q must be T for $p \land q$ to be T; otherwise $p \land q$ is F.

“Porky the pig can fly” is F

We don’t know whether “You got an A”.

It does not matter.

$(Porky \ \text{the pig can fly}) \land (You \ \text{got an A}) \ \text{is} \ F$
Both p and q must be F for $p \lor q$ to be F; otherwise $p \lor q$ is T.
Disjunction (OR), \(p \lor q \)

Both \(p \) and \(q \) must be \(F \) for \(p \lor q \) to be \(F \); otherwise \(p \lor q \) is \(T \).

“Porky the pig can fly” is \(F \)
Disjunction (OR), $p \lor q$

Both p and q must be F for $p \lor q$ to be F; otherwise $p \lor q$ is T.

“Porky the pig can fly” is F

We don’t know whether “You got an A”.
Disjunction (OR), $p \lor q$

Both p and q must be F for $p \lor q$ to be F; otherwise $p \lor q$ is T.

“Porky the pig can fly” is F

We don’t know whether “You got an A”.

Now it matters.
Disjunction (OR), $p \lor q$

Both p and q must be F for $p \lor q$ to be F; otherwise $p \lor q$ is T.

“Porky the pig can fly” is F

We don’t know whether “You got an A”.

Now it matters.

$(\text{Porky the pig can fly}) \lor (\text{You got an A})$ is T or F

(Depends on whether you got an A.)
Disjunction (OR), \(p \lor q \)

Both \(p \) and \(q \) must be \(F \) for \(p \lor q \) to be \(F \); otherwise \(p \lor q \) is \(T \).

“Porky the pig can fly” is \(F \)

We don’t know whether “You got an A”.

Now it matters.

\((\text{Porky the pig can fly}) \lor (\text{You got an A})\) is \(T \) or \(F \)

(Depends on whether you got an A.)

Pop Quiz: “You can have cake” OR “You can have ice-cream.” Can you have both?
Truth Tables

<table>
<thead>
<tr>
<th>p</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>$\neg p$</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>p</td>
<td>q</td>
<td>$\neg p$</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg p)</th>
<th>(p \land q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Tables

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Tables

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The truth table defines the “meaning” of these logical connectors.
Implication (**IF** . . . **THEN** . . .), $p \rightarrow q$

IF “Porky the pig can fly” **THEN** “You got an A.”

(T/F?)
Implication (IF... THEN...), $p \rightarrow q$

IF “Porky the pig can fly” **THEN** “You got an A.”

Suppose T. Since pigs can’t fly, does it mean you can’t get an A?

(T/F?)
Implication (IF . . . THEN . . .), $p \rightarrow q$

IF “Porky the pig can fly” **THEN** “You got an A.”

Suppose T. Since pigs can’t fly, does it mean you can’t get an A?

IF “n^2 is even”, **THEN** “n is even.”

(T/F?)

(T)
Implication (IF... THEN...), \(p \rightarrow q \)

- **IF** “Porky the pig can fly” **THEN** “You got an A.”

 Suppose \(T \). Since pigs can’t fly, does it mean you can’t get an A? (T/F?)

- **IF** “\(n^2 \) is even”, **THEN** “\(n \) is even.”

 Suppose \(n^2 \) is even. Can we conclude \(n \neq 5 \)? (T)
Implication ($\text{IF} \ldots \text{THEN} \ldots$), $p \rightarrow q$

IF “Porky the pig can fly” **THEN** “You got an A.”
Suppose T. Since pigs can’t fly, does it mean you can’t get an A?

IF “n^2 is even”, **THEN** “n is even.”
Suppose n^2 is even. Can we conclude $n \neq 5$?

IF “it rained last night” **THEN** “the grass is wet.”

(T/F?)
(T)
(T)
Implication (IF... THEN...), $p \rightarrow q$

IF “Porky the pig can fly” **THEN** “You got an A.”

Suppose T. Since pigs can’t fly, does it mean you can’t get an A? ($T/F?$)

IF “n^2 is even”, **THEN** “n is even.”

