Foundations of Computer Science
Lecture 20

Expected Value of a Sum

Linearity of Expectation
Iterated Expectation
Build-Up Expectation
Sum of Indicators
1. Sample average and expected value.

2. Definition of Mathematical expectation.

3. Examples: Sum of dice; Bernoulli; Uniform; Binomial; waiting time;

5. Law of Total Expectation.
Today: Expected Value of a Sum

1. Expected value of a sum.
 - Sum of dice.
 - Binomial.
 - Waiting time.
 - Coupon collecting.

2. Iterated expectation.

3. Build-up expectation.

4. Expected value of a product.

5. Sum of indicators.
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.
You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let X_1, X_2, \ldots, X_k be random variables and let $Z = a_1X_1 + a_2X_2 + \cdots + a_kX_k$ be a linear combination of the X_i. Then,
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let X_1, X_2, \ldots, X_k be random variables and let $Z = a_1X_1 + a_2X_2 + \cdots + a_kX_k$ be a linear combination of the X_i. Then,

$$\mathbb{E}[Z] = \mathbb{E}[a_1X_1 + a_2X_2 + \cdots + a_kX_k] = a_1 \mathbb{E}[X_1] + a_2 \mathbb{E}[X_2] + \cdots + a_k \mathbb{E}[X_k].$$
You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let X_1, X_2, \ldots, X_k be random variables and let $Z = a_1 X_1 + a_2 X_2 + \cdots + a_k X_k$ be a linear combination of the X_i. Then,

$$
E[Z] = E[a_1 X_1 + a_2 X_2 + \cdots + a_k X_k] = a_1 E[X_1] + a_2 E[X_2] + \cdots + a_k E[X_k].
$$

Proof.

$$
E[Z] = \sum_{\omega \in \Omega} \left(a_1 X_1(\omega) + a_2 X_2(\omega) + \cdots + a_k X_k(\omega) \right) \cdot P(\omega)
$$
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let X_1, X_2, \ldots, X_k be random variables and let $Z = a_1X_1 + a_2X_2 + \cdots + a_kX_k$ be a linear combination of the X_i. Then,

$$
\mathbb{E}[Z] = \mathbb{E}[a_1X_1 + a_2X_2 + \cdots + a_kX_k] = a_1 \mathbb{E}[X_1] + a_2 \mathbb{E}[X_2] + \cdots + a_k \mathbb{E}[X_k].
$$

Proof.

$$
\mathbb{E}[Z] = \sum_{\omega \in \Omega} \left(a_1X_1(\omega) + a_2X_2(\omega) + \cdots + a_kX_k(\omega) \right) \cdot P(\omega) \\
= a_1 \sum_{\omega \in \Omega} X_1(\omega) \cdot P(\omega) + a_2 \sum_{\omega \in \Omega} X_2(\omega) \cdot P(\omega) + \cdots + a_k \sum_{\omega \in \Omega} X_k(\omega) \cdot P(\omega)
$$
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let X_1, X_2, \ldots, X_k be random variables and let $Z = a_1 X_1 + a_2 X_2 + \cdots + a_k X_k$ be a linear combination of the X_i. Then,

$$E[Z] = E[a_1 X_1 + a_2 X_2 + \cdots + a_k X_k] = a_1 E[X_1] + a_2 E[X_2] + \cdots + a_k E[X_k].$$

Proof.

$$E[Z] = \sum_{\omega \in \Omega} \left(a_1 X_1(\omega) + a_2 X_2(\omega) + \cdots + a_k X_k(\omega) \right) \cdot P(\omega)$$

$$= a_1 \sum_{\omega \in \Omega} X_1(\omega) \cdot P(\omega) + a_2 \sum_{\omega \in \Omega} X_2(\omega) \cdot P(\omega) + \cdots + a_k \sum_{\omega \in \Omega} X_k(\omega) \cdot P(\omega)$$

$$= a_1 E[X_1] + a_2 E[X_2] + \cdots + a_k E[X_k].$$
Expected Value of a Sum

You expect to win twice as much from two lottery tickets as from one.

The expected value of a sum is a sum of the expected values.

