Foundations of Computer Science
Lecture 15

Probability
Computing Probabilities
Probability and Sets: Probability Space
Uniform Probability Spaces
Infinite Probability Spaces

The probable is what usually happens – Aristotle
To count complex objects, construct a sequence of “instructions” that can be used to construct the object uniquely. The number of possible sequences of instructions equals the number of possible complex objects.

Counting
- Sequences with and without repetition.
- Subsets with and without repetition.
- Sequences with specified numbers of each type of object: anagrams.

Inclusion-Exclusion (advanced technique).

Pigeonhole principle (simple but IMPORTANT technique).
Today: Probability

 - Outcome tree.
 - Event of interest.
 - Examples with dice.

2. Probability and sets.
 - The probability space.

3. Uniform probability spaces.

4. Infinite probability spaces.
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.

Flip 100 times. Approximately 50 will be H ← frequentist view.
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.

Flip 100 times. Approximately 50 will be H

You toss a *fair* coin 3 times. How many heads will you get?
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.

Flip 100 times. Approximately 50 will be H ← frequentist view.

- You toss a fair coin 3 times. How many heads will you get?

- You keep tossing a fair coin until you get a head. How many tosses will you make?
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.

Flip 100 times. Approximately 50 will be H

← frequentist view.

1 You toss a fair coin 3 times. How many heads will you get?

2 You keep tossing a fair coin until you get a head. How many tosses will you make?

There’s no answer. The outcome is uncertain. Probability is appropriate for such settings.
The Chance of Rain Tomorrow is 40%

What does the title mean? Either it will rain tomorrow or it won’t.

The chances are 50% that a fair coin-flip will be H.

Flip 100 times. Approximately 50 will be H

← frequentist view.

You toss a fair coin 3 times. How many heads will you get?

You keep tossing a fair coin until you get a head. How many tosses will you make?

There’s no answer. The outcome is uncertain. Probability is appropriate for such settings.

Birth of Mathematical Probability.

Antoine Gombaud,: Should I bet even money on at least one ‘double-6’ in 24 rolls of two dice?
Chevalier de Méré: What about at least one 6 in 4 rolls of one die?
Blaise Pascal: Interesting question. Let’s bring Pierre de Fermat into the conversation.

…a correspondence is ignited between these two mathematical giants
You are analyzing an “experiment” whose outcome is uncertain.
You are analyzing an “experiment” whose outcome is uncertain.

Outcomes. Identify all possible outcomes using a tree of outcome sequences.
You are analyzing an “experiment” whose outcome is uncertain.

Outcomes. Identify all possible outcomes using a tree of outcome sequences.

```
   H
  /   \
/     \
H   T   H   T
```

Coin 1

Coin 2
You are analyzing an “experiment” whose outcome is uncertain.

Outcomes. Identify all possible outcomes using a tree of outcome sequences.
You are analyzing an “experiment” whose outcome is uncertain.

Outcomes. Identify all possible outcomes using a tree of outcome sequences.

Edge probabilities. If one of \(k \) edges (options) from a vertex is chosen randomly then each edge has edge-probability \(\frac{1}{k} \).
You are analyzing an “experiment” whose outcome is uncertain.

Outcomes. Identify all possible outcomes using a tree of outcome sequences.

Edge probabilities. If one of k edges (options) from a vertex is chosen randomly then each edge has edge-probability $\frac{1}{k}$.

Outcome-probability. Multiply edge-probabilities to get outcome-probabilities.
Toss two coins: you win if the coins match (HH or TT)

Question: When do you win?

Event: Subset of outcomes where you win.
Toss two coins: you win if the coins match (HH or TT)

Question: When do you win?

Event: *Subset* of outcomes where you win.

Event of interest. Subset of the outcomes where you win.

The Outcome-Tree Method →

Creator: Malik Magdon-Ismail

Probability: 6 / 14
Event of Interest

Toss two coins: you win if the coins match (HH or TT)

Question: When do you win?

Event: Subset of outcomes where you win.

