Foundations of Computer Science
Lecture 7

Recursion
A Powerful but Dangerous Technique
Analyzing Recursions and Recursions with Induction
Recursive Sets
Recursive Structures
With induction, it may be easier to prove a stronger claim.

Leaping induction.
- $n^3 < 2^n$ for $n \geq 10$.
- Postage.

Strong induction.
- Representation theorems: FTA, binary expansion.
- Games: Nim with 2 equal piles.
Today: Recursion

1 Recursive functions
   - Analysis using induction
   - Recurrences
   - Recursive programs

2 Recursive sets
   - Formal Definition of N
   - The Finite Binary Strings $\Sigma^*$

3 Recursive structures
   - Rooted binary trees (RBT)
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
A Fantastic Recursion

Online lecture tool “Demo”: allows lecturer to see screen of remote student.
A Fantastic Recursion

Online lecture tool “Demo”: allows lecturer to see screen of remote student.
A Fantastic Recursion

Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.

PROFESSOR

STUDENT
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
A Fantastic Recursion

Online lecture tool “Demo”: allows lecturer to see screen of remote student.

HANG!, CRASH!, BANG!, reboot required
The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool *shows* what the tool *showed*. – *self reference*
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

lookup(word): Get definition; if a word $x$ in the definition is unknown, lookup($x$).
The tool shows the student’s screen, i.e. my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

look-up (word): Get definition; if a word $x$ in the definition is unknown, look-up ($x$).

$$f(n) = f(n - 1) + 2n - 1.$$  

What is $f(2)$?
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

look-up (word): Get definition; if a word x in the definition is unknown, look-up(x).

\[ f(n) = f(n - 1) + 2n - 1. \]  

What is \( f(2) \)?

\[ f(2) = f(1) + 3 \]
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e. my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

look-up (word): Get definition; if a word $x$ in the definition is unknown, look-up $(x)$.  

$$f(n) = f(n-1) + 2n - 1.$$  

What is $f(2)$?  

$$f(2) = f(1) + 3 = f(0) + 4$$
The tool shows the student’s screen, i.e., my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

look-up (word): Get definition; if a word $x$ in the definition is unknown, look-up ($x$).

$$f(n) = f(n - 1) + 2n - 1.$$  \hspace{1cm} \text{What is } f(2) ?

$$f(2) = f(1) + 3 = f(0) + 4 = f(-1) + 3$$
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

\[ f(n) = f(n - 1) + 2n - 1. \]

\[ f(2) = f(1) + 3 = f(0) + 4 = f(-1) + 3 = \cdots \]

- self reference

`look-up` (word): Get definition; if a word \( x \) in the definition is unknown, `look-up` (\( x \)).

What is \( f(2) \)?

`*/?%&# 😞@$#!`
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases} 
0 & n \leq 0; \\
f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3\]
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

$$ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0. 
\end{cases} $$

$$ f(2) = f(1) + 3 = f(0) + 4 $$
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
\ f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\[ f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4. \]  
(ends at a base case)
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases} 
0 & n \leq 0; \\
\ f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.\]  

Must have **base cases:**
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0. 
\end{cases}
\]

Thus,

\[
f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4. \\ 
(ends at a base case)
\]

Must have **base cases:**

In this case \(f(0)\).
Recursion Must Have Base Cases: *Partial* Self Reference.

*look-up (word)* works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.\] (ends at a base case)

Must have **base cases:**

In this case \(f(0)\).

Must make **recursive progress:**
Recursion Must Have Base Cases: \textit{Partial Self Reference.}

\textit{look-up (word)} works if there are some known words to which everything reduces.

Similarly with recursive functions,\footnote{ends at a base case}
\[
f(n) = \begin{cases} 
0 & n \leq 0; \\
f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.\]

Must have \textbf{base cases}:\footnote{ends at a base case}

In this case \(f(0)\).

Must make \textbf{recursive progress}:\footnote{ends at a base case}

To compute \(f(n)\) you must move \textit{closer} to the base case \(f(0)\).
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \tag{f(0)} \]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

\[ f(0) \rightarrow f(1) \]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

\[
\begin{array}{c}
\text{f(0) → f(1) → f(2)}
\end{array}
\]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\[
\begin{array}{c}
\boxed{f(0)} \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots
\end{array}
\]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0.
\end{cases} \]

| \[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \] |

**Induction**

\( P(0) \) is \( T \); \( P(n) \rightarrow P(n+1) \)

**Recursion**
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

**Induction**

\( P(0) \) is T; \( P(n) \rightarrow P(n + 1) \)

(you can conclude \( P(n + 1) \) if \( P(n) \) is T)

**Recursion**

\([f(0)] \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots\)
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n-1) + 2n - 1 & n > 0. 
\end{cases} \]

**Induction**

- \( P(0) \) is T; \( P(n) \rightarrow P(n+1) \)
- (you can conclude \( P(n+1) \) if \( P(n) \) is T)

\[ P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

**Recursion**

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]
Recursion and Induction

\[ f(n) = \begin{cases} 
  0 & n \leq 0; \\
  f(n-1) + 2n - 1 & n > 0.
\end{cases} \]

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

**Induction**

\( P(0) \) is T; \( P(n) \rightarrow P(n+1) \)