Suppose n^2 is even. Can we conclude $n \neq 5$? (T)

IF “it rained last night” **THEN** “the grass is wet.” (T)

$p : \text{it rained last night}$
$q : \text{the grass is wet}$

$p \rightarrow q$
Implication (IF... THEN...), $p \rightarrow q$

IF "Porky the pig can fly" THEN "You got an A."
Suppose T. Since pigs can’t fly, does it mean you can’t get an A? (T/F?)

IF "n^2 is even", THEN "n is even."
Suppose n^2 is even. Can we conclude $n \neq 5$? (T)

IF "it rained last night" THEN "the grass is wet."
(T)

$p : \text{it rained last night}$
$q : \text{the grass is wet}$

$p \rightarrow q$

What does it mean for this common-sense implication to be true?
Implication (IF... THEN...), \(p \rightarrow q \)

If “Porky the pig can fly” THEN “You got an A.”

Suppose \(T \). Since pigs can’t fly, does it mean you can’t get an A?

If “\(n^2 \) is even”, THEN “\(n \) is even.”

Suppose \(n^2 \) is even. Can we conclude \(n \neq 5 \)?

If “it rained last night” THEN “the grass is wet.”

\(p : \) it rained last night
\(q : \) the grass is wet

\(p \rightarrow q \)

What does it mean for this common-sense implication to be true?
What can you conclude? Did it rain last night? Is the grass wet?
Adding New Information to a True Implication: p is T

IF “it rained last night” THEN “the grass is wet.”

$p : \text{it rained last night}$
$q : \text{the grass is wet}$

$p \rightarrow q$

Weather report in morning paper: rain last night. ← new information
Adding New Information to a True Implication: \(p \) is \(T \)

IF “it rained last night” THEN “the grass is wet.”

\[
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
\]

\(p \rightarrow q \)

Weather report in morning paper: rain last night.

\[\text{IF (it rained last night) THEN (the grass is wet) } T\]
\[\text{It rained last night (from the weather report) } T\]
\[\text{Is the grass wet? } \text{YES!}\]
Adding New Information to a True Implication: p is T

IF “it rained last night” THEN “the grass is wet.”

$p : \text{it rained last night}$
$q : \text{the grass is wet}$

$p \rightarrow q$

Weather report in morning paper: rain last night. ← new information

<table>
<thead>
<tr>
<th>IF (it rained last night) THEN (the grass is wet)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>It rained last night (from the weather report)</td>
<td>T</td>
</tr>
<tr>
<td>Is the grass wet?</td>
<td>YES!</td>
</tr>
<tr>
<td></td>
<td>$\therefore q$ T</td>
</tr>
</tbody>
</table>

For a true implication $p \rightarrow q$, when p is T, you can conclude q is T.
Adding New Information to a True Implication: q is T

IF “it rained last night” THEN “the grass is wet.”

$p : \text{it rained last night}$
$q : \text{the grass is wet}$

$p \rightarrow q$

While picking up the morning paper, you see wet grass. ← new information
Adding New Information to a True Implication: \(q \) is \(T \)

If “it rained last night” THEN “the grass is wet.”

\[p : \text{it rained last night} \]
\[q : \text{the grass is wet} \]

\[p \rightarrow q \]

While picking up the morning paper, you see wet grass. ← new information

\[
\text{IF (it rained last night) THEN (the grass is wet) } T \\
\text{The grass is wet (from walking outside) } T \\
\text{Did it rain last night? 😒}
\]
Adding New Information to a True Implication: \(q \) is True

If “it rained last night” \(\implies \) “the grass is wet.”

\[
p : \text{it rained last night} \\
q : \text{the grass is wet}
\]

\[p \implies q \]

While picking up the morning paper, you see wet grass. \text{← new information}

\[
\begin{array}{c}
\text{IF (it rained last night) THEN (the grass is wet)} \quad T \\
\text{The grass is wet (from walking outside)} \quad T \\
\text{Did it rain last night?} \quad \smiley \\
\hline
p \implies q \\
q \\
\therefore p \\
\end{array}
\]