1. **Event of interest.** Subset of the outcomes where you win.

2. **Event-probability.** Sum of its outcome-probabilities.

 \[
 \text{event-probability} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.
 \]

Probability that you win is \(\frac{1}{2}\), written as \(\mathbb{P}[\text{"YouWin"}] = \frac{1}{2}\).

Go and do this experiment at home. Toss two coins 1000 times and see how often you win.
The Outcome-Tree Method

Become familiar with this 6-step process for analyzing a probabilistic experiment.

1. **You are analyzing an experiment whose outcome is uncertain.**
2. **Outcomes.** Identify *all possible* outcomes, the tree of *outcome sequences*.
3. **Edge-Probability.** Each edge in the outcome-tree gets a probability.
4. **Outcome-Probability.** Multiply edge-probabilities to get outcome-probabilities.
5. **Event of Interest \(\mathcal{E} \).** Determine the subset of the outcomes you care about.
6. **Event-Probability.** The sum of outcome-probabilities in the subset you care about.

\[
\mathbb{P}[\mathcal{E}] = \sum_{\text{outcomes } \omega \in \mathcal{E}} P(\omega).
\]

\[\mathbb{P}[\mathcal{E}] \sim \text{frequency an outcome you want occurs over many repeated experiments.}\]

Pop Quiz. Roll two dice. Compute \(\mathbb{P}[\text{first roll is less than the second}]\).
1: Contestant at door 1.
2: Prize placed behind *random* door.
Let’s Make a Deal: The Monty Hall Problem

1: Contestant at door 1.
2: Prize placed behind *random* door.
3: Monty opens *empty* door (*randomly* if there’s an option).
1. Contestant at door 1.
2. Prize placed behind random door.
3. Monty opens empty door \((randomly\) if there’s an option).

- Outcome-tree and edge-probabilities.
Let’s Make a Deal: The Monty Hall Problem

1: Contestant at door 1.
2: Prize placed behind random door.
3: Monty opens empty door (randomly if there’s an option).

- Outcome-tree and edge-probabilities.
1: Contestant at door 1.
2: Prize placed behind \textit{random} door.
3: Monty opens \textit{empty} door (\textit{randomly} if there’s an option).

- Outcome-tree and edge-probabilities.
Let’s Make a Deal: The Monty Hall Problem

1: Contestant at door 1.
2: Prize placed behind *random* door.
3: Monty opens empty door (*randomly* if there’s an option).

- Outcome-tree and edge-probabilities.
- Outcome-probabilities.

<table>
<thead>
<tr>
<th>Prize</th>
<th>Host</th>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(1, 2)</td>
<td>$P(1, 2) = \frac{1}{6}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(1, 3)</td>
<td>$P(1, 3) = \frac{1}{6}$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(2, 3)</td>
<td>$P(2, 3) = \frac{1}{3}$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(3, 2)</td>
<td>$P(3, 2) = \frac{1}{3}$</td>
</tr>
</tbody>
</table>
Let’s Make a Deal: The Monty Hall Problem

1: Contestant at door 1.
2: Prize placed behind *random* door.
3: Monty opens empty door (*randomly* if there’s an option).

- Outcome-tree and edge-probabilities.
- Outcome-probabilities.
- Event of interest: “WinBySwitching”.

<table>
<thead>
<tr>
<th>Prize</th>
<th>Host</th>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3</td>
<td>(1, 2)</td>
<td>$P(1, 2) = \frac{1}{6}$</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>(1, 3)</td>
<td>$P(1, 3) = \frac{1}{6}$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(2, 3)</td>
<td>$P(2, 3) = \frac{1}{3}$</td>
</tr>
<tr>
<td>2</td>
<td>1/3</td>
<td>(3, 2)</td>
<td>$P(3, 2) = \frac{1}{3}$</td>
</tr>
</tbody>
</table>
Let’s Make a Deal: The Monty Hall Problem

1: Contestant at door 1.
2: Prize placed behind random door.
3: Monty opens empty door (randomly if there’s an option).