Theorem (Linearity of Expectation). Let \(X_1, X_2, \ldots, X_k \) be random variables and let \(Z = a_1X_1 + a_2X_2 + \cdots + a_kX_k \) be a linear combination of the \(X_i \). Then,

\[
E[Z] = E[a_1X_1 + a_2X_2 + \cdots + a_kX_k] = a_1E[X_1] + a_2E[X_2] + \cdots + a_kE[X_k].
\]

Proof. \[
E[Z] = \sum_{\omega \in \Omega} (a_1X_1(\omega) + a_2X_2(\omega) + \cdots + a_kX_k(\omega)) \cdot P(\omega)
\]

\[
= a_1 \sum_{\omega \in \Omega} X_1(\omega) \cdot P(\omega) + a_2 \sum_{\omega \in \Omega} X_2(\omega) \cdot P(\omega) + \cdots + a_k \sum_{\omega \in \Omega} X_k(\omega) \cdot P(\omega)
\]

\[
= a_1 E[X_1] + a_2 E[X_2] + \cdots + a_k E[X_k].
\]

1. Summation can be taken inside or pulled outside an expectation.
2. Constants can be taken inside or pulled outside an expectation.

\[
E \left[\sum_{i=1}^{k} a_iX_i \right] = \sum_{i=1}^{k} a_i E[X_i]
\]
Let X be the sum of n fair dice,
Sum of Dice

Let \mathbf{X} be the sum of n fair dice,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n,$$

where \mathbf{X}_i is the value rolled by die i.

Creator: Malik Magdon-Ismail

Expected Value of a Sum: 5/12

Expected Number of Successes →
Let \mathbf{X} be the sum of n fair dice,

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n,$$

where \mathbf{X}_i is the value rolled by die i.

$$\mathbb{E}[\mathbf{X}_i] = \frac{3}{2}.$$
Let X be the sum of n fair dice,

$$X = X_1 + \cdots + X_n,$$

where X_i is the value rolled by die i.

$$\mathbb{E}[X_i] = 3\frac{1}{2}.$$

Linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = n \times 3\frac{1}{2}.$$
Let X be the sum of n fair dice,

$$X = X_1 + \cdots + X_n,$$

where X_i is the value rolled by die i.

$$\mathbb{E}[X_i] = \frac{3}{2}.$$

Linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = n \times \frac{3}{2}.$$

Example. The expected sum of 4 dice is $4 \times \frac{3}{2} = 14$.

Exercise. Compute the PDF for the sum of 4 dice and expected value from the PDF.
\(\mathbf{X} \) is the number of successes in \(n \) trials with success probability \(p \) per trial,
\(\mathbf{X} \) is the number of successes in \(n \) trials with success probability \(p \) per trial,

\[
\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n
\]

Each \(\mathbf{X}_i \) is a Bernoulli and

\[
\mathbb{E}[\mathbf{X}_i] = p.
\]
Expected Number of Successes in n Coin Tosses

X is the number of successes in n trials with success probability p per trial,

$$X = X_1 + \cdots + X_n$$

Each X_i is a Bernoulli and

$$\mathbb{E}[X_i] = p.$$

Linearity of expectation,

$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + \cdots + X_n] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \cdots + \mathbb{E}[X_n] = n \times p.$$
Expected Waiting Time to n Successes

X is the waiting time for n successes with success probability p.
Expected Waiting Time to n Successes

X is the waiting time for n successes with success probability p.

$$X = \text{wait to 1st} + \frac{\text{wait from 1st to 2nd}}{X_2} + \frac{\text{wait from 2nd to 3rd}}{X_3} + \cdots + \frac{\text{wait from $(n-1)$th to nth}}{X_n}$$
Expected Waiting Time to n Successes

X is the waiting time for n successes with success probability p.

\[
X = X_1 + X_2 + X_3 + \cdots + X_n.
\]

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from (n-1)th to nth}.
\]
Expected Waiting Time to n Successes

X is the waiting time for n successes with success probability p.

\[
X = \frac{\text{wait to 1st success}}{X_1} + \frac{\text{wait from 1st to 2nd success}}{X_2} + \frac{\text{wait from 2nd to 3rd success}}{X_3} + \cdots + \frac{\text{wait from (n-1)th to nth success}}{X_n}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

Each X_i is a waiting time to one success, so

\[
\mathbb{E}[X_i] = \frac{1}{p}.
\]
Expected Waiting Time to \(n \) Successes

\(X \) is the waiting time for \(n \) successes with success probability \(p \).