For a \textbf{true} implication \(p \implies q \), when \(q \) is \(T \), you \textbf{cannot} conclude \(p \) is \(T \).
Adding New Information to a True Implication: p is F

IF “it rained last night” THEN “the grass is wet.”

\[p : \text{it rained last night} \]
\[q : \text{the grass is wet} \]
\[p \rightarrow q \]

Weather report in morning paper: no rain last night. ← new information
Adding New Information to a True Implication: \(p \) is \(F \)

IF “it rained last night” THEN “the grass is wet.”

\[
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
\]

\[p \rightarrow q \]

Weather report in morning paper: no rain last night. ← new information

\[
\begin{array}{ccc}
\text{IF (it rained last night) THEN (the grass is wet)} & \text{T} & \text{p} \rightarrow q \text{ T} \\
\text{It rained last night (from the weather report)} & \text{F} & \text{p} \text{ F} \\
\text{Is the grass wet?} & \text{??} & \therefore \text{q} \text{ T or F}
\end{array}
\]

For a \textbf{true} implication \(p \rightarrow q \), when \(p \) is \(F \), you \textbf{cannot} conclude \(q \) is \(F \).
Adding New Information to a True Implication: q is F

IF “it rained last night” THEN “the grass is wet.”

\[p : \text{it rained last night} \]
\[q : \text{the grass is wet} \]

\[p \rightarrow q \]

While picking up the paper, you see dry grass. ← new information
Adding New Information to a True Implication: \(q \) is F

IF “it rained last night” **THEN** “the grass is wet.”

\[
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
p \rightarrow q
\]

While picking up the paper, you see dry grass. ← new information

<table>
<thead>
<tr>
<th>IF (it rained last night) THEN (the grass is wet)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>It grass is wet (from walking outside)</td>
<td>F</td>
</tr>
<tr>
<td>Did it rain last night?</td>
<td>😞</td>
</tr>
</tbody>
</table>

\[
\therefore \ p \quad \text{F}
\]

For a true implication \(p \rightarrow q \), when \(q \) is F, you can conclude \(p \) is F.
Implication: Inferences When New Information Comes

For a true implication $p \rightarrow q$:

- When p is T, you can conclude that q is T.
- When q is T, you cannot conclude p is T.
- When p is F, you cannot conclude q is F.
- When q is F, you can conclude p is F.
Implication: Inferences When New Information Comes

For a true implication $p \rightarrow q$:

- When p is T, you can conclude that q is T.
- When q is T, you cannot conclude p is T.
- When p is F, you cannot conclude q is F.
- When q is F, you can conclude p is F.

IF (Porky the pig can fly) **THEN** (You got an A)

$\begin{align*}
\text{F} & \quad \text{F} \\
\text{can be T or F (phew)} &
\end{align*}$
You are a scientist collecting data to verify that the implication is valid (true).
Falsifying “IF (it rained last night) THEN (the grass is wet)”

- You are a scientist collecting data to *verify* that the implication is valid (true).
- One night it rained. That morning the grass was dry. ← new information
Falsifying “IF (it rained last night) THEN (the grass is wet)”

- You are a scientist collecting data to verify that the implication is valid (true).
- One night it rained. That morning the grass was dry. ← new information
- What do you think about the implication now?
Falsifying “IF (it rained last night) THEN (the grass is wet)”

- You are a scientist collecting data to verify that the implication is valid (true).
- One night it rained. That morning the grass was dry. ← new information
- What do you think about the implication now?

This is a falsifying scenario.

IF (it rains) THEN (the grass is wet) ← not T

\[p \rightarrow q \text{ is F only when } p \text{ is T and } q \text{ is F. In all other cases } p \rightarrow q \text{ is T.} \]
Implication is *Extremely Important*, $p \to q$

All these are $p \to q$ ($p =$ “it rained last night” and $q =$ “the grass is wet”):

If it rained last night then the grass is wet.

IF p THEN q
Implication is *Extremely* Important, $p \rightarrow q$

All these are $p \rightarrow q$ ($p = \text{“it rained last night”}$ and $q = \text{“the grass is wet”}$):

- If it rained last night then the grass is wet.
- It rained last night implies the grass is wet.