(You can conclude \( P(n+1) \) if \( P(n) \) is T)

\[ P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\[ \therefore P(n) \) is T for all \( n \geq 0. \]

**Recursion**
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

**Induction**

\[ P(0) \text{ is } \text{T}; \ P(n) \rightarrow P(n + 1) \]

(\text{you can conclude } P(n + 1) \text{ if } P(n) \text{ is T})

\[ P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\[ \therefore P(n) \text{ is } \text{T for all } n \geq 0. \]

**Recursion**

\[ f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]
Recursion and Induction

\[ f(n) = \begin{cases} \ 0 & n \leq 0; \\ f(n - 1) + 2n - 1 & n > 0. \end{cases} \]

**Induction**

\[ P(0) \text{ is } T; \ P(n) \to P(n + 1) \]

(you can conclude \( P(n + 1) \) if \( P(n) \) is \( T \))

\[ [P(0)] \to P(1) \to P(2) \to P(3) \to P(4) \to \cdots \]

\[ \therefore P(n) \text{ is } T \text{ for all } n \geq 0. \]

**Recursion**

\[ f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

(you can compute \( f(n + 1) \) if \( f(n) \) is known)
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

\[
\hspace{1cm} f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots
\]

**Induction**

\[
P(0) \text{ is } T; \ P(n) \rightarrow P(n + 1)
\]

(you can conclude \( P(n + 1) \) if \( P(n) \) is \( T \))

\[
P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots
\]

\[\therefore P(n) \text{ is } T \text{ for all } n \geq 0.\]

**Recursion**

\[
f(0) = 0; \ f(n + 1) = f(n) + 2n + 1
\]

(you can compute \( f(n + 1) \) if \( f(n) \) is known)

\[
f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots
\]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
\ f(n-1) + 2n - 1 & n > 0. 
\end{cases} \]

**Induction**

\( P(0) \) is T; \( P(n) \rightarrow P(n+1) \)
(you can conclude \( P(n+1) \) if \( P(n) \) is T)

\[ P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\( \therefore P(n) \) is T for all \( n \geq 0 \).

**Recursion**

\( f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \)
(you can compute \( f(n+1) \) if \( f(n) \) is known)

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

\( \therefore \) we can compute \( f(n) \) for all \( n \geq 0 \).
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0.
\end{cases} \]

**Induction**

\( P(0) \) is T; \( P(n) \to P(n+1) \)
(you can conclude \( P(n+1) \) if \( P(n) \) is T)

\[ \boxed{f(0)} \to f(1) \to f(2) \to f(3) \to f(4) \to \cdots \]

\( \therefore P(n) \) is T for all \( n \geq 0. \)

**Recursion**

\( f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \)
(you can compute \( f(n+1) \) if \( f(n) \) is known)

\[ \boxed{f(0)} \to f(1) \to f(2) \to f(3) \to f(4) \to \cdots \]

\( \therefore \) we can compute \( f(n) \) for all \( n \geq 0. \)

Example: More Base Cases

---

Creator: Malik Magdon-Ismail

Recursion: 7 / 16

Analysing Recursion →
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

**Induction**

\[ P(0) \text{ is T; } P(n) \rightarrow P(n + 1) \]

(\text{you can conclude } P(n + 1) \text{ if } P(n) \text{ is T})

\[ [P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots] \]

\[ \therefore P(n) \text{ is T for all } n \geq 0. \]

**Recursion**

\[ f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

(\text{you can compute } f(n + 1) \text{ if } f(n) \text{ is known})

\[ [f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots] \]

\[ \therefore \text{we can compute } f(n) \text{ for all } n \geq 0. \]

**Example: More Base Cases**

\[ f(n) = \begin{cases} 
1 & n = 0; \\
 f(n - 2) + 2 & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

**Induction**

\[ P(0) \text{ is } T; \ P(n) \rightarrow P(n + 1) \]

(You can conclude \( P(n + 1) \) if \( P(n) \) is \( T \))

\[ \boxed{P(0)} \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\[ \therefore P(n) \text{ is } T \text{ for all } n \geq 0. \]

**Recursion**

\[ f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

(You can compute \( f(n + 1) \) if \( f(n) \) is known)

\[ \boxed{f(0)} \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

\[ \therefore \text{we can compute } f(n) \text{ for all } n \geq 0. \]

**Example: More Base Cases**

\[ f(n) = \begin{cases} 
1 & n = 0; \\
f(n - 2) + 2 & n > 0.
\end{cases} \]

\[
\begin{array}{c|cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
 f(n) & 1 & \times & & & & & & & \\
\end{array}
\]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
\ f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\textbf{Induction}

\( P(0) \) is \( T \); \( P(n) \rightarrow P(n+1) \)

(you can conclude \( P(n+1) \) if \( P(n) \) is \( T \))

\( \boxed{P(0)} \) → \( P(1) \) → \( P(2) \) → \( P(3) \) → \( P(4) \) → · · ·

\( \therefore P(n) \) is \( T \) for all \( n \geq 0 \).

\textbf{Recursion}

\( f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \)

(you can compute \( f(n+1) \) if \( f(n) \) is known)

\( \boxed{f(0)} \) → \( f(1) \) → \( f(2) \) → \( f(3) \) → \( f(4) \) → · · ·

\( \therefore \) we can compute \( f(n) \) for all \( n \geq 0 \).