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from (n−1)th to nth}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

Each \(X_i \) is a waiting time to one success, so

\[
E[X_i] = \frac{1}{p}.
\]

Linearity of expectation:

\[
E[X] = E[X_1 + X_2 + \cdots + X_n]
\]

\[
= E[X_1] + E[X_2] + \cdots + E[X_n]
\]

\[
= \frac{1}{p} + \frac{1}{p} + \frac{1}{p} + \cdots + \frac{1}{p} = n \times \frac{1}{p}.
\]
Expected Waiting Time to n Successes

X is the waiting time for n successes with success probability p.

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from (n − 1)th to nth}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

Each X_i is a waiting time to one success, so

\[
\mathbb{E}[X_i] = \frac{1}{p}.
\]

Linearity of expectation:

\[
\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + \cdots + X_n]
\]

\[
= \mathbb{E}[X_1] + \mathbb{E}[X_2] + \cdots + \mathbb{E}[X_n]
\]

\[
= \frac{1}{p} + \frac{1}{p} + \frac{1}{p} + \cdots + \frac{1}{p} = n \times \frac{1}{p}.
\]

Example. If you are waiting for 3 boys, you have to wait 3-times as long as for 1 boy.

Exercise. Compute the expected square of the waiting time.
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). X is the number of gum-purchases to get all the flags.
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). \(X \) is the number of gum-purchases to get all the flags.

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from } (n-1)\text{th to } n\text{th}
\]

\[
X_1 \quad X_1 \quad X_1 \quad X_1
\]

\[
p_1 = \frac{n}{n} \quad p_2 = \frac{n-1}{n} \quad p_3 = \frac{n-2}{n} \quad p_n = \frac{n-(n-1)}{n}
\]
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). \mathbf{X} is the number of gum-purchases to get all the flags.

\[
\mathbf{X} = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from (n−1)th to nth}
\]

\[
\begin{align*}
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
X_1 & \quad X_1 & \quad X_1 & \quad X_1 \\
p_1 = \frac{n}{n} & \quad p_2 = \frac{n-1}{n} & \quad p_3 = \frac{n-2}{n} & \quad p_n = \frac{n-(n-1)}{n}
\end{align*}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

$\mathbb{E}[X_i] = 1/p_i,$
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). \(X \) is the number of gum-purchases to get all the flags.

\[
X = \text{wait to 1st} \ + \ \text{wait from 1st to 2nd} \ + \ \text{wait from 2nd to 3rd} \ + \cdots + \text{wait from (n-1)th to nth}
\]

\[
x_1 \uparrow \quad x_1 \uparrow \quad x_1 \uparrow \quad \quad \quad x_1 \uparrow
p_1 = \frac{n}{n} \quad p_2 = \frac{n-1}{n} \quad p_3 = \frac{n-2}{n} \quad \quad \quad p_n = \frac{n-(n-1)}{n}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

\[E[X_i] = 1/p_i,\]

\[E[X_1] = \frac{n}{n}, \quad E[X_2] = \frac{n}{n-1}, \quad E[X_3] = \frac{n}{n-2}, \quad \ldots, \quad E[X_n] = \frac{n}{n-(n-1)}.\]
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). \(X \) is the number of gum-purchases to get all the flags.

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from } (n-1)\text{th to } n\text{th}
\]

\[
\begin{align*}
X_1 & \uparrow \\
p_1 &= \frac{n}{n} \\
X_1 & \uparrow \\
p_2 &= \frac{n-1}{n} \\
X_1 & \uparrow \\
p_3 &= \frac{n-2}{n} \\
\vdots & \\
p_n &= \frac{n-(n-1)}{n}
\end{align*}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

\[E[X_i] = 1/p_i,\]

\[E[X_1] = \frac{n}{n}, \quad E[X_2] = \frac{n}{n-1}, \quad E[X_3] = \frac{n}{n-2}, \quad \ldots, \quad E[X_n] = \frac{n}{n-(n-1)}.\]

Linearity of expectation:

\[E[X] = n\left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + \frac{1}{1}\right) = nH_n \approx n(\ln n + 0.577).\]
A pack of gum comes with a flag (169 countries). X is the number of gum-purchases to get all the flags.

