Learning From Data
Lecture 2
The Perceptron

The Learning Setup
A Simple Learning Algorithm: PLA
Other Views of Learning
Is Learning Feasible: A Puzzle

M. Magdon-Ismail
CSCI 4100/6100
RECAP: The Plan

1. What is Learning?
2. Can We do it?
3. How to do it?
4. How to do it well?
5. General principles?
6. Advanced techniques.
7. Other Learning Paradigms.

our language will be mathematics . . .
. . . . our sword will be computer algorithms

AML
Creator: Malik Magdon-Ismail

The Perceptron: 2 /25

Recap: key players ––
• Salary, debt, years in residence, . . .
• Approve credit or not
• True relationship between \(x \) and \(y \)
• Data on customers

\[\begin{align*}
\text{input } x &\in \mathbb{R}^d = \mathcal{X}. \\
\text{output } y &\in \{-1, +1\} = \mathcal{Y}. \\
\text{target function } f : \mathcal{X} &\mapsto \mathcal{Y}. \\
&\text{(The target } f \text{ is unknown.)} \\
\text{data set } \mathcal{D} &= (x_1, y_1), \ldots, (x_N, y_N). \\
&\quad (y_n = f(x_n)).
\end{align*} \]

\(\mathcal{X} \mathcal{Y} \) and \(\mathcal{D} \) are given by the learning problem;
The target \(f \) is fixed but unknown.

We learn the function \(f \) from the data \(\mathcal{D} \).
RECAP: Summary of the Learning Setup

UNKNOWN TARGET FUNCTION

\[f : \mathcal{X} \mapsto \mathcal{Y} \]

(ideal credit approval formula)

\[y_n = f(x_n) \]

TRAINING EXAMPLES

\((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

(historical records of credit customers)

HYPOTHESIS SET

\(\mathcal{H}\)

(set of candidate formulas)

LEARNING ALGORITHM

\(\mathcal{A}\)

FINAL HYPOTHESIS

\(g \approx f\)

(learned credit approval formula)
A Simple Learning Model

- Input vector \(\mathbf{x} = [x_1, \ldots, x_d]^T \).

- Give importance weights to the different inputs and compute a “Credit Score”

 \[
 \text{“Credit Score”} = \sum_{i=1}^{d} w_i x_i.
 \]

- Approve credit if the “Credit Score” is acceptable.

 Approve credit if \(\sum_{i=1}^{d} w_i x_i > \text{threshold} \), \hspace{1em} (“Credit Score” is good)

 Deny credit if \(\sum_{i=1}^{d} w_i x_i < \text{threshold} \). \hspace{1em} (“Credit Score” is bad)

- How to choose the importance weights \(w_i \)

 input \(x_i \) is important \(\implies \) large weight \(|w_i| \)

 input \(x_i \) beneficial for credit \(\implies \) positive weight \(w_i > 0 \)

 input \(x_i \) detrimental for credit \(\implies \) negative weight \(w_i < 0 \)
A Simple Learning Model

Approve credit if \(\sum_{i=1}^{d} w_i x_i > \text{threshold} \),

Deny credit if \(\sum_{i=1}^{d} w_i x_i < \text{threshold} \).

can be written formally as

\[
h(x) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) + w_0 \right)
\]

The “bias weight” \(w_0 \) corresponds to the threshold. (How?)
The Perceptron Hypothesis Set

We have defined a hypothesis set \mathcal{H}

$$\mathcal{H} = \{ h(x) = \text{sign}(w^T x) \} \quad \leftarrow \text{uncountably infinite } \mathcal{H}$$

$$w = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \in \mathbb{R}^{d+1}, \quad x = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \in \{1\} \times \mathbb{R}^d.$$

This hypothesis set is called the perceptron or linear separator
Geometry of The Perceptron

\[h(x) = \text{sign}(w^T x) \]

(Problem 1.2 in LFD)

Which one should we pick?
A perceptron fits the data by using a line to separate the +1 from −1 data.

Fitting the data: How to find a hyperplane that *separates* the data?
(“It’s obvious - just look at the data and draw the line,” is not a valid solution.)
How to Learn a Final Hypothesis g from \mathcal{H}

We want to select $g \in \mathcal{H}$ so that $g \approx f$.

We certainly want $g \approx f$ on the data set \mathcal{D}. Ideally,

$$g(x_n) = y_n.$$

How do we find such a g in the infinite hypothesis set \mathcal{H}, if it exists?

Idea! Start with some weight vector and try to improve it.
The Perceptron Learning Algorithm (PLA)

A simple iterative method.

1. \[w(1) = 0 \]
2. for iteration \(t = 1, 2, 3, \ldots \)
3. the weight vector is \(w(t) \).
4. From \((x_1, y_1), \ldots, (x_N, y_N)\) pick any misclassified example.
5. Call the misclassified example \((x_*, y_*)\),

\[
\text{sign}(w(t) \cdot x_*) \neq y_*.
\]

6. Update the weight:

\[
w(t + 1) = w(t) + y_* x_*.
\]

7. \(t \leftarrow t + 1 \)

PLA implements our idea: start at some weights and try to improve.

“incremental learning” on a single example at a time
Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.
Does PLA Work?

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.
Theorem. If the data can be fit by a linear separator, then after some \textit{finite} number of steps, PLA will find one.
Theorem. If the data can be fit by a linear separator, then after some **finite** number of steps, PLA will find one.
Does PLA Work?

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.
Does PLA Work?

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.
Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.
Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

After how long?
Does PLA Work?

Theorem. If the data can be fit by a linear separator, then after some *finite* number of steps, PLA will find one.

After how long?

What if the data cannot be fit by a perceptron?
We can Fit the Data

• We can find an h that works from infinitely many (for the perceptron).
 (So computationally, things seem good.)

• Ultimately, remember that we want to *predict*.
 We don’t care about the data, we care about “outside the data”.

Can a limited data set reveal enough information to pin down an entire target function, so that we can predict outside the data?
Other Views of Learning

- Design: learning is from data, design is from specs and a model.
- Statistics, Function Approximation.
- Data Mining: find patterns in massive data (typically unsupervised).
- Three Learning Paradigms
 - Supervised: the data is \((x_n, f(x_n))\) – you are told the answer.
 - Reinforcement: you get feedback on potential answers you try:
 \[x \rightarrow \text{try something} \rightarrow \text{get feedback}. \]
 - Unsupervised: only given \(x_n\), learn to “organize” the data.
Supervised Learning - Classifying Coins

The Perceptron: 23 /25

Coins – unsupervised →
Unsupervised Learning - Categorizing Coins

The Perceptron: 24 /25

Puzzle: outside the data →
Outside the Data Set - A Puzzle

Trees ($f = +1$)

Dogs ($f = -1$)

Tree or Dog? ($f = ?$)