Foundations of Computer Science
Lecture 10

Number Theory

Division and the Greatest Common Divisor
Fundamental Theorem of Arithmetic
Cryptography and Modular Arithmetic
RSA: Public Key Cryptography
Why sums and recurrences? Running times of programs.

Tools for summation: constant rule, sum rule, common sums and nested sum rule.

Comparing functions - asymptotics: Big-Oh, Theta, Little-Oh notation.

\[\log \log(n) < \log^{\alpha}(n) < n^\epsilon < 2^{\delta n} \]

The method of integration - estimating sums.

\[\sum_{i=1}^{n} i^k \sim \frac{n^{k+1}}{k+1} \quad \sum_{i=1}^{n} \frac{1}{i} \sim \ln n \quad \ln n! = \sum_{i=1}^{n} \ln i \sim n \ln n - n \]
Today: Number Theory

1. Division and Greatest Common Divisor (GCD)
 - Euclid’s algorithm
 - Bezout’s identity

2. Fundamental Theorem of Arithmetic

3. Modular Arithmetic
 - Cryptography
 - RSA public key cryptography
Number theory has attracted the best of the best, because

“Babies can ask questions which grown-ups can’t solve” – P. Erdős

$6 = 1 + 2 + 3$ is *perfect* (equals the sum of its proper divisors). Is there an odd perfect number?
The Basics

Number theory has attracted the best of the best, because

“Babies can ask questions which grown-ups can’t solve” – P. Erdős

6 = 1 + 2 + 3 is perfect (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For \(n \in \mathbb{Z} \) and \(d \in \mathbb{N} \), \(n = qd + r \). The quotient \(q \in \mathbb{Z} \) and remainder \(0 \leq r < d \) are *unique*.

e.g. \(n = 27, d = 6 \): \(27 = 4 \cdot 6 + 4 \) \(\rightarrow \) \(\text{rem}(27, 6) = 4 \).
Number theory has attracted the best of the best, because

“Babies can ask questions which grown-ups can’t solve” – P. Erdős

6 = 1 + 2 + 3 is perfect (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem
For \(n \in \mathbb{Z} \) and \(d \in \mathbb{N} \), \(n = qd + r \). The quotient \(q \in \mathbb{Z} \) and remainder \(0 \leq r < d \) are unique.

e.g. \(n = 27, d = 6 \): \(27 = 4 \cdot 6 + 4 \) \(\rightarrow \) \(\text{rem}(27, 6) = 4 \).

Divisibility. \(d \) divides \(n \), \(d | n \) if and only if \(n = qd \) for some \(q \in \mathbb{Z} \). e.g. 6|24.
Number theory has attracted the best of the best, because

“Babies can ask questions which grown-ups can’t solve” – P. Erdős

6 = 1 + 2 + 3 is perfect (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, $n = qd + r$. The quotient $q \in \mathbb{Z}$ and remainder $0 \leq r < d$ are unique.

e.g. $n = 27$, $d = 6$: $27 = 4 \cdot 6 + 4 \quad \rightarrow \quad \text{rem}(27, 6) = 4$.

Divisibility. d divides n, $d|n$ if and only if $n = qd$ for some $q \in \mathbb{Z}$. e.g. $6|24$.

Primes. $P = \{2, 3, 5, 7, 11, \ldots\} = \{p \mid p \geq 2 \text{ and the only positive divisors of } p \text{ are } 1, p\}$.
The Basics

Number theory has attracted the best of the best, because

“Babies can ask questions which grown-ups can’t solve” – P. Erdős

6 = 1 + 2 + 3 is perfect (equals the sum of its proper divisors). Is there an odd perfect number?

Quotient-Remainder Theorem

For \(n \in \mathbb{Z} \) and \(d \in \mathbb{N} \), \(n = qd + r \). The quotient \(q \in \mathbb{Z} \) and remainder \(0 \leq r < d \) are unique.

e.g. \(n = 27, d = 6: \quad 27 = 4 \cdot 6 + 4 \quad \rightarrow \quad \text{rem}(27, 6) = 4 \).

Divisibility. \(d \) divides \(n \), \(d | n \) if and only if \(n = qd \) for some \(q \in \mathbb{Z} \). e.g. 6|24.

Primes. \(\mathbb{P} = \{2, 3, 5, 7, 11, \ldots \} = \{p \mid p \geq 2 \text{ and the only positive divisors of } p \text{ are } 1, p\} \).

Division Facts (Exercise 10.2)

1. \(d | 0 \).
2. If \(d | m \) and \(d' | n \), then \(dd' | mn \).
3. If \(d | m \) and \(m | n \), then \(d | n \).
4. If \(d | n \) and \(d | m \), then \(d | n + m \).
5. If \(d | n \), then \(xd | xn \) for \(x \in \mathbb{N} \).
6. If \(d | m + n \) and \(d | m \), then \(d | n \).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

Euclid’s Algorithm →
Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

\textit{greatest common divisor (GCD)} = 6.
Divisors of 30: \(\{1, 2, 3, 5, 6, 15, 30\} \). Divisors of 42: \(\{1, 2, 3, 6, 7, 14, 21, 42\} \). Common divisors: \(\{1, 2, 3, 6\} \).

\[\text{greatest common divisor (GCD)} = 6.\]

Definition. Greatest Common Divisor, GCD

Let \(m, n \) be two integers not both zero. \(\gcd(m, n) \) is the largest integer that divides both \(m \) and \(n \): \(\gcd(m, n) | m, \gcd(m, n) | n \) and any other common divisor \(d \leq \gcd(m, n) \).

Notice that every common divisor divides the GCD. Also, \(\gcd(m, n) = \gcd(n, m) \).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

greatest common divisor (GCD) = 6.

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(gcd(m, n) | m, gcd(m, n) | n\) and any other common divisor \(d \leq gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(gcd(m, n) = gcd(n, m)\).

Relatively Prime

If \(gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

greatest common divisor (GCD) = 6.

Definition. Greatest Common Divisor, GCD
Let \(m, n\) be two integers not both zero. \(gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(gcd(m, n)|m, gcd(m, n)|n\) and any other common divisor \(d \leq gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(gcd(m, n) = gcd(n, m)\).

Relatively Prime
If \(gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.
\(gcd(m, n) = gcd(\text{rem}(n, m), m)\).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

\textit{greatest common divisor (GCD)} = 6.