- Outcome-tree and edge-probabilities.
- Outcome-probabilities.
- Event of interest: “WinBySwitching”.
- Event probability.

\[
\begin{array}{c|c|c}
\text{Prize} & \text{Host} & \text{Outcome} & \text{Probability} \\
\hline
1 & 2 & (1, 2) & P(1, 2) = \frac{1}{6} \\
2 & 3 & (1, 3) & P(1, 3) = \frac{1}{6} \\
1 & 3 & (2, 3) & P(2, 3) = \frac{1}{3} \\
3 & 2 & (3, 2) & P(3, 2) = \frac{1}{3} \\
\end{array}
\]

\[
\frac{1}{3} + \frac{1}{3} = \frac{2}{3} = \mathbb{P}[\text{“WinBySwitching”}]
\]
Non-Transitive Dice

\[A: \begin{cases} \{1, 2, 3\} \\ \{4, 5, 6\} \end{cases} \quad B: \begin{cases} \{1, 2, 4\} \\ \{3, 5, 6\} \end{cases} \quad C: \begin{cases} \{1, 2, 5\} \\ \{3, 4, 6\} \end{cases} \]

Your friend picks a die; you pick a die.
e.g. friend picks die \(B \); you pick \(A \).
Non-Transitive Dice

A: \{\text{\ding{143}, \text{\ding{143}, \text{\ding{143}}, \text{\ding{143}}}}\} \quad B: \{\text{\ding{143}, \text{\ding{143}, \text{\ding{143}}, \text{\ding{143}}}}\} \quad C: \{\text{\ding{143}, \text{\ding{143}, \text{\ding{143}}, \text{\ding{143}}}}\}

Your friend picks a die; you pick a die.
e.g. friend picks die B; you pick A.

What is the probability that A beats B?
Non-Transitive Dice

Your friend picks a die; you pick a die.
e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
Non-Transitive Dice

A: \begin{align*}
\{ & 1, 3, 5, 6 \\ & 2, 3, 4, 5 \} \\
\end{align*}

B: \begin{align*}
\{ & 1, 3, 5, 6 \\ & 2, 3, 4, 5 \} \\
\end{align*}

C: \begin{align*}
\{ & 1, 3, 5, 6 \\ & 2, 3, 4, 5 \} \\
\end{align*}

Your friend picks a die; you pick a die. e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
Non-Transitive Dice

A: \{\text{\ding{192}, \ding{193}, \ding{194}, \ding{195}, \ding{196}}\}
B: \{\text{\ding{192}, \ding{193}, \ding{194}, \ding{195}, \ding{196}}\}
C: \{\text{\ding{192}, \ding{193}, \ding{194}, \ding{195}, \ding{196}}\}

Your friend picks a die; you pick a die.
e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
- Uniform probabilities.
Non-Transitive Dice

A: \{\text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}\}
 \text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}

B: \{\text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}\}
 \text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}

C: \{\text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}\}
 \text{\ding{192} \ding{193} \ding{194} \ding{195} \ding{196}}

Your friend picks a die; you pick a die.
e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
- Uniform probabilities.
- Even of interest: outcomes where you win.
Non-Transitive Dice

Your friend picks a die; you pick a die.
e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
- Uniform probabilities.
- Even of interest: outcomes where you win.
- Number of outcomes where you win: 5.
- Probability you win, $\mathbb{P}[A \text{ beats } B] = \frac{5}{9}$.

Die A Die B Probability

$\begin{array}{ll}
A: & \left\{ \begin{array}{ll}
\CDots & 0.333
\end{array} \right. \\
B: & \left\{ \begin{array}{ll}
\CDots & 0.333
\end{array} \right. \\
C: & \left\{ \begin{array}{ll}
\CDots & 0.333
\end{array} \right. \\
\end{array}$
Non-Transitive Dice

Your friend picks a die; you pick a die. e.g. friend picks die B; you pick A.

What is the probability that A beats B?