IF p THEN q

p IMPLIES q
Implication is \textit{Extremely} Important, \(p \rightarrow q \)

All these are \(p \rightarrow q \) (\(p \) = “it rained last night” and \(q \) = “the grass is wet”):

- If it rained last night then the grass is wet. \(\text{IF } p \text{ THEN } q \)
- It rained last night implies the grass is wet. \(p \text{ IMPLIES } q \)
- It rained last night only if the grass is wet. \(p \text{ ONLY IF } q \)
Implication is *Extremely Important*, \(p \rightarrow q \)

All these are \(p \rightarrow q \) (\(p = \) “it rained last night” and \(q = \) “the grass is wet”):

- If it rained last night then the grass is wet. \(\text{IF } p \text{ THEN } q \)
- It rained last night implies the grass is wet. \(p \text{ IMPLIES } q \)
- It rained last night only if the grass is wet. \(p \text{ ONLY IF } q \)
- The grass is wet if it rained last night. \(q \text{ IF } p \)
Implication is *Extremely Important*, $p \rightarrow q$

All these are $p \rightarrow q$ ($p =$ “it rained last night” and $q =$ “the grass is wet”):

- If it rained last night then the grass is wet. \hspace{1cm} IF p THEN q
- It rained last night implies the grass is wet. \hspace{1cm} p IMPLIES q
- It rained last night only if the grass is wet. \hspace{1cm} p ONLY IF q
- The grass is wet if it rained last night. \hspace{1cm} q IF p
- The grass is wet whenever it rains. \hspace{1cm} q WHenever p

Truth Tables:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

\[p : \text{you are hungry} \]
\[q : \text{you are thirsty} \]
\[r : \text{you visit the cafeteria} \]

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

- \(p \) : you are hungry
- \(q \) : you are thirsty
- \(r \) : you visit the cafeteria

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((p \lor q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

\(p\) : you are hungry
\(q\) : you are thirsty
\(r\) : you visit the cafeteria

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: **IF** (you are hungry **OR** you are thirsty) **THEN** you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where
- \(p\): you are hungry
- \(q\): you are thirsty
- \(r\): you visit the cafeteria

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: If (you are hungry or you are thirsty) then you visit the cafeteria

\[(p \lor q) \rightarrow r \]

where

\[p : \text{you are hungry} \]
\[q : \text{you are thirsty} \]
\[r : \text{you visit the cafeteria} \]

You are thirsty: \(q \) is \(T \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \rightarrow r\] where
\[p : \text{you are hungry} \]
\[q : \text{you are thirsty} \]
\[r : \text{you visit the cafeteria} \]

- You are thirsty: \(q\) is T. In both cases \(r\) is T.
 (you visit the cafeteria)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \to r\]

where

- \(p\): you are hungry
- \(q\): you are thirsty
- \(r\): you visit the cafeteria

- **You are thirsty:** \(q\) is T. In both cases \(r\) is T. (you visit the cafeteria)
- **You did visit the cafeteria:** \(r\) is T.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((p \lor q) \to r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

- \(p\): you are hungry
- \(q\): you are thirsty
- \(r\): you visit the cafeteria

You are thirsty: \(q\) is T. In both cases \(r\) is T.

You did visit the cafeteria: \(r\) is T.

Are you hungry? We don’t know.
Are you thirsty? We don’t know.
(You accompanied your hungry friend (row 2).)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: \textbf{IF} (you are hungry \textbf{OR} you are thirsty) \textbf{THEN} you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

\[p : \text{you are hungry}\]
\[q : \text{you are thirsty}\]
\[r : \text{you visit the cafeteria}\]

- \textbf{You are thirsty:} \(q\) is \(T\). In both cases \(r\) is \(T\).
 (you visit the cafeteria)

- \textbf{You did visit the cafeteria:} \(r\) is \(T\).
 Are you hungry? We don’t know.
 Are you thirsty? We don’t know.
 (You accompanied your hungry friend (row 2).)