\textbf{Example: More Base Cases}

\[ f(n) = \begin{cases} 
1 & n = 0; \\
\ f(n - 2) + 2 & n > 0.
\end{cases} \]

\[
\begin{array}{c|cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 f(n) & 1 & \times & 3 & \times & 5 & \times & 7 & \times & 9 \\
\end{array}
\]
Recursion and Induction

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

**Induction**

\[ P(0) \text{ is } T; \ P(n) \rightarrow P(n + 1) \]

(\text{you can conclude } P(n + 1) \text{ if } P(n) \text{ is } T)

\[ P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\[ \therefore P(n) \text{ is } T \text{ for all } n \geq 0. \]

**Recursion**

\[ f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

(\text{you can compute } f(n + 1) \text{ if } f(n) \text{ is known})

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

\[ \therefore \text{we can compute } f(n) \text{ for all } n \geq 0. \]

**Example: More Base Cases**

\[ f(n) = \begin{cases} 
1 & n = 0; \\
(f(n - 2) + 2) & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>1</td>
<td>( \times )</td>
<td>3</td>
<td>( \times )</td>
<td>5</td>
<td>( \times )</td>
<td>7</td>
<td>( \times )</td>
<td>9</td>
</tr>
</tbody>
</table>

How to fix \( f(n) \)? \text{Hint:} leaping induction.

\[ f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

**Practice.** Exercise 7.4
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
& \\
f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0. 
\end{cases} \]

Unfolding the Recursion

\[ f(n) = f(n-1) + 2n - 1 \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[ f(n) = f(n - 1) + 2n - 1 \]
\[ f(n - 1) = f(n - 2) + 2n - 3 \]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
  f(n) &= f(n - 1) + 2n - 1 \\
  f(n - 1) &= f(n - 2) + 2n - 3 \\
  f(n - 2) &= f(n - 3) + 2n - 5
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>⋯</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
    f(n) &= f(n - 1) + 2n - 1 \\
    f(n - 1) &= f(n - 2) + 2n - 3 \\
    f(n - 2) &= f(n - 3) + 2n - 5 \\
    & \vdots \\
    f(2) &= f(1) + 3 \\
    f(1) &= f(0) + 1
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>…</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
  f(n) &= f(n - 1) + 2n - 1 \\
  f(n - 1) &= f(n - 2) + 2n - 3 \\
  f(n - 2) &= f(n - 3) + 2n - 5 \\
  \vdots \\
  f(2) &= f(1) + 3 \\
  f(1) &= f(0) + 1 \\
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
  f(n) &= f(n - 1) + 2n - 1 \\
  f(n - 1) &= f(n - 2) + 2n - 3 \\
  f(n - 2) &= f(n - 3) + 2n - 5 \\
  & \vdots \\
  f(2) &= f(1) + 3 \\
  f(1) &= f(0) + 1
\end{align*}
\]

\[
\begin{array}{c|cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 f(n) & 0 & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 \\
\end{array}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion:

\[
\begin{align*}
    f(n) &= f(n-1) + 2n - 1 \\
    f(n-1) &= f(n-2) + 2n - 3 \\
    f(n-2) &= f(n-3) + 2n - 5 \\
    & \vdots \\
    f(2) &= f(1) + 3 \\
    f(1) &= f(0) + 1 \\
    f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n - 1) + 2n - 1 \\
f(n - 1) &= f(n - 2) + 2n - 3 \\
f(n - 2) &= f(n - 3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0. 
\end{cases} \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
  f(n) &= f(n-1) + 2n - 1 \\
  f(n-1) &= f(n-2) + 2n - 3 \\
  f(n-2) &= f(n-3) + 2n - 5 \\
  & \vdots \\
  f(2) &= f(1) + 3 \\
  f(1) &= f(0) + 1 \\
  f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

[Base case] \( P(0) : f(0) = 0^2 \) (clearly \( T \)).
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0. 
\end{cases} \]

| \( n \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | \ldots |
| \hline
f(n) | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | \ldots |

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n - 1) + 2n - 1 \\
f(n - 1) &= f(n - 2) + 2n - 3 \\
f(n - 2) &= f(n - 3) + 2n - 5 \\
& \vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

[Base case] \( P(0) : f(0) = 0^2 \) (clearly true).

[Induction] Show \( P(n) \rightarrow P(n + 1) \) for \( n \geq 0 \).
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
\frac{f(n-1)}{+} + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>( \cdots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>( \cdots )</td>
</tr>
</tbody>
</table>

Proof by induction that \( f(n) = n^2 \).

\( P(n) : f(n) = n^2 \)

[Base case] \( P(0) : f(0) = 0^2 \) (clearly true).

[Induction] Show \( P(n) \rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 & \vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

**[Base case]** \( P(0) : f(0) = 0^2 \) (clearly true).

**[Induction]** Show \( P(n) \rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[ f(n+1) \]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n-1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 & \vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

\textbf{[Base case]} \( P(0) : f(0) = 0^2 \) (clearly true).