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(\text{gcd}(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(\text{gcd}(m, n)|m, \text{gcd}(m, n)|n\) and any other common divisor \(d \leq \text{gcd}(m, n)\).

Notice that every common divisor divides the GCD. Also, \(\text{gcd}(m, n) = \text{gcd}(n, m)\).

Relatively Prime

If \(\text{gcd}(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\(\text{gcd}(m, n) = \text{gcd}(\text{rem}(n, m), m)\).

\textbf{Proof.} \(n = qm + r \rightarrow r = n - qm\). Let \(D = \text{gcd}(m, n)\) and \(d = \text{gcd}(m, r)\).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

greatest common divisor \((GCD) = 6\).

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(gcd(m, n)|m\), \(gcd(m, n)|n\) and any other common divisor \(d \leq gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(gcd(m, n) = gcd(n, m)\).

Relatively Prime

If \(gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\(gcd(m, n) = gcd(rem(n, m), m)\).

Proof. \(n = qm + r \rightarrow r = n - qm\). Let \(D = gcd(m, n)\) and \(d = gcd(m, r)\). \(D|m\) and \(D|n \rightarrow D\) divides \(r = n - qm\).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

greatest common divisor \((GCD)\) = 6.

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(gcd(m, n)\)\(|m\), \(gcd(m, n)\)\(|n\) and any other common divisor \(d \leq gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(gcd(m, n) = gcd(n, m)\).

Relatively Prime

If \(gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\(gcd(m, n) = gcd(rem(n, m), m)\).

Proof. \(n = qm + r \rightarrow r = n - qm\). Let \(D = gcd(m, n)\) and \(d = gcd(m, r)\). \(D|m\) and \(D|n \rightarrow D\) divides \(r = n - qm\). Hence, \(D \leq gcd(m, r) = d\). \((D\) is a common divisor of \(m, r)\)
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

greatest common divisor (GCD) = 6.

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(\gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(\gcd(m, n) | m\), \(\gcd(m, n) | n\) and any other common divisor \(d \leq \gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(\gcd(m, n) = \gcd(n, m)\).

Relatively Prime

If \(\gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\[\gcd(m, n) = \gcd(\text{rem}(n, m), m).\]

Proof. \(n = qm + r \rightarrow r = n - qm\). Let \(D = \gcd(m, n)\) and \(d = \gcd(m, r)\).

\(D|m\) and \(D|n \rightarrow D\) divides \(r = n - qm\). Hence, \(D \leq \gcd(m, r) = d\). \hspace{1cm} (\(D\) is a common divisor of \(m, r\))

\(d|m\) and \(d|r \rightarrow d\) divides \(n = qm + r\).
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

\[
greatest\ \text{common}\ \text{divisor}\ \(GCD\) = 6.
\]

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(gcd(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(gcd(m, n)|m, gcd(m, n)|n\) and any other common divisor \(d \leq gcd(m, n)\).

Notice that every common divisor divides the GCD. Also, \(gcd(m, n) = gcd(n, m)\).

Relatively Prime

If \(gcd(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\[gcd(m, n) = gcd(rem(n, m), m)\].

Proof. \(n = qm + r \rightarrow r = n - qm\). Let \(D = gcd(m, n)\) and \(d = gcd(m, r)\).

\(D|m\) and \(D|n \rightarrow D\) divides \(r = n - qm\). Hence, \(D \leq gcd(m, r) = d\).

\(d|m\) and \(d|r \rightarrow d\) divides \(n = qm + r\). Hence, \(d \leq gcd(m, n) = D\).

\(D\) is a common divisor of \(m, r\)
\(d\) is a common divisor of \(m, n\)
Greatest Common Divisor

Divisors of 30: \{1, 2, 3, 5, 6, 15, 30\}. Divisors of 42: \{1, 2, 3, 6, 7, 14, 21, 42\}. Common divisors: \{1, 2, 3, 6\}.

\textit{greatest common divisor (GCD)} = 6.

Definition. Greatest Common Divisor, GCD

Let \(m, n\) be two integers not both zero. \(\text{gcd}(m, n)\) is the largest integer that divides both \(m\) and \(n\): \(\text{gcd}(m, n)|m, \text{gcd}(m, n)|n\) and any other common divisor \(d \leq \text{gcd}(m, n)\).

Notice that every common divisor divides the GCD. Also, \(\text{gcd}(m, n) = \text{gcd}(n, m)\).

Relatively Prime

If \(\text{gcd}(m, n) = 1\), then \(m, n\) are relatively prime.

Example: 6 and 35 are not prime but they are relatively prime.

Theorem.

\(\text{gcd}(m, n) = \text{gcd}(\text{rem}(n, m), m)\).

Proof. \(n = qm + r \rightarrow r = n - qm\). Let \(D = \text{gcd}(m, n)\) and \(d = \text{gcd}(m, r)\).

\(D|m\) and \(D|n \rightarrow D\) divides \(r = n - qm\). Hence, \(D \leq \text{gcd}(m, r) = d\).

\(d|m\) and \(d|r \rightarrow d\) divides \(n = qm + r\). Hence, \(d \leq \text{gcd}(m, n) = D\).

\(D \leq d\) and \(D \geq d \rightarrow D = d\), which proves \(\text{gcd}(m, n) = \text{gcd}(n, r)\).

\(D\) is a common divisor of \(m, r\) \(d\) is a common divisor of \(m, n\)
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[\text{gcd}(42, 108) = \text{gcd}(24, 42) \quad 24 = 108 - 2 \cdot 42 \]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) &= gcd(24, 42) & 24 &= 108 - 2 \cdot 42 \\
&= gcd(18, 24) & 18 &= 42 - 24 = 42 - (108 - 2 \cdot 42) = 3 \cdot 42 - 108 \\
\end{align*}
\]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
\gcd(42, 108) &= \gcd(24, 42) \\
&= \gcd(18, 24) \\
&= \gcd(6, 18)
\end{align*}
\]