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from (n-1)th to nth}
\]

\[
X_1 \uparrow \quad X_1 \uparrow \quad X_1 \uparrow \quad X_1 \uparrow
\]

\[
p_1 = \frac{n}{n} \quad p_2 = \frac{n-1}{n} \quad p_3 = \frac{n-2}{n} \quad p_n = \frac{n-(n-1)}{n}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

$E[X_i] = 1/p_i$,

\[
E[X_1] = \frac{n}{n}, \quad E[X_2] = \frac{n}{n-1}, \quad E[X_3] = \frac{n}{n-2}, \quad \ldots, \quad E[X_n] = \frac{n}{n-(n-1)}.
\]

Linearity of expectation:

\[
E[X] = n\left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + \frac{1}{1}\right) = nH_n \approx n(\ln n + 0.577).
\]

$n = 169 \rightarrow$ you expect to buy about 965 packs of gum. Lots of chewing!
Coupon Collecting: Collecting the Flags

A pack of gum comes with a flag (169 countries). \(X \) is the number of gum-purchases to get all the flags.

\[
X = \text{wait to 1st} + \text{wait from 1st to 2nd} + \text{wait from 2nd to 3rd} + \cdots + \text{wait from} (n-1)\text{th to nth}
\]

\[
\begin{align*}
X_1 & \uparrow \\
p_1 &= \frac{n}{n} \\
X_1 & \uparrow \\
p_2 &= \frac{n-1}{n} \\
X_1 & \uparrow \\
p_3 &= \frac{n-2}{n} \\
p_n &= \frac{n-(n-1)}{n}
\end{align*}
\]

\[
= X_1 + X_2 + X_3 + \cdots + X_n.
\]

\[
\mathbb{E}[X_i] = 1/p_i,
\]

\[
\begin{align*}
\mathbb{E}[X_1] &= \frac{n}{n}, \\
\mathbb{E}[X_2] &= \frac{n}{n-1}, \\
\mathbb{E}[X_3] &= \frac{n}{n-2}, \\
& \quad \vdots \\
\mathbb{E}[X_n] &= \frac{n}{n-(n-1)}.
\end{align*}
\]

Linearity of expectation:

\[
\mathbb{E}[X] = n\left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \cdots + \frac{1}{1}\right) = nH_n \approx n(\ln n + 0.577).
\]

\(n = 169 \rightarrow \) you expect to buy about 965 packs of gum. Lots of chewing!

Example. Cereal box contains 1-of-5 cartoon characters. Collect all to get $2 rebate.

Expect to buy about 12 cereal boxes. If a cereal box costs $5, that’s a whopping 3\%\% discount.
Iterated Expectation

Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.
Iterated Expectation

Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:
Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$
\mathbb{E}[X_2 \mid X_1] = X_1 \times 3^\frac{1}{2}.
$$

The RHS is a *function* of X_1, a random variable.
Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$E[X_2 \mid X_1] = X_1 \times 3\frac{1}{2}.$$

The RHS is a function of X_1, a random variable. Compute its expectation.
Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$
\mathbb{E}[X_2 | X_1] = X_1 \times 3\frac{1}{2}.
$$

The RHS is a function of X_1, a random variable. Compute its expectation.

$$
\mathbb{E}[X_2] = \mathbb{E}_{X_1}[\mathbb{E}[X_2 | X_1]]
$$

(another version of total expectation)
Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$E[X_2 | X_1] = X_1 \times 3\frac{1}{2}.$$

The RHS is a function of X_1, a random variable. Compute its expectation.

$$E[X_2] = E_{X_1}[E[X_2 | X_1]] = E[X_1] \times 3\frac{1}{2} \quad \text{(another version of total expectation)}$$
Iterated Expectation

Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$
\mathbb{E}[X_2 \mid X_1] = X_1 \times 3^{\frac{1}{2}}.
$$

The RHS is a *function* of X_1, a random variable. Compute its expectation.

$$
\mathbb{E}[X_2] = \mathbb{E}_{X_1}[\mathbb{E}[X_2 \mid X_1]] = \mathbb{E}[X_1] \times 3^{\frac{1}{2}} = 3^{\frac{1}{2}} \times 3^{\frac{1}{2}} = 12^{\frac{1}{2}}.
$$
Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$E[X_2 | X_1] = X_1 \times 3\frac{1}{2}.$$

The RHS is a function of X_1, a random variable. Compute its expectation.

$$E[X_2] = E_{X_1}[E[X_2 | X_1]]$$

$$= E[X_1] \times 3\frac{1}{2}$$

$$= 3\frac{1}{2} \times 3\frac{1}{2} = 12\frac{1}{2}.$$

Exercise. Justify this computation using total expectation with 6 cases:
Iterated Expectation

Experiment. Roll a die and let X_1 be the value. Now, roll a second die X_1 times and let X_2 be the sum of these X_1 rolls of the second die.