\textbf{[Induction]} Show \( P(n) \Rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[ f(n+1) = f(n) + 2(n+1) - 1 \quad \text{(recursion)} \]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0. 
\end{cases} \]

### Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
&\vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 0 + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1 
\end{align*}
\]

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f(n) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

### Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

**[Base case]** \( P(0) : f(0) = 0^2 \) (clearly \( T \)).

**[Induction]** Show \( P(n) \rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[
\begin{align*}
 f(n+1) &= f(n) + 2(n+1) - 1 \quad \text{(recursion)} \\
 &= n^2 + 2n + 1 \quad \text{(} f(n) = n^2 \text{)}
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n-1) + 2n - 1 & n > 0. 
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
  f(n) &= f(n-1) + 2n - 1 \\
  f(n-1) &= f(n-2) + 2n - 3 \\
  f(n-2) &= f(n-3) + 2n - 5 \\
  &\vdots \\
  f(2) &= f(1) + 3 \\
  f(1) &= f(0) + 1 \\
  f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

[Base case] \( P(0) : f(0) = 0^2 \) (clearly T).

[Induction] Show \( P(n) \rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[
\begin{align*}
  f(n+1) &= f(n) + 2(n+1) - 1 \\
  &= n^2 + 2n + 1 \\
  &= (n+1)^2 \\
  &\quad \text{(recursion)} \\
  &\quad \text{($f(n) = n^2$)} \\
  &\quad \text{($P(n+1)$ is T)}
\end{align*}
\]
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 & \vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

[Base case] \( P(0) : f(0) = 0^2 \) (clearly \( \text{T} \)).

[Induction] Show \( P(n) \rightarrow P(n + 1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[
\begin{align*}
 f(n + 1) &= f(n) + 2(n + 1) - 1 \\
 &= n^2 + 2n + 1 \\
 &= (n + 1)^2
\end{align*}
\]

So, \( P(n + 1) \) is \( \text{T} \).
Using Induction to Analyze a Recursion

\[ f(n) = \begin{cases} 
0 & n \leq 0; \\
f(n-1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
& \vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \( f(n) = n^2 \).

\[ P(n) : f(n) = n^2 \]

[Base case] \( P(0) : f(0) = 0^2 \) (clearly \( T \)).

[Induction] Show \( P(n) \rightarrow P(n+1) \) for \( n \geq 0 \).

Assume \( P(n) : f(n) = n^2 \).

\[
\begin{align*}
f(n+1) &= f(n) + 2(n+1) - 1 \\
&= n^2 + 2n + 1 \\
&= (n+1)^2
\end{align*}
\]

\( P(n+1) \) is \( T \).

So, \( P(n+1) \) is \( T \).

(Hard) Example 7.1 in DMC

\[ f(n) = \begin{cases} 
1 & n = 1; \\
\left( f\left( \frac{n}{2} \right) + 1 \right) & n > 1, \text{ even;} \\
f(n+1) & n > 1, \text{ odd;}
\end{cases} \]

(Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to make it even, and then halve it.)

Prove \( f(n) = 1 + \lceil \log_2 n \rceil \).

Practice. Exercise 7.5
✓ Tinker. Draw the implication arrows. Is the function well defined?
Tinker. Draw the implication arrows. Is the function well defined?
Tinker. Compute $f(n)$ for small values of $n$. 
Checklist for Analyzing Recursion

✓ Tinker. Draw the implication arrows. Is the function well defined?
✓ Tinker. Compute $f(n)$ for small values of $n$.
✓ Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
Checklist for Analyzing Recursion

✓ Tinker. Draw the implication arrows. Is the function well defined?
✓ Tinker. Compute $f(n)$ for small values of $n$.
✓ Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
✓ Prove your conjecture for $f(n)$ by induction.
Checklist for Analyzing Recursion

- ✓ Tinker. Draw the implication arrows. Is the function well defined?
- ✓ Tinker. Compute $f(n)$ for small values of $n$.
- ✓ Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
- ✓ Prove your conjecture for $f(n)$ by induction.
  - The type of induction to use will often be related to the type of recursion.
Checklist for Analyzing Recursion

✓ Tinker. Draw the implication arrows. Is the function well defined?
✓ Tinker. Compute $f(n)$ for small values of $n$.
✓ Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
✓ Prove your conjecture for $f(n)$ by induction.
  – The type of induction to use will often be related to the type of recursion.
  – In the induction step, use the recursion to relate the claim for $n + 1$ to lower values.
Checklist for Analyzing Recursion

✓ Tinker. Draw the implication arrows. Is the function well defined?
✓ Tinker. Compute $f(n)$ for small values of $n$.
✓ Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
✓ Prove your conjecture for $f(n)$ by induction.
  – The type of induction to use will often be related to the type of recursion.
  – In the induction step, use the recursion to relate the claim for $n + 1$ to lower values.

Practice. Exercise 7.6
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, ....