- \textbf{You did not visit the cafeteria:} \(r\) is \(F\).

\[
\begin{array}{c|c|c|c}
 p & q & r & (p \lor q) \rightarrow r \\
 \hline
 1. & F & F & F & T \\
 2. & F & F & T & T \\
 3. & F & T & F & F \\
 4. & F & T & T & T \\
 5. & T & F & F & F \\
 6. & T & F & T & T \\
 7. & T & T & F & F \\
 8. & T & T & T & T \\
\end{array}
\]
Example: **IF** (you are hungry **OR** you are thirsty) **THEN** you visit the cafeteria

\[(p \lor q) \rightarrow r\]

where

\[p : \text{you are hungry}\]
\[q : \text{you are thirsty}\]
\[r : \text{you visit the cafeteria}\]

- **You are thirsty:** \(q\) is T. In both cases \(r\) is T. (you visit the cafeteria)
- **You did visit the cafeteria:** \(r\) is T. Are you hungry? We don’t know. Are you thirsty? We don’t know. (You accompanied your hungry friend (row 2).)
- **You did not visit the cafeteria:** \(r\) is F. \(p\) and \(q\) are both F. (You are neither hungry nor thirsty.)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Equivalent Compound Statements

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$\neg q \rightarrow \neg p$</th>
<th>$\neg p \lor q$</th>
<th>$q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

rains \rightarrow wet grass, dry grass \rightarrow no rain, no rain \lor wet grass, wet grass \rightarrow rain

$$p \rightarrow q \equiv \neg q \rightarrow \neg p \equiv \neg p \lor q$$
Equivalent Compound Statements

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$\neg q \rightarrow \neg p$</th>
<th>$\neg p \lor q$</th>
<th>$q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- rains → wet grass
- dry grass → no rain
- no rain ∨ wet grass
- wet grass → rain

$p \rightarrow q \equiv \neg q \rightarrow \neg p \equiv \neg p \lor q$

Order is very important: $p \rightarrow q$ and $q \rightarrow p$ **do not** mean the same thing.

IF I’m dead, **THEN** my eyes are closed \hspace{1cm} **vs.** \hspace{1cm} **IF** my eyes are closed, **THEN** I’m dead
Equivalent Compound Statements

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$\neg q \rightarrow \neg p$</th>
<th>$\neg p \lor q$</th>
<th>$q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

rains \rightarrow wet grass
dry grass \rightarrow no rain
no rain \lor wet grass
wet grass \rightarrow rain

$p \rightarrow q \equiv \neg q \rightarrow \neg p \equiv \neg p \lor q$

Order is very important: $p \rightarrow q$ and $q \rightarrow p$ do not mean the same thing.

IF I’m dead, THEN my eyes are closed **vs.** IF my eyes are closed, THEN I’m dead

Pop Quiz 3.5. Compound propositions are used for program control flow, especially IF...THEN...

if($x > 0 \ || \ (y > 1 \ \&\& \ x < y)$)
Execute some instructions.

if($x > 0 \ || \ y > 1$)
Execute some instructions.

Use truth-tables to show that both do the same thing. Which do you prefer and why?
Proving an Implication: Reasoning Without Facts

If \((n^2\text{ is even})\) THEN \((n\text{ is even})\).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

What is \(n\)? How to prove?
IF \((n^2 \text{ is even})\) THEN \((n \text{ is even})\).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is \(n\)? How to prove?

We must show that the highlighted row \textit{cannot} occur.
Proving an Implication: Reasoning Without Facts

IF \((n^2 \text{ is even})\) THEN \((n \text{ is even})\).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is \(n\)? How to prove?

We must show that the highlighted row *cannot* occur.

In this row, \(q\) is F: \(n = 2k + 1\).
Proving an Implication: Reasoning Without Facts

IF \((n^2 \text{ is even})\) THEN \((n \text{ is even})\).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is \(n\)? How to prove?

We must show that the highlighted row cannot occur.