- Outcome-tree and outcome-probabilities.
- Uniform probabilities.
- Even of interest: outcomes where you win.
- Number of outcomes where you win: 5.
- Probability you win, $\mathbb{P}[A$ beats $B] = \frac{5}{9}$.

Conclusion: Die A beats Die B.

Sample Space $\Omega = \{\omega_1, \omega_2, \ldots\}$, set of *possible* outcomes.

Probability Function $P(\cdot)$. Non-negative function $P(\omega)$, normalized to 1:

$$0 \leq P(\omega) \leq 1 \quad \text{and} \quad \sum_{\omega \in \Omega} P(\omega) = 1.$$

Die A versus B

<table>
<thead>
<tr>
<th>Ω</th>
<th>$P(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{11, 12, 13, 21, 22, 23, 31, 32, 33}</td>
<td>$\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$</td>
</tr>
</tbody>
</table>
Sample Space $\Omega = \{\omega_1, \omega_2, \ldots\}$, set of possible outcomes.

Probability Function $P(\cdot)$. Non-negative function $P(\omega)$, normalized to 1:

$$0 \leq P(\omega) \leq 1 \quad \text{and} \quad \sum_{\omega \in \Omega} P(\omega) = 1.$$

Die A versus B

<table>
<thead>
<tr>
<th>Ω</th>
<th>$P(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\text{\ding{58}, \ding{59}, \ding{60}, \ding{61}, \ding{62}, \ding{63}, \ding{64}, \ding{65}, \ding{66}}}$</td>
<td>$\frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9}$</td>
</tr>
</tbody>
</table>

Events $\mathcal{E} \subseteq \Omega$ are subsets. Event probability $\mathbb{P}[\mathcal{E}]$ is the sum of outcome-probabilities.

"A > B" $\mathcal{E}_1 = \{\text{\ding{58}, \ding{59}, \ding{60}, \ding{61}, \ding{62}}\}$

"Sum > 8" $\mathcal{E}_2 = \{\text{\ding{63}, \ding{64}, \ding{65}, \ding{66}, \ding{67}}\}$

"B < 9" $\mathcal{E}_3 = \{\text{\ding{68}, \ding{69}, \ding{70}, \ding{71}, \ding{72}}\}$
Sample Space $\Omega = \{\omega_1, \omega_2, \ldots\}$, set of possible outcomes.

Probability Function $P(\cdot)$. Non-negative function $P(\omega)$, normalized to 1:

$$0 \leq P(\omega) \leq 1 \quad \text{and} \quad \sum_{\omega \in \Omega} P(\omega) = 1.$$

Die A versus B

$\Omega = \{\text{11, 12, 21, 22, 31, 32, 41, 42, 51, 52, 61, 62, 71, 72}\}$

$P(\omega) = \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}$

Events $\mathcal{E} \subseteq \Omega$ are subsets. Event probability $\mathbb{P}[\mathcal{E}]$ is the sum of outcome-probabilities.

"$A > B$" $\quad \mathcal{E}_1 = \{\text{12, 22, 32, 42, 52}\}$

"Sum > 8" $\quad \mathcal{E}_2 = \{\text{13, 23, 33, 43, 53}\}$

"$B < 9$" $\quad \mathcal{E}_3 = \{\text{11, 12, 21, 22, 31, 32, 41, 42}\}$

Combining events using logical connectors corresponds to set operations:
Sample Space $\Omega = \{\omega_1, \omega_2, \ldots\}$, set of possible outcomes.

Probability Function $P(\cdot)$. Non-negative function $P(\omega)$, normalized to 1:

$$0 \leq P(\omega) \leq 1 \quad \text{and} \quad \sum_{\omega \in \Omega} P(\omega) = 1.$$

Die A versus B

<table>
<thead>
<tr>
<th>Ω</th>
<th>${\text{ outcomes }}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\omega)$</td>
<td>$\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$</td>
</tr>
</tbody>
</table>

Events $\mathcal{E} \subseteq \Omega$ are subsets. Event probability $\mathbb{P}[\mathcal{E}]$ is the sum of outcome-probabilities.