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>( F_1 )</th>
<th>( F_2 )</th>
<th>( F_3 )</th>
<th>( F_4 )</th>
<th>( F_5 )</th>
<th>( F_6 )</th>
<th>( F_7 )</th>
<th>( F_8 )</th>
<th>( F_9 )</th>
<th>( F_{10} )</th>
<th>( F_{11} )</th>
<th>( F_{12} )</th>
<th>( \cdots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>( \cdots )</td>
</tr>
</tbody>
</table>
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>( F_1 )</th>
<th>( F_2 )</th>
<th>( F_3 )</th>
<th>( F_4 )</th>
<th>( F_5 )</th>
<th>( F_6 )</th>
<th>( F_7 )</th>
<th>( F_8 )</th>
<th>( F_9 )</th>
<th>( F_{10} )</th>
<th>( F_{11} )</th>
<th>( F_{12} )</th>
<th>( \cdots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>( \cdots )</td>
</tr>
</tbody>
</table>

Let us prove \( P(n) : F_n \leq 2^n \) by **strong induction**.
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

\[
\begin{array}{cccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \cdots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \cdots \\
\end{array}
\]

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \) ✓ and \( F_2 = 1 \leq 2^2 \) ✓

(why 2 base cases?)
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n > 2. \]

\[
\begin{array}{cccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \cdots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \cdots \\
\end{array}
\]

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \checkmark \) and \( F_2 = 1 \leq 2^2 \checkmark \)

(why 2 base cases?)

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \( n \geq 2. \)
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, ... .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n > 2. \]

<table>
<thead>
<tr>
<th>( F_1 )</th>
<th>( F_2 )</th>
<th>( F_3 )</th>
<th>( F_4 )</th>
<th>( F_5 )</th>
<th>( F_6 )</th>
<th>( F_7 )</th>
<th>( F_8 )</th>
<th>( F_9 )</th>
<th>( F_{10} )</th>
<th>( F_{11} )</th>
<th>( F_{12} )</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>...</td>
</tr>
</tbody>
</table>

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \) ✓ and \( F_2 = 1 \leq 2^2 \) ✓

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \( n \geq 2 \).

**Assume:** \( P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \( 1 \leq i \leq n \).
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, …

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>( F_1 )</th>
<th>( F_2 )</th>
<th>( F_3 )</th>
<th>( F_4 )</th>
<th>( F_5 )</th>
<th>( F_6 )</th>
<th>( F_7 )</th>
<th>( F_8 )</th>
<th>( F_9 )</th>
<th>( F_{10} )</th>
<th>( F_{11} )</th>
<th>( F_{12} )</th>
<th>( \cdots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>( \cdots )</td>
</tr>
</tbody>
</table>

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \, \checkmark \) and \( F_2 = 1 \leq 2^2 \, \checkmark \) (why 2 base cases?)

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \( n \geq 2 \).

Assume: \( P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \( 1 \leq i \leq n. \)

\[ F_{n+1} \]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
<th>(F_{10})</th>
<th>(F_{11})</th>
<th>(F_{12})</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n\) by **strong induction**.

**Base Cases:** \(F_1 = 1 \leq 2^1 \checkmark\) and \(F_2 = 1 \leq 2^2 \checkmark\)

(why 2 base cases?)

**Strong Induction:** Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1)\) for \(n \geq 2\).

**Assume:** \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i\) for \(1 \leq i \leq n\).

\[ F_{n+1} = F_n + F_{n-1} \quad \text{(needs } n \geq 2) \]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( F_1 )</td>
<td>( F_2 )</td>
<td>( F_3 )</td>
<td>( F_4 )</td>
<td>( F_5 )</td>
<td>( F_6 )</td>
<td>( F_7 )</td>
<td>( F_8 )</td>
<td>( F_9 )</td>
<td>( F_{10} )</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
</tr>
</tbody>
</table>

Let us prove \( P(n) : F_n \leq 2^n \) by **strong induction**.

**Base Cases:** \( F_1 = 1 \leq 2^1 \; \checkmark \) and \( F_2 = 1 \leq 2^2 \; \checkmark \) (why 2 base cases?)

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \( n \geq 2 \).

**Assume:** \( P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \( 1 \leq i \leq n \).

\[
F_{n+1} = F_n + F_{n-1} \\
\leq 2^n + 2^{n-1} \quad \text{(needs } n \geq 2) \\
\leq 2^n + 2^{n-1} \quad \text{(strong induction hypothesis)}
\]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>( F_1 )</th>
<th>( F_2 )</th>
<th>( F_3 )</th>
<th>( F_4 )</th>
<th>( F_5 )</th>
<th>( F_6 )</th>
<th>( F_7 )</th>
<th>( F_8 )</th>
<th>( F_9 )</th>
<th>( F_{10} )</th>
<th>( F_{11} )</th>
<th>( F_{12} )</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>. . .</td>
</tr>
</tbody>
</table>

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \checkmark \) and \( F_2 = 1 \leq 2^2 \checkmark \)

**(why 2 base cases?)**

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n + 1) \) for \( n \geq 2 \).

**Assume:** \( P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \( 1 \leq i \leq n. \)

\[
F_{n+1} = F_n + F_{n-1} \\
\leq 2^n + 2^{n-1} \quad \text{(needs } n \geq 2) \\
\leq 2 \times 2^n = 2^{n+1} \quad \text{(strong induction hypothesis)}
\]

So, \( F_{n+1} \leq 2^{n+1} \), concluding the proof.
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . . .

\[ F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

\[
\begin{array}{cccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \cdots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \cdots \\
\end{array}
\]

Let us prove \( P(n) : F_n \leq 2^n \) by strong induction.

**Base Cases:** \( F_1 = 1 \leq 2^1 \checkmark \) and \( F_2 = 1 \leq 2^2 \checkmark \)  
(why 2 base cases?)

**Strong Induction:** Prove \( P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n + 1) \) for \( n \geq 2 \).

**Assume:** \( P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \( 1 \leq i \leq n \).

\[
\begin{align*}
F_{n+1} & = F_n + F_{n-1} \\
& \leq 2^n + 2^{n-1} \quad \text{(strong induction hypothesis)} \\
& \leq 2 \times 2^n = 2^{n+1}
\end{align*}
\]

So, \( F_{n+1} \leq 2^{n+1} \), concluding the proof.