In this row, \(q\) is \(F\): \(n = 2k + 1\).

\[n^2 = (2k + 1)^2 = 2(2k^2 + 2k) + 1 \]
Proving an Implication: Reasoning Without Facts

IF \((n^2 \text{ is even})\) THEN \((n \text{ is even})\).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is \(n\)? How to prove?

We must show that the highlighted row \(\text{cannot}\) occur.

In this row, \(q\) is \(\text{F}: \ n = 2k + 1\).

\[
n^2 = (2k + 1)^2 = 2(2k^2 + 2k) + 1
\]

\(p\) \(\text{cannot}\) be \(\text{T}\).
Proving an Implication: Reasoning Without Facts

IF \((n^2 \text{ is even})\) THEN \((n \text{ is even})\).

\[
\begin{array}{ccc}
| p \quad q | & | p \rightarrow q |
| \hline
F \quad F & | T |
F \quad T & | T |
T \quad F & | F |
T \quad T & | T |
\end{array}
\]

What is \(n\)? How to prove?

We must show that the highlighted row cannot occur.

In this row, \(q\) is F: \(n = 2k + 1\).

\[
n^2 = (2k + 1)^2 = 2(2k^2 + 2k) + 1
\]

\(p\) cannot be T. This row cannot happen: \(p \rightarrow q\) is always T.
Quantifiers

\textbf{EVERY} person has a soulmate.

Kilam has some gray hair.
Quantifiers

EVERY person has A soulmate.

Kilam has some gray hair.
Everyone has some gray hair.
Kilam has \textit{some} gray hair.
Everyone has \textit{some} gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes (*Goldbach, 1742*).
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes (Goldbach, 1742).
Someone broke this faucet.
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes \((\text{Goldbach, 1742})\).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
EVERY person has A soulmate.

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes (Goldbach, 1742).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.
EVERY person has A soulmate.

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes (Goldbach, 1742).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.

These statements are more complex because of quantifiers:

EVERY; A; SOME; ANY; ALL; THERE EXISTS.
Kilam has **some** gray hair.
Everyone has **some** gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes (*Goldbach, 1742*).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.

These statements are more complex because of **quantifiers**:

- **EVERY**; **A**; **SOME**; **ANY**; **ALL**; **THERE EXISTS**.

Compare:

- My Ford Escort has four wheels;
- **ALL** cars have four wheels.
ALL cars have four wheels
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* \(P(c) \) and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \text{← set of cars}
\]
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{c | c \text{ is a car} \} \quad \leftarrow \text{set of cars}$$

$$P(c) = \text{“car } c \text{ has four wheels”}$$
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$ C = \{ c | \text{c is a car} \} \quad \leftarrow \text{set of cars} $$

$$ P(c) = \text{“car c has four wheels”} $$

“for all c in C, the statement $P(c)$ is true.”

$$ \forall c \in C : P(c). $$

(\forall means “for all”)

ALL cars have four wheels

Define \textit{predicate} $P(c)$ and its \textit{domain}:

\[
C = \{c | c \text{ is a car}\} \quad \text{← set of cars}
\]

\[
P(c) = \text{“car } c \text{ has four wheels”}
\]

\text{“for all } c \text{ in } C, \text{ the statement } P(c) \text{ is true.”}

\[
\forall c \in C : P(c).
\]

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
</table>

Creator: Malik Magdon-Ismail
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}
\]
\[
P(c) = \text{“car } c \text{ has four wheels”}
\]

“for all c in C, the statement $P(c)$ is true.”

\[
\forall c \in C : P(c).
\]

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}
\]

\[
P(c) = \text{“car } c \text{ has four wheels”}
\]

“for all c in C, the statement $P(c)$ is true.”

\[
\forall c \in C : P(c).
\]

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{c|c \text{ is a car}\} \quad \leftarrow \text{set of cars}$$

$$P(c) = \text{“car } c \text{ has four wheels”}$$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C : P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>Output</td>
<td>statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* \(P(c) \) and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}
\]

\[
P(c) = \text{“car } c \text{ has four wheels”}
\]

“for all \(c \) in \(C \), the statement \(P(c) \) is true.”