"$A > B$" $\mathcal{E}_1 = \{\text{ outcomes }\}$

"Sum > 8" $\mathcal{E}_2 = \{\text{ outcomes }\}$

"$B < 9$" $\mathcal{E}_3 = \{\text{ outcomes }\}$

Combining events using logical connectors corresponds to set operations:

"$A > B$" \lor "Sum > 8" $\mathcal{E}_1 \cup \mathcal{E}_2 = \{\text{ outcomes }\}$

"$A > B$" \land "Sum > 8" $\mathcal{E}_1 \cap \mathcal{E}_2 = \{\text{ outcomes }\}$

$\neg (" A > B")$ $\mathcal{E}_1^c = \{\text{ outcomes }\}$

"$A > B$" \rightarrow "$B < 9$" $\mathcal{E}_1 \subseteq \mathcal{E}_3$

Important: Exercise 15.9. Sum rule, complement, inclusion-exclusion, union, implication and intersection bounds.
Uniform Probability Space : Probability \sim Size

$$P(\omega) = \frac{1}{|\Omega|}$$
Uniform Probability Space: Probability \sim Size

\[P(\omega) = \frac{1}{|\Omega|} \]
\[\mathbb{P}[\mathcal{E}] = \frac{|\mathcal{E}|}{|\Omega|} = \frac{\text{number of outcomes in } \mathcal{E}}{\text{number of possible outcomes in } \Omega}. \]
Uniform Probability Space: Probability \sim Size

$$P(\omega) = \frac{1}{|\Omega|} \quad \mathbb{P}[\mathcal{E}] = \frac{|\mathcal{E}|}{|\Omega|} = \frac{\text{number of outcomes in } \mathcal{E}}{\text{number of possible outcomes in } \Omega}.$$

Toss a coin 3 times:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>HHT</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>HTH</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>HTT</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>THH</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>THT</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>TTH</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>TTT</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>
Uniform Probability Space: Probability \sim Size

$$P(\omega) = \frac{1}{|\Omega|} \quad \mathbb{P}[\mathcal{E}] = \frac{|\mathcal{E}|}{|\Omega|} = \frac{\text{number of outcomes in } \mathcal{E}}{\text{number of possible outcomes in } \Omega}.$$

Toss a coin 3 times:

$$\mathbb{P}[\text{“2 heads”}] = \frac{\text{number of sequences with 2 heads}}{\text{number of possible sequences in } \Omega} = \binom{3}{2} \times \frac{1}{8} = \frac{3}{8}. $$
Uniform Probability Space : Probability \sim Size

\[P(\omega) = \frac{1}{|\Omega|} \quad \text{and} \quad \mathbb{P}[\mathcal{E}] = \frac{|\mathcal{E}|}{|\Omega|} = \frac{\text{number of outcomes in } \mathcal{E}}{\text{number of possible outcomes in } \Omega}. \]

Toss a coin 3 times:

\[
\begin{array}{c}
\text{Toss 1} \\
\text{Toss 2} \\
\text{Toss 3} \\
\text{Outcome} \\
\text{Probability}
\end{array}
\]

\[
\begin{array}{cccccc}
\text{HHH} & \text{HHT} & \text{HTH} & \text{HTT} & \text{THH} & \text{THT} & \text{TTH} & \text{TTT} \\
\frac{1}{8} & \frac{1}{8}
\end{array}
\]

\[
\mathbb{P}[\text{"2 heads"}] = \frac{\text{number of sequences with 2 heads}}{\text{number of possible sequences in } \Omega} = \left(\frac{3}{2}\right) \times \frac{1}{8} = \frac{3}{8}.
\]

Practice: Exercise 15.10.

1. You roll a pair of regular dice. What is the probability that the sum is 9?
2. You toss a fair coin ten times. What is the probability that you obtain 4 heads?
3. You roll die A ten times. Compute probabilities for: 4 sevens? 4 sevens and 3 sixes? 4 sevens or 3 sixes?
52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.
52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5}\) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \binom{52}{5} possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify \((\text{rank}_3, \text{ suits}_3, \text{rank}_2, \text{ suits}_2)\). Product rule:
52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?