**Practice.** Prove \( F_n \geq \left(\frac{3}{2}\right)^n \) for \( n \geq 11 \).
Recursive Programs

\[
\text{out=Big(n)} \\
\text{if(n==0) out=1;} \\
\text{else out=2*Big(n-1);} \\
\]

Does this function compute \(2^n\)?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

```
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.

```plaintext
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**

When $n = 0$, $\text{Big}(0) = 1 = 2^0 \, \checkmark$

```latex
\text{out=Big(n)}
\text{if(n==0) out=1;}
\text{else out=2*Big(n-1);}
```

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**

When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓

Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$
\text{out=Big(n)} \\
\text{if(n==0) out=1;} \\
\text{else out=2*Big(n-1);} \\
$$

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**

When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓

Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}$.

-out=Big(n)
   if(n==0) out=1;
   else out=2*Big(n-1);

Does this function compute $2^n$?
Recursive Programs

Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**
When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

\[ \text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}. \]

**What is the runtime?**
Let $T_n =$ runtime of $\text{Big}$ for input $n$.

```plaintext
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**
When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n+1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$

**What is the runtime?**
Let $T_n =$ runtime of $\text{Big}$ for input $n$.

$$T_0 = 2$$
Recursive Programs

Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**
When $n = 0$, $\text{Big}(0) = 1 = 2^0$

Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$ 

What is the runtime?
Let $T_n =$ runtime of Big for input $n$.

$$T_0 = 2$$
$$T_n = T_{n-1} + (\text{check } n==0) + (\text{multiply by } 2) + (\text{assign to } \text{out})$$

out=\text{Big}(n)
if(n==0) out=1;
else out=2*\text{Big}(n-1);

Does this function compute $2^n$?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

**Induction.**  
When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n+1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$ 

What is the runtime?  
Let $T_n = \text{runtime of Big}$ for input $n$.

$$T_0 = 2$$
$$T_n = T_{n-1} + (\text{check } n==0) + (\text{multiply by } 2) + (\text{assign to } \text{out})$$
$$= T_{n-1} + 3$$
Proving correctness: let’s prove \( \text{Big}(n) = 2^n \) for \( n \geq 1 \)

**Induction.**

When \( n = 0 \), \( \text{Big}(0) = 1 = 2^0 \) \( \checkmark \)

Assume \( \text{Big}(n) = 2^n \) for \( n \geq 0 \)

\[
\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.
\]

**What is the runtime?**

Let \( T_n = \) runtime of \( \text{Big} \) for input \( n \).

\[
\begin{align*}
T_0 &= 2 \\
T_n &= T_{n-1} + (\text{check } n==0) + (\text{multiply by 2}) + (\text{assign to } \text{out}) \\
&= T_{n-1} + 3
\end{align*}
\]

**Exercise.** Prove by induction that \( T_n = 3n + 2 \).
Recursive definition of the natural numbers $\mathbb{N}$.

- $1 \in \mathbb{N}$.  
  [basis]

\[ \mathbb{N} = \{1, \ldots \} \]
Recursive definition of the natural numbers \( \mathbb{N} \).

1. \( 1 \in \mathbb{N} \). [basis]
2. \( x \in \mathbb{N} \Rightarrow x + 1 \in \mathbb{N} \). [constructor]

\[ \mathbb{N} = \{1, 2, \ldots\} \]
Recursive Sets: \( \mathbb{N} \)

Recursive definition of the natural numbers \( \mathbb{N} \).

1. \( 1 \in \mathbb{N} \).  \([\text{basis}]\)
2. \( x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N} \).  \([\text{constructor}]\)

\[ \mathbb{N} = \{1, 2, 3, \ldots\} \]
Recursive definition of the natural numbers \( \mathbb{N} \).

1. \( 1 \in \mathbb{N} \). [basis]
2. \( x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N} \). [constructor]

\[ \mathbb{N} = \{1, 2, 3, 4, \ldots\} \]
Recursive definition of the natural numbers $\mathbb{N}$.

1. $1 \in \mathbb{N}$. [basis]
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$. [constructor]
3. Nothing else is in $\mathbb{N}$. [minimality]

$\mathbb{N} = \{1, 2, 3, 4, \ldots \}$

Technically, by bullet 3, we mean that $\mathbb{N}$ is the smallest set satisfying bullets 1 and 2.
Recursive definition of the natural numbers $\mathbb{N}$.

1. $1 \in \mathbb{N}$.  
   [*basis*]  
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$.  
   [*constructor*]  
3. Nothing else is in $\mathbb{N}$.  
   [*minimality*]

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Technically, by bullet 3, we mean that $\mathbb{N}$ is the *smallest* set satisfying bullets 1 and 2.

**Pop Quiz.** Is $\mathbb{R}$ a set that satisfies bullets 1 and 2 alone? Is it the smallest?
Let \( \varepsilon \) be the *empty string* (similar to the empty set).
Let $\varepsilon$ be the *empty string* (similar to the empty set).

<table>
<thead>
<tr>
<th>Recursive definition of $\Sigma^*$ (finite binary strings).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\varepsilon \in \Sigma^*$.</td>
</tr>
</tbody>
</table>

[basis]
Let $\varepsilon$ be the *empty string* (similar to the empty set).

**Recursive definition of $\Sigma^*$ (finite binary strings).**

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. [constructor]
Recursive Sets: Finite Binary Strings, $\Sigma^*$

Let $\varepsilon$ be the *empty string* (similar to the empty set).

Recursive definition of $\Sigma^*$ (finite binary strings).

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. [constructor]

Minimality is there by default: nothing else is in $\Sigma^*$. 

Let $\varepsilon$ be the *empty string* (similar to the empty set).

### Recursive definition of $\Sigma^*$ (finite binary strings).

1. $\varepsilon \in \Sigma^*$. \hspace{1cm} [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. \hspace{1cm} [constructor]

Minimality is there by default: nothing else is in $\Sigma^*$.

\[
\varepsilon
\]
Let $\varepsilon$ be the *empty string* (similar to the empty set).

**Recursive definition of $\Sigma^*$ (finite binary strings).**

1. $\varepsilon \in \Sigma^*$.  