\[
\begin{align*}
24 &= 108 - 2 \cdot 42 \\
18 &= 42 - 24 = 42 - (108 - 2 \cdot 42) = 3 \cdot 42 - 108 \\
6 &= 24 - 18 = (108 - 2 \cdot 42) - (3 \cdot 42 - 108) = 2 \cdot 108 - 5 \cdot 42
\end{align*}
\]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) & = gcd(24, 42) \quad 24 = 108 - 2 \cdot 42 \\
& = gcd(18, 24) \quad 18 = 42 - 24 = 42 - \left(\frac{108 - 2 \cdot 42}{24} \right) = 3 \cdot 42 - 108 \\
& = gcd(6, 18) \quad 6 = 24 - 18 = \left(\frac{108 - 2 \cdot 42}{24} \right) - \left(\frac{3 \cdot 42 - 108}{18} \right) = 2 \cdot 108 - 5 \cdot 42 \\
& = gcd(0, 6) \quad 0 = 18 - 3 \cdot 6
\end{align*}
\]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) &= gcd(24, 42) & 24 &= 108 - 2 \cdot 42 \\
&= gcd(18, 24) & 18 &= 42 - 24 = 42 - \left(\frac{108 - 2 \cdot 42}{24} \right) = 3 \cdot 42 - 108 \\
&= gcd(6, 18) & 6 &= 24 - 18 = \left(\frac{108 - 2 \cdot 42}{24} \right) - \left(\frac{3 \cdot 42 - 108}{18} \right) = 2 \cdot 108 - 5 \cdot 42 \\
&= gcd(0, 6) & 0 &= 18 - 3 \cdot 6 \\
&= 6 & \gcd(0, n) &= n
\end{align*}
\]
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) &= gcd(24, 42) & 24 &= 108 - 2 \cdot 42 \\
&= gcd(18, 24) & 18 &= 42 - 24 = 42 - \left(\frac{108 - 2 \cdot 42}{24} \right) = 3 \cdot 42 - 108 \\
&= gcd(6, 18) & 6 &= 24 - 18 = \left(\frac{108 - 2 \cdot 42}{24} \right) - \left(\frac{3 \cdot 42 - 108}{18} \right) = 2 \cdot 108 - 5 \cdot 42 \\
&= gcd(0, 6) & 0 &= 18 - 3 \cdot 6 \\
&= 6 & \gcd(0, n) &= n
\end{align*}
\]

Remainders in Euclid’s algorithm are integer linear combinations of 42 and 108.
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) &= gcd(24, 42) & 24 &= 108 - 2 \cdot 42 \\
&= gcd(18, 24) & 18 &= 42 - 24 = 42 - \frac{(108 - 2 \cdot 42)}{24} = 3 \cdot 42 - 108 \\
&= gcd(6, 18) & 6 &= 24 - 18 = \frac{(108 - 2 \cdot 42)}{24} - \frac{(3 \cdot 42 - 108)}{18} = 2 \cdot 108 - 5 \cdot 42 \\
&= gcd(0, 6) & 0 &= 18 - 3 \cdot 6 \\
&= 6 & \gcd(0, n) &= n
\end{align*}
\]

Remainders in Euclid’s algorithm are integer linear combinations of 42 and 108.

In particular, \(\gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42. \)
Euclid’s Algorithm

Theorem.
\[\gcd(m, n) = \gcd(\text{rem}(n, m), m). \]

\[
\begin{align*}
gcd(42, 108) &= gcd(24, 42) & 24 &= 108 - 2 \cdot 42 \\
&= gcd(18, 24) & 18 &= 42 - 24 = 42 - \left(108 - 2 \cdot 42\right) = 3 \cdot 42 - 108 \\
&= gcd(6, 18) & 6 &= 24 - 18 = \left(108 - 2 \cdot 42\right) - \left(3 \cdot 42 - 108\right) = 2 \cdot 108 - 5 \cdot 42 \\
&= gcd(0, 6) & 0 &= 18 - 3 \cdot 6 \\
&= 6 & \gcd(0, n) &= n
\end{align*}
\]

Remainders in Euclid’s algorithm are integer linear combinations of 42 and 108.

In particular, \(\gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42. \)

This will be true for \(\gcd(m, n) \) in general:
\[\gcd(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}. \]
From Euclid’s Algorithm,

\[\gcd(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}. \]
Bezout’s Identity: A “Formula” for GCD

From Euclid’s Algorithm,

$$\text{gcd}(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}.$$

Can any smaller positive number z be a linear combination of m and n?

suppose:

$$z = mx + ny > 0.$$
Bezout’s Identity: A “Formula” for GCD

From Euclid’s Algorithm,
\[\gcd(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}. \]

Can any smaller positive number \(z \) be a linear combination of \(m \) and \(n \)?

suppose:
\[z = mx + ny > 0. \]

\(\gcd(m, n) \) divides RHS \(\rightarrow \) \(\gcd(m, n) | z \), i.e \(z \geq \gcd(m, n) \) \hspace{1cm} (because \(\gcd(m, n) | m \) and \(\gcd(m, n) | n \)).
Bezout’s Identity: A “Formula” for GCD

From Euclid’s Algorithm,
\[\gcd(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}. \]

Can any smaller positive number \(z \) be a linear combination of \(m \) and \(n \)?

suppose:
\[z = mx + ny > 0. \]
\[\gcd(m, n) \text{ divides RHS } \rightarrow \gcd(m, n) | z, \text{ i.e } z \geq \gcd(m, n) \quad \text{(because } \gcd(m, n) | m \text{ and } \gcd(m, n) | n). \]

Theorem. Bezout’s Identity
\[\gcd(m, n) \text{ is the smallest positive integer linear combination of } m \text{ and } n: \]
\[\gcd(m, n) = mx + ny \quad \text{for } x, y \in \mathbb{Z}. \]

Formal Proof. Let \(\ell \) be the smallest positive linear combination of \(m, n: \ell = mx + ny. \)
1. Prove \(\ell \geq \gcd(m, n) \) as above.
2. Prove \(\ell \leq \gcd(m, n) \) by showing \(\ell \) is a common divisor \(\text{rem}(m, \ell) = \text{rem}(n, \ell) = 0). \)
Bezout’s Identity: A “Formula” for GCD

From Euclid’s Algorithm,
\[\gcd(m, n) = mx + ny \quad \text{for some } x, y \in \mathbb{Z}. \]

Can any smaller positive number \(z \) be a linear combination of \(m \) and \(n \)?

\[\text{suppose: } z = mx + ny > 0. \]

\(\gcd(m, n) \) divides RHS \(\rightarrow \gcd(m, n)|z \), i.e \(z \geq \gcd(m, n) \) (because \(\gcd(m, n)|m \) and \(\gcd(m, n)|n \)).