To construct a full house, specify \((\text{rank}_3, \text{suits}_3, \text{rank}_2, \text{suits}_2)\). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2}
\]
52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify \((\text{rank}_3, \text{suits}_3, \text{rank}_2, \text{suits}_2)\). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2} \quad \rightarrow \quad P[\text{“FullHouse”}] = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.00144;
\]
Poker: Probabilities of Full House and Flush

52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify (rank\(_3\), suits\(_3\), rank\(_2\), suits\(_2\)). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2} \quad \rightarrow \quad P[\text{“FullHouse”}] = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.00144;
\]

Flush: 5 cards of same suit. How many flushes?
Poker: Probabilities of Full House and Flush

52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify \((\text{rank}_3, \text{suits}_3, \text{rank}_2, \text{suits}_2)\). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2} \quad \rightarrow \quad \mathbb{P}[\text{"FullHouse"}] = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.00144;
\]

Flush: 5 cards of same suit. How many flushes?
To construct a flush, specify \((\text{suit}, \text{ranks})\). Product rule:
Poker: Probabilities of Full House and Flush

52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify \((\text{rank}_3, \text{suit}_3, \text{rank}_2, \text{suit}_2)\). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2} \quad \rightarrow \quad P[\text{"FullHouse"]} = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.00144;
\]

Flush: 5 cards of same suit. How many flushes?
To construct a flush, specify \((\text{suit}, \text{ranks})\). Product rule:

\[
\# \text{ flushes} = 4 \times \binom{13}{5}
\]
Poker: Probabilities of Full House and Flush

52 card deck has 4 suits (♠, ♥, ♦, ♣) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2).

Randomly deal 5-cards: each set of 5 cards is equally likely → uniform probability space.

number of possible outcomes = \(\binom{52}{5} \) possible hands.

Full house: 3 cards of one rank and 2 of another. How many full-houses?
To construct a full house, specify \((\text{rank}_3, \text{suit}_3, \text{rank}_2, \text{suit}_2)\). Product rule:

\[
\# \text{ full houses} = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2} \quad \rightarrow \quad \mathbb{P}[\text{“FullHouse”}] = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.00144;
\]

Flush: 5 cards of same suit. How many flushes?
To construct a flush, specify \((\text{suit}, \text{ranks})\). Product rule:

\[
\# \text{ flushes} = 4 \times \binom{13}{5} \quad \rightarrow \quad \mathbb{P}[\text{“Flush”}] = \frac{4 \times \binom{13}{5}}{\binom{52}{5}} \approx 0.00198;
\]

Full house is rarer. That’s why full house beats flush.
Toss a Coin Until Heads: Infinite Probability Space

Toss 1

\[\frac{1}{2} \]

T

\[\frac{1}{2} \]

H

H

\[\frac{1}{2} \]
Toss a Coin Until Heads: Infinite Probability Space

Creator: Malik Magdon-Ismail
Probability: 13 / 14
Game: First Person To Toss H Wins →
Toss a Coin Until Heads: Infinite Probability Space

Game: First Person To Toss H Wins

Probability: 13/14

Creator: Malik Magdon-Ismail
Toss a Coin Until Heads: Infinite Probability Space

Game: First Person To Toss H Wins

Probability: 13/14

Creator: Malik Magdon-Ismail
Toss a Coin Until Heads: Infinite Probability Space

Game: First Person To Toss H Wins

Probability: 13/14

Creator: Malik Magdon-Ismail
Toss a Coin Until Heads: Infinite Probability Space

Game: First Person To Toss H Wins

Outcome Probability

\[
\begin{array}{ccccccccc}
\text{Toss 1} & \text{Toss 2} & \text{Toss 3} & \text{Toss 4} & \text{Toss 5} & \text{Toss 6} & \cdots & \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \\
\text{H} & \text{TH} & \text{TTH} & \text{TTTH} & \text{TTTTH} & \text{TTTTTH} & \cdots & \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{32} & \frac{1}{64} & \cdots & \\
\end{array}
\]
Toss a Coin Until Heads: Infinite Probability Space