   **[basis]**
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$.  
   **[constructor]**

Minimality is there by default: nothing else is in $\Sigma^*$.

$$\varepsilon \rightarrow 0, 1$$
Let $\varepsilon$ be the *empty string* (similar to the empty set).

**Recursive definition of $\Sigma^*$ (finite binary strings).**

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. [constructor]

Minimality is there by default: nothing else is in $\Sigma^*$.

$\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11$
Recursive Sets: Finite Binary Strings, $\Sigma^*$

Let $\varepsilon$ be the *empty string* (similar to the empty set).

### Recursive definition of $\Sigma^*$ (finite binary strings).

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^* \text{ AND } x \cdot 1 \in \Sigma^*$. [constructor]

Minimality is there by default: nothing else is in $\Sigma^*$.

\[
\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11 \rightarrow 000, 001, 010, 011, 100, 101, 110, 111 \rightarrow \cdots .
\]
Recursive Sets: Finite Binary Strings, $\Sigma^*$

Let $\varepsilon$ be the *empty string* (similar to the empty set).

**Recursive definition of $\Sigma^*$ (finite binary strings).**

1. $\varepsilon \in \Sigma^*$.  
   [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$.  
   [constructor]

Minimality is there by default: nothing else is in $\Sigma^*$.

$$
\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11 \rightarrow 000, 001, 010, 011, 100, 101, 110, 111 \rightarrow \cdots.
$$

$$
\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots \}
$$

**Practice.** Exercise 7.12
Recursive Structures: Trees

Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons, methane, $CH_4$

\[ \begin{array}{c}
\text{H} \\
\text{H} \cdot \text{C} \cdot \text{H} \\
\text{H} \\
\end{array} \]
Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

\[
\text{methane, } C\text{H}_4 \quad \text{ethane, } C_2\text{H}_6
\]

\[
\begin{array}{c}
\text{H} \\
\text{H-\text{C-\text{H}}} \\
\text{H} \\
\end{array}
\quad
\begin{array}{c}
\text{H} \\
\text{H-\text{C-\text{C-\text{H}}}} \\
\text{H} \\
\end{array}
\]
Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

- methane, $CH_4$
- ethane, $C_2H_6$
- propane, $C_3H_8$
Recursive Structures: Trees

Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

- **methane, $CH_4$**
  - \[
  \begin{array}{c}
  H \\
  H \cdot C \cdot H \\
  H \\
  \end{array}
  \]

- **ethane, $C_2H_6$**
  - \[
  \begin{array}{c}
  H \\
  H \cdot C \cdot H \\
  H \\
  H \\
  \end{array}
  \]

- **propane, $C_3H_8$**
  - \[
  \begin{array}{c}
  H \\
  H \cdot C \cdot C \cdot H \\
  H \\
  H \\
  H \\
  \end{array}
  \]

- **butane, $C_4H_{10}$**
  - \[
  \begin{array}{c}
  H \\
  H \cdot C \cdot C \cdot C \cdot H \\
  H \\
  H \\
  H \\
  H \\
  \end{array}
  \]
Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

- **methane, \( CH_4 \)**
  
  ![Methane Structure](image)

- **ethane, \( C_2H_6 \)**
  
  ![Ethane Structure](image)

- **propane, \( C_3H_8 \)**
  
  ![Propane Structure](image)

- **butane, \( C_4H_{10} \)**
  
  ![Butane Structure](image)

- **iso-butane, \( C_4H_{10} \)**
  
  ![Iso-butane Structure](image)
Recursive Structures: Trees

Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

<table>
<thead>
<tr>
<th></th>
<th>methane, $\text{CH}_4$</th>
<th>ethane, $\text{C}_2\text{H}_6$</th>
<th>propane, $\text{C}_3\text{H}_8$</th>
<th>butane, $\text{C}<em>4\text{H}</em>{10}$</th>
<th>iso-butane, $\text{C}<em>4\text{H}</em>{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{H}$</td>
<td>$\text{H} - \text{C} - \text{H}$</td>
<td>$\text{H} - \text{C} - \text{C} - \text{H}$</td>
<td>$\text{H} - \text{C} - \text{C} - \text{C} - \text{H}$</td>
<td>$\text{H} - \text{C} - \text{C} - \text{C} - \text{C} - \text{H}$</td>
</tr>
<tr>
<td></td>
<td>$\text{H}$</td>
<td>$\text{H} - \text{H}$</td>
<td>$\text{H} - \text{H}$</td>
<td>$\text{H} - \text{H}$</td>
<td>$\text{H} - \text{H}$</td>
</tr>
</tbody>
</table>

Trees have many uses in computer science

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...
Recursive Structures: Trees

Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

- Methane, $C H_4$
- Ethane, $C_2H_6$
- Propane, $C_3H_8$
- Butane, $C_4H_{10}$
- Iso-butane, $C_4H_{10}$

Trees have many uses in computer science:

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...
Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

- methane, $CH_4$
- ethane, $C_2H_6$
- propane, $C_3H_8$
- butane, $C_4H_{10}$
- iso-butane, $C_4H_{10}$

Trees have many uses in computer science

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree $\varepsilon$ is an RBT.
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\epsilon$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\varepsilon$ is an RBT.

2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

Diagram: 
- A red triangle labeled $T_1$ 
- A red triangle labeled $T_2$ 
- A new root node $r$ connecting to $T_1$ and $T_2$
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\emptyset$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

$\emptyset$
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\varepsilon$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

$$ T_1 = \varepsilon \quad T_2 = \varepsilon $$
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\varepsilon$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

\[
\begin{align*}
\varepsilon &= T_1 = \varepsilon \\
T_2 &= \varepsilon
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\varepsilon$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

$$
\begin{align*}
\varepsilon & \quad T_1 = \varepsilon \\
T_2 = \varepsilon & \quad T_2 = \varepsilon \\
\end{align*}
$$

$$
\begin{align*}
T_1 = \cdot & \quad T_2 = \cdot \\
T_1 = \cdot & \quad T_2 = \cdot \\
\end{align*}
$$
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree $\varepsilon$ is an RBT.
- If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

The empty tree $\varepsilon$ is an RBT, and if $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