Theorem. Bezout’s Identity

\(\gcd(m, n) \) is the **smallest positive integer linear combination** of \(m \) and \(n \):
\[\gcd(m, n) = mx + ny \quad \text{for } x, y \in \mathbb{Z}. \]

Formal Proof. Let \(\ell \) be the smallest positive linear combination of \(m, n \): \(\ell = mx + ny \).

1. Prove \(\ell \geq \gcd(m, n) \) as above.
2. Prove \(\ell \leq \gcd(m, n) \) by showing \(\ell \) is a common divisor (\(\text{rem}(m, \ell) = \text{rem}(n, \ell) = 0 \)).

There is no “formula” for GCD. But this is close to a “formula”.

GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)). \)

Proof.
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

Proof.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).
(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

Proof.
(ii) \(\gcd(m, n) = mx + ny \).

(e.g. 1, 2, 3, 6 are common divisors of 30, 42 and all divide the GCD 6)
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

\(\checkmark \)

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).
(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).
(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

\[\text{Proof.} \]

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \)
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).
(ii) Every common divisor of \(m \), \(n \) divides \(\gcd(m, n) \).
(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1, 2, 3, 6 are common divisors of 30, 42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there

is no smaller positive linear combination of \(m, n \). That is \(\gcd(m, n) = (mx + ny) \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

(iv) \text{IF} \ \gcd(l, m) = 1 \ \text{AND} \ \gcd(l, n) = 1, \ \text{THEN} \ \gcd(l, mn) = 1. \)

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n \). That is \(\gcd(m, n) = (mx + ny) \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

(iv) IF \(\gcd(l, m) = 1 \) AND \(\gcd(l, n) = 1 \), THEN \(\gcd(l, mn) = 1 \).

\[\text{Proof.} \]

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

\[\text{(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)} \]

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n \). That is \(\gcd(m, n) = (mx + ny) \).

\[\text{(e.g. } \gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6) \]

(iv) \(1 = \ell x + my \) and \(1 = \ell x' + ny' \).

\[\text{(e.g. } \gcd(15, 4) = 1 \text{ and } \gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1) \]
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n) \).

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).

(iv) \textbf{IF} \(\gcd(l, m) = 1 \ \text{AND} \ \gcd(l, n) = 1 \), \textbf{THEN} \(\gcd(l, mn) = 1 \).

\[\]

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there

is no smaller positive linear combination of \(m, n \). That is \(\gcd(m, n) = (mx + ny) \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))

(iv) \(1 = \ell x + my \) and \(1 = \ell x' + ny' \). Multiplying,

\[1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy'). \]

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1 \))
GCD Facts

(i)	\(\gcd(m, n) = \gcd(m, \text{rem}(n, m)) \).	✓
(ii)	Every common divisor of \(m, n \) divides \(\gcd(m, n) \).	✓
(iii)	For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n) \).	✓
(iv)	IF \(\gcd(l, m) = 1 \) AND \(\gcd(l, n) = 1 \), THEN \(\gcd(l, mn) = 1 \).	✓
(v)	IF \(d \mid mn \) AND \(\gcd(d, m) = 1 \), THEN \(d \mid n \).	

Proof.

(ii) \(\gcd(m, n) = mx + ny \). Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny) \). The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n \). That is \(\gcd(m, n) = (mx + ny) \).

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))

(iv) \(1 = lx + my \) and \(1 = lx' + ny' \). Multiplying,

\[
1 = (lx + my)(lx' + ny') = l \cdot (lx' + nxy' + myx') + mn \cdot (yy').
\]

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1 \))

(e.g. \(\gcd(4, 15) = 1 \) and \(4 \mid 15 \times 16 \rightarrow 4 \mid 16 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)). \) ✓
(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n). \) ✓
(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n). \) ✓
(iv) IF \(\gcd(l, m) = 1 \) AND \(\gcd(l, n) = 1 \), THEN \(\gcd(l, mn) = 1. \) ✓
(v) IF \(d | mn \) AND \(\gcd(d, m) = 1 \), THEN \(d | n. \) ✓

Proof.

(ii) \(\gcd(m, n) = mx + ny. \) Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny). \) The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n. \) That is \(\gcd(m, n) = (mx + ny). \)

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6 \))

(iv) \(1 = lx + ny \) and \(1 = lx' + ny'. \) Multiplying,
\[
1 = (lx + ny)(lx' + ny') = l \cdot (lx'x + nxy' + myx') + mn \cdot (yy').
\]

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1 \))

(v) \(dx + my = 1 \rightarrow ndx + nmy = n. \)

(e.g. \(\gcd(4, 15) = 1 \) and \(4|15 \times 16 \rightarrow 4|16 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)). \) ✓

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n). \) ✓

(iii) For \(k \in \mathbb{N}, \gcd(km, kn) = k \cdot \gcd(m, n). \) ✓

(iv) IF \(\gcd(l, m) = 1 \) AND \(\gcd(l, n) = 1, \) THEN \(\gcd(l, mn) = 1. \) ✓

(v) IF \(d|mn \) AND \(\gcd(d, m) = 1, \) THEN \(d|n. \) ✓

Proof.

(ii) \(\gcd(m, n) = mx + ny. \) Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny). \) The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n. \) That is \(\gcd(m, n) = (mx + ny). \)

(e.g. \(\gcd(6, 15) = 3 \to \gcd(12, 30) = 2 \times 3 = 6 \))

(iv) \(1 = \ell x + my \) and \(1 = \ell x' + ny'. \) Multiplying,

\[
1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').
\]

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \to \gcd(15, 28) = 1 \))

(v) \(dx + my = 1 \to ndx + nmy = n. \) Since \(d|mn, \) \(d \) divides the LHS, hence \(d|n, \) the RHS.

(e.g. \(\gcd(4, 15) = 1 \) and \(4|15 \times 16 \to 4|16 \))
GCD Facts

(i) \(\gcd(m, n) = \gcd(m, \text{rem}(n, m)). \)

(ii) Every common divisor of \(m, n \) divides \(\gcd(m, n). \)

(iii) For \(k \in \mathbb{N} \), \(\gcd(km, kn) = k \cdot \gcd(m, n). \)

(iv) IF \(\gcd(l, m) = 1 \) AND \(\gcd(l, n) = 1 \), THEN \(\gcd(l, mn) = 1. \)

(v) IF \(d|mn \) AND \(\gcd(d, m) = 1 \), THEN \(d|n. \)

Proof.