\[\Omega = \left\{ \omega \right\} \]

\[P(\omega) = \frac{1}{2}, \left(\frac{1}{2}\right)^2, \left(\frac{1}{2}\right)^3, \left(\frac{1}{2}\right)^4, \left(\frac{1}{2}\right)^5, \left(\frac{1}{2}\right)^6, \ldots, \left(\frac{1}{2}\right)^{i+1}, \ldots \]

\[
\begin{array}{|c|cccccccc|}
\hline
Tosses & 1 & 2 & 3 & 4 & 5 & 6 & \ldots & i + 1 & \ldots \\
\hline
\end{array}
\]
Toss a Coin Until Heads: Infinite Probability Space

<table>
<thead>
<tr>
<th>Toss 1</th>
<th>Toss 2</th>
<th>Toss 3</th>
<th>Toss 4</th>
<th>Toss 5</th>
<th>Toss 6</th>
<th>⋮</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⋮</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>⋮</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>⋮</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ω</th>
<th>H</th>
<th>TH</th>
<th>T^2H</th>
<th>T^3H</th>
<th>T^4H</th>
<th>T^5H</th>
<th>⋮</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\omega)$</td>
<td>$\frac{1}{2}$</td>
<td>$(\frac{1}{2})^2$</td>
<td>$(\frac{1}{2})^3$</td>
<td>$(\frac{1}{2})^4$</td>
<td>$(\frac{1}{2})^5$</td>
<td>$(\frac{1}{2})^6$</td>
<td>⋮</td>
</tr>
<tr>
<td># Tosses</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>⋮</td>
</tr>
</tbody>
</table>

Sum of outcome probabilities:

$$\frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + (\frac{1}{2})^4 + \cdots = \sum_{i=1}^{\infty} (\frac{1}{2})^i = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1. \checkmark$$
Game: First Person To Toss H Wins. Always Go First

- Toss 1
- Toss 2
- Toss 3
- Toss 4
- Toss 5
- Toss 6

<table>
<thead>
<tr>
<th>(\Omega)</th>
<th>H</th>
<th>TH</th>
<th>T(^2)H</th>
<th>T(^3)H</th>
<th>T(^4)H</th>
<th>T(^5)H</th>
<th>...</th>
<th>T(^i)H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\omega))</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})^2</td>
<td>(\frac{1}{2})^3</td>
<td>(\frac{1}{2})^4</td>
<td>(\frac{1}{2})^5</td>
<td>(\frac{1}{2})^6</td>
<td>...</td>
<td>(\frac{1}{2})^{i+1}</td>
<td>...</td>
</tr>
</tbody>
</table>

Outcome probabilities:

<table>
<thead>
<tr>
<th>H</th>
<th>TH</th>
<th>TTH</th>
<th>TTTH</th>
<th>TTTTH</th>
<th>TTTTTH</th>
<th>...</th>
<th>T(^i)H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{16})</td>
<td>(\frac{1}{32})</td>
<td>(\frac{1}{64})</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Game: First Person To Toss H Wins. Always Go First

The event “YouWin” is $\mathcal{E} = \{H, T^2H, T^4H, T^6H, \ldots \}$.

Creator: Malik Magdon-Ismail

Probability: 14 / 14
Game: First Person To Toss H Wins. Always Go First

The event “YouWin” is \(\mathcal{E} = \{H, T\cdot^2H, T\cdot^4H, T\cdot^6H, \ldots\} \).

\[
P[\text{“YouWin”}] = \frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^7 + \cdots = \frac{1}{2} \sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^i = \frac{1}{2} \frac{1}{1 - \frac{1}{4}} = \frac{2}{3}.
\]

Your odds improve by a factor of 2 if you go first (vs. second).