An example outcome is $(4; 2, 1, 2, 6)$ with $X_1 = 4$ and $X_2 = 11$:

$$\mathbb{E}[X_2 \mid X_1] = X_1 \times 3\frac{1}{2}.$$

The RHS is a function of X_1, a random variable. Compute its expectation.

$$\mathbb{E}[X_2] = \mathbb{E}_{X_1}[\mathbb{E}[X_2 \mid X_1]] = \mathbb{E}[X_1] \times 3\frac{1}{2} = 3\frac{1}{2} \times 3\frac{1}{2} = 12\frac{1}{2}.$$

Exercise. Justify this computation using total expectation with 6 cases:

$$\mathbb{E}[X_2] = \mathbb{E}[X_2 \mid X_1 = 1] \cdot \mathbb{P}[X_1 = 1] + \mathbb{E}[X_2 \mid X_1 = 2] \cdot \mathbb{P}[X_1 = 2] + \cdots + \mathbb{E}[X_2 \mid X_1 = 6] \cdot \mathbb{P}[X_1 = 6].$$
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}] . \]
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}] \]

The first child is either a boy or girl, so by total expectation,

\[
W(k, l) = \mathbb{E}[\text{waiting time | boy}] \times \frac{p}{1 + W(k-1, \ell)} + \mathbb{E}[\text{waiting time | girl}] \times \frac{1-p}{1 + W(k, \ell-1)}
\]

\[\mathbb{E}[X] = 12.156 \]

Expected Value of a Sum: 10 / 12

Expected Value of a Product →
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}]. \]

The first child is either a boy or girl, so by total expectation,

\[
W(k, l) = \frac{\mathbb{E}[\text{waiting time } | \text{ boy}]}{1 + W(k-1, \ell)} \times p + \frac{\mathbb{E}[\text{waiting time } | \text{ girl}]}{1 + W(k, \ell-1)} \times (1-p)
\]

\[
= 1 + pW(k - 1, \ell) + (1 - p)W(k, \ell - 1).
\]
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}] . \]

The first child is either a boy or girl, so by total expectation,

\[W(k, \ell) = \frac{\mathbb{E}[\text{waiting time } | \text{ boy}]}{1 + W(k-1, \ell)} \times p + \frac{\mathbb{E}[\text{waiting time } | \text{ girl}]}{1 + W(k, \ell-1)} \times (1-p) \]

\[= 1 + pW(k-1, \ell) + (1-p)W(k, \ell-1) . \]

Base cases: \(W(k, 0) = k/p \) and \(W(0, \ell) = \ell/(1-p) \)

<table>
<thead>
<tr>
<th>(W(k, \ell))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>\cdots</td>
</tr>
<tr>
<td>(k)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>\vdots</td>
<td>2</td>
<td>4</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>12</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

\(\mathbb{E}[X] = 12.156 \)
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = E[\text{waiting time to } k \text{ boys and } \ell \text{ girls}]. \]

The first child is either a boy or girl, so by total expectation,

\[
W(k, \ell) = \mathbb{E}[\text{waiting time } | \text{ boy}] \times \mathbb{P}[\text{boy}] + \mathbb{E}[\text{waiting time } | \text{ girl}] \times \mathbb{P}[\text{girl}]
\]

\[
= 1 + pW(k - 1, \ell) + (1 - p)W(k, \ell - 1).
\]

Base cases: \(W(k, 0) = k/p \) and \(W(0, \ell) = \ell/(1 - p) \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>\cdots</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>\times p</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>\cdots</td>
</tr>
<tr>
<td>2</td>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}] . \]

The first child is either a boy or girl, so by total expectation,

\[
W(k, \ell) = \mathbb{E} [\text{waiting time} \mid \text{boy}] \times p + \mathbb{E} [\text{waiting time} \mid \text{girl}] \times (1-p) \\
= 1 + pW(k-1, \ell) + (1-p)W(k, \ell-1).
\]

Base cases: \(W(k, 0) = k/p \) and \(W(0, \ell) = \ell/(1-p) \)