(ii) \(\gcd(m, n) = mx + ny. \) Any common divisor divides the RHS and so also the LHS.

(e.g. 1,2,3,6 are common divisors of 30,42 and all divide the GCD 6)

(iii) \(\gcd(km, kn) = kmx + kny = k(mx + ny). \) The RHS is the smallest possible, so there is no smaller positive linear combination of \(m, n. \) Thus \(\gcd(m, n) = (mx + ny). \)

(e.g. \(\gcd(6, 15) = 3 \rightarrow \gcd(12, 30) = 2 \times 3 = 6)\)

(iv) \(1 = \ell x + my \) and \(1 = \ell x' + ny'. \) Multiplying,

\[
1 = (\ell x + my)(\ell x' + ny') = \ell \cdot (\ell xx' + nxy' + myx') + mn \cdot (yy').
\]

(e.g. \(\gcd(15, 4) = 1 \) and \(\gcd(15, 7) = 1 \rightarrow \gcd(15, 28) = 1)\)

(v) \(dx + my = 1 \rightarrow ndx + nmy = n. \) Since \(d|mn, d \) divides the LHS, hence \(d|n, \) the RHS.

(e.g. \(\gcd(4, 15) = 1 \) and \(4|15 \times 16 \rightarrow 4|16) \)

✓
Given 3 and 5-gallon jugs, measure exactly 4 gallons.
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

(0, 0)
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1_i} (3, 0) \xrightarrow{2_i} (0, 3) \xrightarrow{1_i} (3, 3)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \overset{1}{\rightarrow} (3, 0) \overset{2}{\rightarrow} (0, 3) \overset{1}{\rightarrow} (3, 3) \overset{2}{\rightarrow} (1, 5)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1:} (3, 0) \xrightarrow{2:} (0, 3) \xrightarrow{1:} (3, 3) \xrightarrow{2:} (1, 5) \xrightarrow{3:} (1, 0) \xrightarrow{2:} (0, 1)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.
 \[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1)\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1) \xrightarrow{2} (0, 4) \checkmark\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1) \xrightarrow{2} (0, 4) \checkmark\]

After the 3-gallon jug is emptied into the 5-gallon jug, the state is \((0, \ell)\), where

\[\ell = 3x - 5y.\]

(integer linear combination of 3, 5).

(\text{the 3-gallon jug has been emptied } x \text{ times and the 5-gallon jug } y \text{ times})
Die Hard: With A Vengeance, John McClane & Zeus Carver Thwart Simon Gruber

Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 0) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1) \xrightarrow{2} (0, 4) \checkmark\]

After the 3-gallon jug is emptied into the 5-gallon jug, the state is \((0, \ell)\), where

\[\ell = 3x - 5y.\]

(integer linear combination of 3, 5). Since \(\gcd(3, 5) = 1\) we can get \(\ell = 1\),

\[1 = 3 \cdot 2 - 5 \cdot 1\]

(after emptying the 3-gallon jug 2 times and the 5 gallon jug once, there is 1 gallon)
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1) \xrightarrow{2} (0, 4) \checkmark\]

After the 3-gallon jug is emptied into the 5-gallon jug, the state is \((0, \ell)\), where

\[\ell = 3x - 5y.\]

(the 3-gallon jug has been emptied \(x\) times and the 5-gallon jug \(y\) times)

(integer linear combination of 3, 5). Since \(\gcd(3, 5) = 1\) we can get \(\ell = 1\),

\[1 = 3 \cdot 2 - 5 \cdot 1\]

(after emptying the 3-gallon jug 2 times and the 5 gallon jug once, there is 1 gallon)

Do this 4 times and you have 4 gallons (guaranteed). (Actually fewer pours works.)

\[(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \quad \text{(repeat 4 times)}\]
Given 3 and 5-gallon jugs, measure exactly 4 gallons.

1: Repeatedly fill the 3-gallon jug.
2: Empty the 3-gallon jug into the 5-gallon jug.
3: If ever the 5-gallon jug is full, empty it by discarding the water.

\[
(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1) \xrightarrow{1} (3, 1) \xrightarrow{2} (0, 4) \checkmark
\]

After the 3-gallon jug is emptied into the 5-gallon jug, the state is \((0, \ell)\), where

\[
\ell = 3x - 5y.
\]

(integer linear combination of 3, 5). Since \(\text{gcd}(3, 5) = 1\) we can get \(\ell = 1\),

\[
1 = 3 \cdot 2 - 5 \cdot 1
\]

(after emptying the 3-gallon jug 2 times and the 5-gallon jug once, there is 1 gallon)

Do this 4 times and you have 4 gallons (guaranteed).

(Actually fewer pours works.)

\[
(0, 0) \xrightarrow{1} (3, 0) \xrightarrow{2} (0, 3) \xrightarrow{1} (3, 3) \xrightarrow{2} (1, 5) \xrightarrow{3} (1, 0) \xrightarrow{2} (0, 1)
\]

(repeat 4 times)

If the producers of Die Hard had chosen 3 and 6 gallon jugs, there can be no sequel (phew 😊).

(Why?)
Theorem. Uniqueness of Prime Factorization
Every $n \geq 2$ is uniquely (up to reordering) a product of primes.
Fundamental Theorem of Arithmetic Part (ii)

Theorem. Uniqueness of Prime Factorization
Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_ℓ, if $p | q_1 q_2 \cdots q_\ell$ then p is one of the q_i.
Theorem. Uniqueness of Prime Factorization

Every \(n \geq 2 \) is uniquely (up to reordering) a product of primes.

Euclid’s Lemma: For primes \(p, q_1, \ldots, q_\ell \), if \(p|q_1q_2\cdots q_\ell \) then \(p \) is one of the \(q_i \).

Proof of lemma: If \(p|q_\ell \) then \(p = q_\ell \).
Theorem. Uniqueness of Prime Factorization
Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_ℓ, if $p|q_1 q_2 \cdots q_\ell$ then p is one of the q_i.
Proof of lemma: If $p|q_\ell$ then $p = q_\ell$. If not, gcd(p, q_ℓ) = 1 and $p|q_1 \cdots q_{\ell-1}$ by GCD fact (v).
Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_ℓ, if $p \mid q_1 q_2 \cdots q_\ell$ then p is one of the q_i.