\[
\forall c \in C : P(c).
\]

(\(\forall \) means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate (P(c) = \text{“car } c \text{ has four wheels”})</th>
<th>Function (f(x) = x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter (c \in C)</td>
<td>statement (P(c))</td>
<td>parameter (x \in \mathbb{R})</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>value (f(x))</td>
</tr>
<tr>
<td>Example</td>
<td>(P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”})</td>
<td>(f(5) = 25)</td>
</tr>
</tbody>
</table>
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}$$

$$P(c) = \text{“car } c \text{ has four wheels”}$$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C : P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td></td>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>Example</td>
<td>statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
<tr>
<td></td>
<td>$P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”}$</td>
<td>$f(5) = 25$</td>
</tr>
<tr>
<td></td>
<td>$\forall c \in C : P(c)$</td>
<td>$\forall x \in \mathbb{R}, \ f(x) \geq 0$</td>
</tr>
</tbody>
</table>
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{ c| c \text{ is a car}\}$$ ← set of cars

$$P(c) = \text{“car } c \text{ has four wheels”}$$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C: P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c)$ = \text{“car } c \text{ has four wheels”}</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
<tr>
<td>$P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”}$</td>
<td>$f(5) = 25$</td>
</tr>
<tr>
<td>$\forall c \in C : P(c)$</td>
<td>$\forall x \in \mathbb{R}, \ f(x) \geq 0$</td>
</tr>
<tr>
<td>Meaning</td>
<td>For all $x \in \mathbb{R}$, $f(x)$ is ≥ 0.</td>
</tr>
</tbody>
</table>
There exists a creature with Blue eyes and Blonde Hair

Define \textit{predicate} $Q(a)$ and its \textit{domain}

$$A = \{a | a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}$$
Define *predicate* \(Q(a) \) and its *domain*

\[
A = \{ a | a \text{ is a creature} \} \quad \leftarrow \text{set of creatures}
\]

\[
Q(a) = "a \text{ has blue eyes and blonde hair}"
\]
There EXISTS a Creature with Blue eyes and Blonde Hair

Define *predicate* \(Q(a) \) and its *domain*

\[
A = \{a | a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}
\]

\[Q(a) = \text{“} a \text{ has blue eyes and blonde hair”} \]

“there exists \(a \) in \(A \) for which the statement \(Q(a) \) is true.”

\[
\exists a \in A : Q(a).
\]

(\(\exists \) means “there exists”)
There **exists** a Creature with Blue eyes and Blonde Hair

Define *predicate* $Q(a)$ and its *domain*

$$A = \{a | a \text{ is a creature}\} \quad \leftrightarrow \quad \text{set of creatures}$$

$$Q(a) = \text{“a has blue eyes and blonde hair”}$$

“there exists a in A for which the statement $Q(a)$ is true.”

$$\exists a \in A : Q(a).$$

(\exists means “there exists”)

$$G(a) = \text{“a has blue eyes”}$$
Define predicate $Q(a)$ and its domain

$$A = \{a|a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}$$

$$Q(a) = \text{“a has blue eyes and blonde hair”}$$

“there exists a in A for which the statement $Q(a)$ is true.”

$$\exists a \in A : Q(a).$$

(\exists means “there exists”)

$$G(a) = \text{“a has blue eyes”}$$

$$H(a) = \text{“a has blonde hair”}$$
There **exists** a Creature with Blue eyes and Blonde Hair

Define *predicate* $Q(a)$ and its *domain*

$$A = \{a \mid a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}$$

$$Q(a) = \text{“}a \text{ has blue eyes and blonde hair”}$$

“there exists a in A for which the statement $Q(a)$ is true.”

$$\exists a \in A : Q(a).$$

(\exists means “there exists”)

$$G(a) = \text{“}a \text{ has blue eyes”}$$

$$H(a) = \text{“}a \text{ has blonde hair”}$$

$$\exists a \in A : (G(a) \land H(a))$$

(compound predicate)
There exists a Creature with Blue eyes and Blonde Hair

Define predicate $Q(a)$ and its domain

\[
A = \{a | a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}
\]

\[
Q(a) = \text{“} a \text{ has blue eyes and blonde hair} \text{”}
\]