\(W(k, \ell) \)	0	1 \(\times p \)	2	3	4	5	6	7	\(\ell \)	
0	0	2	4	6	8	10	12	14	\(\cdots \)	
1	\(2 \times (1-p) \)	+1	3	4.5	6.25	8.13	10.06	12.03	14.02	\(\cdots \)
\(k \)										
2										
\(\vdots \)										
Build-Up Expectation: Waiting for 2 Boys and 6 Girls

\[W(k, \ell) = \mathbb{E}[\text{waiting time to } k \text{ boys and } \ell \text{ girls}] . \]

The first child is either a boy or girl, so by total expectation,

\[
W(k, \ell) = \mathbb{E}[\text{waiting time } | \text{ boy}] \times \mathbb{P}[\text{boy}] + \mathbb{E}[\text{waiting time } | \text{ girl}] \times \mathbb{P}[\text{girl}] \\
= \frac{1}{1 + W(k-1, \ell)} + p \times \frac{1}{1 + W(k, \ell-1)}.
\]

Base cases: \(W(k, 0) = k/p \) and \(W(0, \ell) = \ell/(1 - p) \)

\[
\begin{array}{ccccccccc}
W(k, \ell) & | & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline
0 & | & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & \cdots \\
1 & | & 2 & +1 & 3 & 4.5 & 6.25 & 8.13 & 10.06 & 12.03 & 14.02 & \cdots \\
2 & | & 4 & 4.5 & 5.5 & 6.88 & 8.5 & 10.28 & 12.16 & 14.09 & \cdots \\
\vdots & | & \vdots & \ddots
\end{array}
\]
Expected Value of a Product

\(\mathbf{X} \) is a single die roll:
Expected Value of a Product

\(X \) is a single die roll:

\[
E[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]
Expected Value of a Product

\(\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}. \)

\[\mathbb{E}[X^2] = \mathbb{E}[X \times X] \]
Expected Value of a Product

X is a single die roll:

\[
\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15 \frac{1}{6}.
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[X \times X] = \mathbb{E}[X] \times \mathbb{E}[X]
\]
Expected Value of a Product

\(X\) is a single die roll:

\[
\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[X \times X] = \mathbb{E}[X] \times \mathbb{E}[X] = (3\frac{1}{2})^2 = 12\frac{1}{4} \times .
\]
Expected Value of a Product

\(\mathbf{X} \) is a single die roll:

\[
\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[X \times X] = \mathbb{E}[X] \times \mathbb{E}[X] = (3\frac{1}{2})^2 = 12\frac{1}{4}. \times
\]

\(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) are independent die rolls:

\begin{center}
\begin{tabular}{c|cccccc}
\hline
Die 1 Value & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
Die 2 Value & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
\end{center}
Expected Value of a Product

\(\mathbf{X} \) is a single die roll:

\[
E[\mathbf{X}^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]

\[
E[\mathbf{X}^2] = E[\mathbf{X} \times \mathbf{X}] = E[\mathbf{X}] \times E[\mathbf{X}] = \left(3\frac{1}{2}\right)^2 = 12\frac{1}{4}. \times
\]

\(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) are independent die rolls:

\[
E[\mathbf{X}_1 \mathbf{X}_2] = \frac{1}{36}(1+2+\cdots+6+2+4+\cdots+12+3+6+\cdots+18+\cdots+6+12+\cdots+36)
\]

\[
= \frac{441}{36} = 12\frac{1}{4}.
\]
Expected Value of a Product

\(\mathbf{X} \) is a single die roll:

\[
\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[X \times X] = \mathbb{E}[X] \times \mathbb{E}[X] = \left(\frac{3\frac{1}{2}}{2}\right)^2 = 12\frac{1}{4}. \quad \text{✗}
\]

\(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) are independent die rolls:

\[
\mathbb{E}[X_1 X_2] = \frac{1}{36}(1+2+\cdots+6+2+4+\cdots+12+3+6+\cdots+18+\cdots+6+12+\cdots+36)
\]
\[
= \frac{441}{36} = 12\frac{1}{4}.
\]

\[
\mathbb{E}[X_1 X_2] = \mathbb{E}[X_1] \times \mathbb{E}[X_2] = \left(\frac{3\frac{1}{2}}{2}\right)^2 = 12\frac{1}{4}. \quad \text{✓}
\]
Expected Value of a Product

X is a single die roll:

\[
\mathbb{E}[X^2] = \frac{1}{6} \cdot 1^2 + \frac{1}{6} \cdot 2^2 + \frac{1}{6} \cdot 3^2 + \frac{1}{6} \cdot 4^2 + \frac{1}{6} \cdot 5^2 + \frac{1}{6} \cdot 6^2 = \frac{91}{6} = 15\frac{1}{6}.
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[X \times X] = \mathbb{E}[X] \times \mathbb{E}[X] = (3\frac{1}{2})^2 = 12\frac{1}{4} \quad \text{✗}
\]