Proof of lemma: If $p \mid q_\ell$ then $p = q_\ell$. If not, $\gcd(p, q_\ell) = 1$ and $p \mid q_1 \cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ.
Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is uniquely (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_ℓ, if $p | q_1 q_2 \cdots q_\ell$ then p is one of the q_i.

Proof of lemma: If $p | q_\ell$ then $p = q_\ell$. If not, $\gcd(p, q_\ell) = 1$ and $p | q_1 \cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ.

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n$$

$$= q_1 q_2 \cdots q_k$$
Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is *uniquely* (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_ℓ, if $p \mid q_1 q_2 \cdots q_\ell$ then p is one of the q_i.

Proof of lemma: If $p \mid q_\ell$ then $p = q_\ell$. If not, $\gcd(p, q_\ell) = 1$ and $p \mid q_1 \cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ.

Proof. (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n$$

$$= q_1 q_2 \cdots q_k$$

Since $p_1 \mid n_*$, it means $p_1 \mid q_1 q_2 \cdots q_k$ and by Euclid’s Lemma, $p_1 = q_i$ (w.l.o.g. q_1).
Fundamental Theorem of Arithmetic Part (ii)

Theorem. Uniqueness of Prime Factorization

Every \(n \geq 2 \) is *uniquely* (up to reordering) a product of primes.

Euclid’s Lemma: For primes \(p, q_1, \ldots, q_\ell \), if \(p|q_1q_2\cdots q_\ell \) then \(p \) is one of the \(q_i \).

Proof of lemma: If \(p|q_\ell \) then \(p = q_\ell \). If not, \(\gcd(p, q_\ell) = 1 \) and \(p|q_1\cdots q_\ell-1 \) by GCD fact (v). Induction on \(\ell \).

Proof. (FTA) Contradiction. Let \(n_* \) be the smallest counter-example, \(n_* > 2 \) and

\[
 n_* = p_1p_2\cdots p_n = q_1q_2\cdots q_k
\]

Since \(p_1|n_* \), it means \(p_1|q_1q_2\cdots q_k \) and by Euclid’s Lemma, \(p_1 = q_i \) (w.l.o.g. \(q_1 \)).

\[
 n_*/p_1 = p_2\cdots p_n = q_2\cdots q_k.
\]
Theorem. Uniqueness of Prime Factorization

Every $n \geq 2$ is \textit{uniquely} (up to reordering) a product of primes.

Euclid’s Lemma: For primes p, q_1, \ldots, q_{ℓ}, if $p | q_1 q_2 \cdots q_{\ell}$ then p is one of the q_i.

Proof of lemma: If $p | q_{\ell}$ then $p = q_{\ell}$. If not, $\gcd(p, q_{\ell}) = 1$ and $p | q_1 \cdots q_{\ell-1}$ by GCD fact (v). Induction on ℓ.

\textit{Proof.} (FTA) Contradiction. Let n_* be the smallest counter-example, $n_* > 2$ and

$$n_* = p_1 p_2 \cdots p_n = q_1 q_2 \cdots q_k$$

Since $p_1 | n_*$, it means $p_1 | q_1 q_2 \cdots q_k$ and by Euclid’s Lemma, $p_1 = q_i$ (w.l.o.g. q_1).

$$n_*/p_1 = p_2 \cdots p_n = q_2 \cdots q_k.$$

That is, n_*/p_1 is a smaller counter-example. \textbf{FISHY!}
Cryptography 101: Alice and Bob wish to securely exchange the prime M
Cryptography 101: Alice and Bob wish to securely exchange the prime M.
Cryptography 101: Alice and Bob wish to securely exchange the prime M. Alice encrypts M to M^*, which she sends to Bob. Bob decrypts M^* to obtain M'.
Cryptography 101: Alice and Bob wish to securely exchange the prime M.
Cryptography 101: Alice and Bob wish to securely exchange the prime M

Example.
Alice Encrypts: $M_\ast = M \times k$

$(k$ is a shared secret – *private key*)
Cryptography 101: Alice and Bob wish to securely exchange the prime M

Example.
Alice Encrypts: $M_* = M \times k$
Alice and Bob know k, Charlie does not.

k is a shared secret – private key
Cryptography 101: Alice and Bob wish to securely exchange the prime M

Example.

Alice Encrypts: $M_* = M \times k$

Alice and Bob know k, Charlie does not.

Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

(k is a shared secret – *private key*)

(Hooray, $M' = M$ and Charlie is in the dark.)
Cryptography 101: Alice and Bob wish to securely exchange the prime M.

Example. Alice Encrypts: $M_* = M \times k$
Alice and Bob know k, Charlie does not.
Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

Secure as long as Charlie cannot factor M' into k and M.

k is a shared secret – private key
(Hooray, $M' = M$ and Charlie is in the dark.)

Factoring is hard
Cryptography 101: Alice and Bob wish to securely exchange the prime M

Example.
Alice Encrypts: $M_* = M \times k$
Alice and Bob know k, Charlie does not.
Bob Decrypts: $M' = M_*/k = M \times k/k = M$.

Secure as long as Charlie cannot factor M' into k and M.
One time use. For two cypher-texts, $k = \gcd(M_1, M_2)$.

$(k$ is a shared secret – private key$)$

(Hooray, $M' = M$ and Charlie is in the dark.)

(Factoring is hard)
Cryptography 101: Alice and Bob wish to securely exchange the prime M

Example.

Alice Encrypts: $M_\ast = M \times k$

Alice and Bob know k, Charlie does not.

Bob Decrypts: $M' = M_\ast / k = M \times k / k = M$.

(Hooray, $M' = M$ and Charlie is in the dark.)

Secure as long as Charlie cannot factor M' into k and M.

One time use. For two cypher-texts, $k = \gcd(M_1\ast, M_2\ast)$.

To improve, we need modular arithmetic.

(k is a shared secret – *private key*)

(Factoring is HARD)
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b) , \quad \text{i.e.} \quad a - b = kd \quad \text{for} \quad k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19 . \]
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e.} \quad a - b = kd \text{ for } k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.
Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \).
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e.} \quad a - b = kd \quad \text{for} \quad k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.

Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

(a) \(ar \equiv bs \pmod{d} \).
(b) \(a + r \equiv b + s \pmod{d} \).
(c) \(a^n \equiv b^n \pmod{d} \).
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e.} \quad a - b = kd \quad \text{for} \quad k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.
Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + ld \). Then,

(a) \(ar \equiv bs \pmod{d} \).
(b) \(a + r \equiv b + s \pmod{d} \).
(c) \(a^n \equiv b^n \pmod{d} \).

That is \(d \mid ar - bs \).

Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e.} \ a - b = kd \text{ for } k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.

Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

(a) \(ar \equiv bs \pmod{d} \).

(b) \(a + r \equiv b + s \pmod{d} \).

(c) \(a^n \equiv b^n \pmod{d} \).

\[
\begin{align*}
ar - bs &= (b + kd)(s + \ell d) - bs \\
&= d(ks + b\ell + k\ell d).
\end{align*}
\]

That is \(d \mid ar - bs \).

\[
\begin{align*}
(a + r) - (b + s) &= (b + kd + s + \ell d) - b - s \\
&= d(k + \ell) \\
&= d(ks + b\ell + k\ell d).
\end{align*}
\]

That is \(d \mid (a + r) - (b + s) \).

Addition and multiplication are just like regular arithmetic.

Example. What is the last digit of \(3^{2017} \)?
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d | (a - b), \quad \text{i.e.} \ a - b = kd \text{ for } k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.

Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

(a) \(ar \equiv bs \pmod{d} \).

(b) \(a + r \equiv b + s \pmod{d} \).

(c) \(a^n \equiv b^n \pmod{d} \).

\[
\begin{align*}
 ar - bs &= (b + kd)(s + \ell d) - bs \\
 &= d(k s + b \ell + k \ell d).
\end{align*}
\]

That is \(d | ar - bs \).

\[
\begin{align*}
 (a + r) - (b + s) &= (b + kd + s + \ell d) - b - s \\
 &= d(k + \ell).
\end{align*}
\]

That is \(d | (a + r) - (b + s) \).

Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.

Example. What is the last digit of \(3^{2017} \)?

\[3^2 \equiv -1 \pmod{10} \]
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e. } a - b = kd \text{ for } k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.
Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

\(a \equiv b \pmod{d} \)

(a) \(ar \equiv bs \pmod{d} \).

(b) \(a + r \equiv b + s \pmod{d} \).

(c) \(a^n \equiv b^n \pmod{d} \).

\[
\begin{align*}
41 - 79 &= -38 = -2 \cdot 19.
\end{align*}
\]

Addition and multiplication are just like regular arithmetic.

Example. What is the last digit of \(3^{2017} \)?

\[
\begin{align*}
3^2 &\equiv -1 \pmod{10} \\
\Rightarrow (3^2)^{1008} &\equiv (-1)^{1008} \pmod{10}
\end{align*}
\]
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d|(a - b), \quad \text{i.e.} \ a - b = kd \text{ for } k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.

Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

(a) \[ar \equiv bs \pmod{d}. \]

(b) \[a + r \equiv b + s \pmod{d}. \]

(c) \[a^n \equiv b^n \pmod{d}. \]

\[
\begin{align*}
ar - bs &= (b + kd)(s + \ell d) - bs \\
&= d(ks + b\ell + k\ell d). \\
\text{That is } d|ar - bs.
\end{align*}
\]

\[
\begin{align*}
(a + r) - (b + s) &= (b + kd + s + \ell d) - b - s \\
&= d(k + \ell). \\
\text{That is } d|(a + r) - (b + s).
\end{align*}
\]

Repeated application of (a) Induction.

Addition and multiplication are just like regular arithmetic.

Example. What is the last digit of \(3^{2017} \)?

\[
\begin{align*}
3^2 &\equiv -1 \pmod{10} \\
\rightarrow \quad (3^2)^{1008} &\equiv (-1)^{1008} \pmod{10} \\
\rightarrow \quad 3 \cdot (3^2)^{1008} &\equiv 3 \cdot (-1)^{1008} \pmod{10}
\end{align*}
\]
Modular Arithmetic

\[a \equiv b \pmod{d} \quad \text{if and only if} \quad d \mid (a - b), \quad \text{i.e.} \quad a - b = kd \quad \text{for} \quad k \in \mathbb{Z} \]

\[41 \equiv 79 \pmod{19} \quad \text{because} \quad 41 - 79 = -38 = -2 \cdot 19. \]

Modular Equivalence Properties.

Suppose \(a \equiv b \pmod{d} \), i.e. \(a = b + kd \), and \(r \equiv s \pmod{d} \), i.e. \(r = s + \ell d \). Then,

(a) \(ar \equiv bs \pmod{d} \).

\[
\begin{align*}
ar - bs &= (b + kd)(s + \ell d) - bs \\
&= d(k s + b \ell + k \ell d).
\end{align*}
\]

That is \(d \mid ar - bs \).

(b) \(a + r \equiv b + s \pmod{d} \).

\[
\begin{align*}
(a + r) - (b + s) &= (b + kd + s + \ell d) - b - s \\
&= d(k + \ell).
\end{align*}
\]

That is \(d \mid (a + r) - (b + s) \).

(c) \(a^n \equiv b^n \pmod{d} \).

\[
\begin{align*}
3^2 &\equiv -1 \pmod{10} \\
\rightarrow \quad (3^2)^{1008} &\equiv (-1)^{1008} \pmod{10} \\
\rightarrow \quad 3 \cdot (3^2)^{1008} &\equiv 3 \cdot (-1)^{1008} \pmod{10} \\
&\equiv 3
\end{align*}
\]

Addition and multiplication are just like regular arithmetic.