```
ε → T_1 = ε → T_2 = ε → T_1 = T_2 = T_1 = T_2 = T_1 = T_2 = 
```

Trees Are Important
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree $\varepsilon$ is an RBT.
2. If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$.

$\varepsilon \rightarrow T_1 = \varepsilon \rightarrow T_2 = \varepsilon \rightarrow T_1 = \cdot \rightarrow T_2 = \cdot \rightarrow T_1 = \cdot \rightarrow T_2 = \cdot \rightarrow \cdot$
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree $\varepsilon$ is an RBT.
- If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

\[
\begin{align*}
\varepsilon & \quad \rightarrow \quad T_1 = \varepsilon \\
T_2 &= \varepsilon \\
T_1 & \quad \rightarrow \quad T_2 = \varepsilon \\
T_2 &= \varepsilon \\
T_1 & \quad \rightarrow \quad T_1 = T_2 \\
T_2 &= \varepsilon \quad \rightarrow \quad T_1 = T_2 \quad \rightarrow \quad T_2 = \varepsilon \\
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree $\varepsilon$ is an RBT.
- If $T_1, T_2$ are disjoint RBTs with roots $r_1$ and $r_2$, then linking $r_1$ and $r_2$ to a new root $r$ gives a new RBT with root $r$. 

\[
\begin{align*}
\varepsilon & \quad T_1 = \varepsilon \\
T_2 = \varepsilon & \quad T_2 = \varepsilon
\end{align*}
\]
Trees Are Important: Food for Thought

- Tree.
- Not a tree.

Do we *know* the right structure is not a tree?
Trees Are Important: Food for Thought

Tree. Not a tree. Do we know the right structure is not a tree? Are we sure it can’t be derived?
Trees Are Important: Food for Thought

- Tree.
- Not a tree.

Do we *know* the right structure is not a tree?
Are we *sure* it can’t be derived?

- Is there only one way to derive a tree?
Trees Are Important: Food for Thought

- Tree. Not a tree. Do we *know* the right structure is not a tree? Are we *sure* it can’t be derived?

- Is there only one way to derive a tree?

- Trees have many interesting properties which give alternate definitions
Do we know the right structure is not a tree?
Are we sure it can’t be derived?

Is there only one way to derive a tree?

Trees have many interesting properties which give alternate definitions
  ▶ A tree is a connected graph with $n$ nodes and $n - 1$ edges.
Trees Are Important: Food for Thought

- Tree.  
- Not a tree.  

Do we know the right structure is not a tree? Are we sure it can’t be derived?

- Is there only one way to derive a tree?

- Trees have many interesting properties which give alternate definitions
  - A tree is a connected graph with $n$ nodes and $n - 1$ edges.
  - A tree is a connected graph with no cycles.
Trees Are Important: Food for Thought

- Tree.
- Not a tree.
- Do we know the right structure is not a tree?
  Are we sure it can’t be derived?

Is there only one way to derive a tree?

- Trees have many interesting properties which give alternate definitions
  - A tree is a connected graph with \( n \) nodes and \( n - 1 \) edges.
  - A tree is a connected graph with no cycles.
  - A tree is a graph in which any two nodes are connected by exactly one path.

Can we be sure every RBT has these properties?