X_1 and **X_2** are independent die rolls:

\[
\mathbb{E}[X_1X_2] = \frac{1}{36}(1+2+\ldots+6+2+4+\ldots+12+3+6+\ldots+18+\ldots+6+12+\ldots+36)
\]
\[
= \frac{441}{36} = 12\frac{1}{4}.
\]

\[
\mathbb{E}[X_1X_2] = \mathbb{E}[X_1] \times \mathbb{E}[X_2] = (3\frac{1}{2})^2 = 12\frac{1}{4} \quad \text{✓}
\]

Expected value of a product XY.

- **In general,** the expected product is **not** a product of expectations.
- **For independent** random variables, it is: \(\mathbb{E}[XY] = \mathbb{E}[X] \times \mathbb{E}[Y] \).
Sum of Indicators: Successes in a Random Assignment

\(X \) is the number of correct hats when 4 hats randomly land on 4 heads.
X is the number of correct hats when 4 hats randomly land on 4 heads.
X is the number of correct hats when 4 hats randomly land on 4 heads.

- **hats:** 4 2 3 1
- **men:** 1 2 3 4

$X_1 = 0$ $X_2 = 1$ $X_3 = 1$ $X_4 = 0$
\(X \) is the number of correct hats when 4 hats randomly land on 4 heads.

\[
\begin{align*}
\text{hats:} & \quad 4 & \quad 2 & \quad 3 & \quad 1 \\
\text{men:} & \quad \text{①} & \quad \text{②} & \quad \text{③} & \quad \text{④} \\
X_1 & = 0 & X_2 & = 1 & X_3 & = 1 & X_4 & = 0 \\
\end{align*}
\]

\[
X = X_1 + X_2 + X_3 + X_4 = 2
\]
Sum of Indicators: Successes in a Random Assignment

\(X \) is the number of correct hats when 4 hats randomly land on 4 heads.

\[
\begin{align*}
\text{hats:} & & 4 & 2 & 3 & 1 \\
\text{men:} & & 1 & 2 & 3 & 4 \\
X_1 &= 0 & X_2 &= 1 & X_3 &= 1 & X_4 &= 0 \\
\end{align*}
\]

\[
X = X_1 + X_2 + X_3 + X_4 = 2
\]

\(X_i \) are Bernoulli with \(P[X_i = 1] = \frac{1}{4} \).
Sum of Indicators: Successes in a Random Assignment

X is the number of correct hats when 4 hats randomly land on 4 heads.

<table>
<thead>
<tr>
<th>hats:</th>
<th>4</th>
<th>2</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>men:</td>
<td>①</td>
<td>②</td>
<td>③</td>
<td>④</td>
</tr>
</tbody>
</table>

\[X_1 = 0 \quad X_2 = 1 \quad X_3 = 1 \quad X_4 = 0 \]

\[X = X_1 + X_2 + X_3 + X_4 = 2 \]

X\(_i\) are Bernoulli with \(P[X_i = 1] = \frac{1}{4} \). Linearity of expectation:

\[
E[X] = E[X_1] + E[X_2] + E[X_3] + E[X_4] = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 4 \times \frac{1}{4} = 1.
\]
Sum of Indicators: Successes in a Random Assignment

\(\mathbf{X} \) is the number of correct hats when 4 hats randomly land on 4 heads.

<table>
<thead>
<tr>
<th>hats:</th>
<th>4</th>
<th>2</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>men:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
X_1 &= 0 \\
X_2 &= 1 \\
X_3 &= 1 \\
X_4 &= 0
\end{align*}
\]

\[
\mathbf{X} = X_1 + X_2 + X_3 + X_4 = 2
\]

\(X_i \) are Bernoulli with \(P[X_i = 1] = \frac{1}{4} \). Linearity of expectation:

\[
\mathbb{E}[\mathbf{X}] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3] + \mathbb{E}[X_4] = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 4 \times \frac{1}{4} = 1.
\]

Exercise. What about if there are \(n \) people?

Interesting Example (see text). Apply sum of indicators to breaking of records.

Instructive Exercise. Compute the PDF of \(\mathbf{X} \) and the expectation from the PDF.