Example. What is the last digit of \(3^{2017} \)?
Modular Division is Not Like Regular Arithmetic

\[15 \cdot 0 \equiv 13 \cdot 0 \pmod{12} \]
Modular Division is Not Like Regular Arithmetic

\[15 \cdot 0 \equiv 13 \cdot 0 \pmod{12} \]

\[15 \not\equiv 13 \pmod{12} \]
Modular Division is Not Like Regular Arithmetic

\[15 \cdot 0 \equiv 13 \cdot 0 \pmod{12} \quad 15 \cdot 0 \equiv 2 \cdot 0 \pmod{13} \]
\[15 \not\equiv 13 \pmod{12} \quad \times \]
Modular Division is Not Like Regular Arithmetic

\[15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12} \quad 15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13} \]

\[15 \not\equiv 13 \pmod{12} \quad \times \quad 15 \equiv 2 \pmod{13} \quad \checkmark \]
Modular Division is Not Like Regular Arithmetic

\[
15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12} \\
15 \not\equiv 13 \pmod{12}
\]

\[
15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13} \\
15 \equiv 2 \pmod{13}
\]

\[
7 \cdot \emptyset \equiv 22 \cdot \emptyset \pmod{15}
\]
Modular Division is Not Like Regular Arithmetic

\[
\begin{align*}
15 \cdot 0 & \equiv 13 \cdot 0 \pmod{12} & 15 \cdot 0 & \equiv 2 \cdot 0 \pmod{13} & 7 \cdot 8 & \equiv 22 \cdot 8 \pmod{15} \\
15 & \not\equiv 13 \pmod{12} & 15 & \equiv 2 \pmod{13} & 7 & \equiv 22 \pmod{15}
\end{align*}
\]
Modular Division is Not Like Regular Arithmetic

\[15 \cdot \emptyset \equiv 13 \cdot \emptyset \pmod{12} \]
\[15 \not\equiv 13 \pmod{12} \]
\[15 \cdot \emptyset \equiv 2 \cdot \emptyset \pmod{13} \]
\[15 \equiv 2 \pmod{13} \]
\[7 \cdot 8 \equiv 22 \cdot 8 \pmod{15} \]
\[7 \equiv 22 \pmod{15} \]

Modular Division: cancelling a factor from both sides

Suppose \(ac \equiv bc \pmod{d} \). You can cancel \(c \) to get \(a \equiv b \pmod{d} \) if \(\gcd(c, d) = 1 \).

Proof. \(d \mid c(a - b) \). By GCD fact (v), \(d \mid a - b \) because \(\gcd(c, d) = 1 \).
Modular Division is Not Like Regular Arithmetic

\[
15 \cdot 6 \equiv 13 \cdot 6 \pmod{12} \\
15 \not\equiv 13 \pmod{12}
\]

\[
15 \cdot 6 \equiv 2 \cdot 6 \pmod{13} \\
15 \equiv 2 \pmod{13}
\]

\[
7 \cdot 8 \equiv 22 \cdot 8 \pmod{15} \\
7 \equiv 2 \pmod{15}
\]

Modular Division: cancelling a factor from both sides

Suppose \(ac \equiv bc \pmod{d} \). You can cancel \(c \) to get \(a \equiv b \pmod{d} \) if \(\gcd(c, d) = 1 \).

Proof. \(d|c(a - b) \). By GCD fact (v), \(d|a - b \) because \(\gcd(c, d) = 1 \).

If \(d \) is prime, then division with prime modulus is pretty much like regular division.
Modular Division is Not Like Regular Arithmetic

\[
15 \cdot 0 \equiv 13 \cdot 0 \pmod{12} \quad 15 \cdot 0 \equiv 2 \cdot 0 \pmod{13} \quad 7 \cdot 8 \equiv 22 \cdot 8 \pmod{15}
\]
\[
15 \not\equiv 13 \pmod{12} \quad \times \quad 15 \equiv 2 \pmod{13} \quad \checkmark \quad 7 \equiv 22 \pmod{15} \quad \checkmark
\]

Modular Division: cancelling a factor from both sides
Suppose \(ac \equiv bc \pmod{d} \). You can cancel \(c \) to get \(a \equiv b \pmod{d} \) if \(\gcd(c, d) = 1 \).

Proof. \(d | c(a - b) \). By GCD fact (v), \(d | a - b \) because \(\gcd(c, d) = 1 \).

If \(d \) is prime, then division with prime modulus is pretty much like regular division.

Modular Inverse. Inverses do not exist in \(\mathbb{N} \). Modular inverse may exist.
\[
3 \times n = 1 \quad \quad \quad \quad n = ?
\]
\[
3 \times n = 1 \pmod{7}
\]
Modular Division is Not Like Regular Arithmetic

\[15 \cdot 6 \equiv 13 \cdot 6 \pmod{12} \quad 15 \cdot 6 \equiv 2 \cdot 6 \pmod{13} \quad 7 \cdot 8 \equiv 22 \cdot 8 \pmod{15} \]

\[15 \not\equiv 13 \pmod{12} \quad 15 \equiv 2 \pmod{13} \quad 7 \equiv 22 \pmod{15} \]

Modular Division: cancelling a factor from both sides

Suppose \(ac \equiv bc \pmod{d} \). You can cancel \(c \) to get \(a \equiv b \pmod{d} \) if \(\gcd(c, d) = 1 \).

Proof. \(d | c(a - b) \). By GCD fact (v), \(d | a - b \) because \(\gcd(c, d) = 1 \).

If \(d \) is prime, then division with prime modulus is pretty much like regular division.

Modular Inverse. Inverses do not exist in \(\mathbb{N} \). Modular inverse may exist.

\[3 \times n = 1 \quad n =? \]

\[3 \times n = 1 \pmod{7} \quad n = 5 \]
RSA Public Key Cryptography Uses Modular Arithmetic

Bob broadcasts to the world the numbers $23, 55$. (Bob’s RSA public key.)
Bob broadcasts to the world the numbers $23, 55$. (Bob’s RSA public key).

$M \rightarrow M_* \equiv M^{23} \pmod{55}$ (Alice encrypts)

$M_* \rightarrow M' \equiv M_*^7 \pmod{55}$ (Alice sends to Bob, Charlie eavesdrops, Bob decrypts)
RSA Public Key Cryptography Uses Modular Arithmetic

Bob broadcasts to the world the numbers 23, 55. (Bob’s RSA public key).

Examples. Does Bob always decode to the correct message?

<table>
<thead>
<tr>
<th>M</th>
<th>M*</th>
<th>M'</th>
<th>M' = M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>23 ≡ 8 (mod 55)</td>
<td>87 ≡ 2 (mod 55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>323 ≡ 27 (mod 55)</td>
<td>277 ≡ 3 (mod 55)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 10.14. Proof that Bob always decodes to the right message for special 55, 23 and 7. (How to get them?)

Practical Implementation. Good idea to pad with random bits to make the cypher text random.