“there exists a in A for which the statement $Q(a)$ is true.”

\[
\exists a \in A : Q(a).
\]

(\exists means “there exists”)

\[
G(a) = \text{“} a \text{ has blue eyes} \text{”}
\]

\[
H(a) = \text{“} a \text{ has blonde hair} \text{”}
\]

\[
\exists a \in A : (G(a) \land H(a))
\]

(compound predicate)

(When the domain is understood, we don’t need to keep repeating it. We write $\exists a : Q(a)$, or $\exists a : (G(a) \land H(a))$.)
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)

Same as: “All creatures don’t have blue eyes and blonde hair”

\[-\left(\exists a \in A : Q(a)\right) \equiv \forall a \in A : \neg Q(a)\]
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)

Same as: “All creatures don’t have blue eyes and blonde hair”

\[-\left(\exists a \in A : Q(a)\right) \equiv \forall a \in A : \neg Q(a)\]

IT IS NOT THE CASE THAT (All cars have four wheels)
Negating Quantifiers

IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
Same as: “All creatures don’t have blue eyes and blonde hair”

\[\neg \left(\exists a \in A : Q(a) \right) \equiv \forall a \in A : \neg Q(a) \]

IT IS NOT THE CASE THAT (All cars have four wheels)
Same as: “There is a car which does not have four wheels”

\[\neg \left(\forall c \in C : P(c) \right) \equiv \exists c \in C : \neg P(c) \]
Negating Quantifiers

IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
Same as: “All creatures don’t have blue eyes and blonde hair”

\[
\neg \left(\exists a \in A : Q(a) \right) \equiv \forall a \in A : \neg Q(a)
\]

IT IS NOT THE CASE THAT (All cars have four wheels)
Same as: “There is a car which does not have four wheels”

\[
\neg \left(\forall c \in C : P(c) \right) \equiv \exists c \in C : \neg P(c)
\]

When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers: \(\forall \rightarrow \exists, \exists \rightarrow \forall \)
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person} \}. \]
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{a \mid a \text{ is an person}\}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.” \]
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person}\}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.\” \]

- There is some special person \(b \) who is a soul mate to every person \(a \).
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person} \}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.” \]

- There is some special person \(b \) who is a soul mate to every person \(a \).

\[\exists b : (\forall a : P(a, b)). \]
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person} \}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.” \]

- There is some special person \(b \) who is a soul mate to every person \(a \).
 \[\exists b : (\forall a : P(a, b)). \]

- For every person \(a \), they have their own personal soul mate \(b \).
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person} \}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.” \]

- There is some special person \(b \) who is a soul mate to every person \(a \).

\[\exists b : (\forall a : P(a, b)). \]

- For every person \(a \), they have their own personal soul mate \(b \).

\[\forall a : (\exists b : P(a, b)). \]
There is a Soulmate for Every Person

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an person} \}. \]

\[P(a, b) = \text{“Person } a \text{ has as a soul mate person } b.\text{”} \]

- There is some special person \(b \) who is a soul mate to every person \(a \).
 \[\exists b : (\forall a : P(a, b)). \]

- For every person \(a \), they have their own personal soul mate \(b \).
 \[\forall a : (\exists b : P(a, b)). \]

When quantifiers are mixed, the order in which they appear is important for the meaning. Order generally cannot be switched.
Proofs with Quantifiers

Claim 1. \(\forall n > 2 : \text{IF } n \text{ is even, THEN } n \text{ is a sum of two primes.} \) \((Goldbach, 1742)\)

Claim 2. \(\exists (a, b, c) \in \mathbb{N}^3 : a^2 + b^2 = c^2.\) \((a, b, c) \in \mathbb{N}^3 \text{ means triples of natural numbers})

Claim 3. \(\neg \exists (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 = c^3.\)

Claim 4. \(\forall (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 \neq c^3.\)

Think about what it would take to prove these claims.