Real Learning vs. Verification
The Two Step Solution to Learning
Closer to Reality: Error and Noise
RECAP: Verification

\[E_{\text{out}}(h) \]

\[
\downarrow \mathcal{D}
\]

\[E_{\text{in}}(h) = \frac{2}{9} \]

\[\text{Hoeffding: } E_{\text{out}}(h) \approx E_{\text{in}}(h) \quad (\text{with high probability}) \]

\[
\mathbb{P}[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon] \leq 2e^{-2N\epsilon^2}.
\]
Real Learning – Finite Learning Models

h_1

$E_{\text{out}}(h_1)$

h_2

$E_{\text{out}}(h_2)$

h_3

$E_{\text{out}}(h_3)$

h_M

$E_{\text{out}}(h_M)$

$E_{\text{in}}(h_1) = \frac{2}{9}$

$E_{\text{in}}(h_2) = 0$

$E_{\text{in}}(h_3) = \frac{5}{9}$

$E_{\text{in}}(h_M) = \frac{6}{9}$

Pick the hypothesis with minimum E_{in}; will E_{out} be small?
RECAP: 1000 Monkeys Behind Closed Doors

5-question A/B test. Monkeys answer randomly. Child gets all right.

- What are your chances of picking the child?
- What can you do about it? (You can’t peek behind the door. 😊)

More Monkeys: E_{in} Can’t Reach Out to E_{out}.

Coin tossing example:

- If we toss one coin and get no **HEADS**, its very surprising.

 We expect it is biased: $P[\text{heads}] \approx 0$.

- Tossing 70 coins, and **find one** with no heads. Is it surprising?

 Do we expect $P[\text{heads}] \approx 0$ for the selected coin?

 Similar to the “birthday problem”: among 30 people, two will likely share the same birthday.

- This is called **selection bias**.

 Selection bias is a very serious trap. For example medical screening.

Search Causes Selection Bias
Hoeffding says that $E_{in}(g) \approx E_{out}(g)$ for Finite \mathcal{H}

\[P\left[|E_{in}(g) - E_{out}(g)| > \epsilon \right] \leq 2|\mathcal{H}|e^{-2\epsilon^2N}, \quad \text{for any } \epsilon > 0. \]

\[P\left[|E_{in}(g) - E_{out}(g)| \leq \epsilon \right] \geq 1 - 2|\mathcal{H}|e^{-2\epsilon^2N}, \quad \text{for any } \epsilon > 0. \]

We don’t care how g was obtained, \textit{as long as it is from} \mathcal{H}

\begin{itemize}
 \item \textbf{Some Basic Probability}
 \item Events A, B
 \item \textbf{Implication}
 \item If $A \implies B$ ($A \subseteq B$) then $P[A] \leq P[B]$.
 \item \textbf{Union Bound}
 \item $P[A \text{ or } B] = P[A \cup B] \leq P[A] + P[B]$.
 \item \textbf{Bayes’ Rule}
 \item $P[A|B] = \frac{P[B|A] \cdot P[A]}{P[B]}$
\end{itemize}

\textit{Proof:} Let $M = |\mathcal{H}|$.

The event “$|E_{in}(g) - E_{out}(g)| > \epsilon$” implies “$|E_{in}(h_1) - E_{out}(h_1)| > \epsilon$” OR . . . OR “$|E_{in}(h_M) - E_{out}(h_M)| > \epsilon$”

So, by the implication and union bounds:

\[P[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq P \left[\bigvee_{m=1}^{M} |E_{in}(h_m) - E_{out}(h_m)| > \epsilon \right] \]

\[\leq \sum_{m=1}^{M} P[|E_{in}(h_m) - E_{out}(h_m)| > \epsilon], \]

\[\leq 2Me^{-2\epsilon^2N}. \]

(The last inequality is because we can apply the Hoeffding bound to each summand)
Interpreting the Hoeffding Bound for Finite $|\mathcal{H}|$

$$
\mathbb{P} \left[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon \right] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}, \quad \text{for any } \epsilon > 0.
$$

$$
\mathbb{P} \left[|E_{\text{in}}(g) - E_{\text{out}}(g)| \leq \epsilon \right] \geq 1 - 2|\mathcal{H}|e^{-2\epsilon^2 N}, \quad \text{for any } \epsilon > 0.
$$

Theorem. With probability at least $1 - \delta$,

$$
E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}.
$$

We don’t care how g was obtained, as long as $g \in \mathcal{H}$

Proof: Let $\delta = 2|\mathcal{H}|e^{-2\epsilon^2 N}$. Then

$$
\mathbb{P} \left[|E_{\text{in}}(g) - E_{\text{out}}(g)| \leq \epsilon \right] \geq 1 - \delta.
$$

In words, with probability at least $1 - \delta$,

$$
|E_{\text{in}}(g) - E_{\text{out}}(g)| \leq \epsilon.
$$

This implies

$$
E_{\text{out}}(g) \leq E_{\text{in}}(g) + \epsilon.
$$

From the definition of δ, solve for ϵ:

$$
\epsilon = \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}.$$

E_{in} Reaches Outside to E_{out} when $|\mathcal{H}|$ is Small

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}.$$

If $N \gg \ln |\mathcal{H}|$, then $E_{out}(g) \approx E_{in}(g)$.

- Does not depend on \mathcal{X}, $P(x)$, f or how g is found.
- Only requires $P(x)$ to generate the data points independently and also the test point.

What about $E_{out} \approx 0$?
The 2 Step Approach to Getting $E_{out} \approx 0$:

1. $E_{out}(g) \approx E_{in}(g)$.
2. $E_{in}(g) \approx 0$.

Together, these ensure $E_{out} \approx 0$.

How to verify (1) since we do not know E_{out}
- must ensure it theoretically - Hoeffding.

We can ensure (2) (for example PLA)
- modulo that we can guarantee (1)

There is a tradeoff:
- Small $|\mathcal{H}|$ \implies $E_{in} \approx E_{out}$
- Large $|\mathcal{H}|$ \implies $E_{in} \approx 0$ is more likely.
Feasibility of Learning (Finite Models)

• No Free Lunch: can’t know anything outside \mathcal{D}, for sure.

• Can “learn” with high probability if \mathcal{D} is i.i.d. from $P(x)$.

 $E_{\text{out}} \approx E_{\text{in}}$ (E_{in} can reach outside the data set to E_{out}).

• We want $E_{\text{out}} \approx 0$.

• The two step solution. We trade $E_{\text{out}} \approx 0$ for 2 goals:

 (i) $E_{\text{out}} \approx E_{\text{in}}$;
 (ii) $E_{\text{in}} \approx 0$.

 We know E_{in}, not E_{out}, but we can ensure (i) if $|\mathcal{H}|$ is small.

 This is a big step!

• What about infinite \mathcal{H} - the perceptron?
“Complex” Target Functions are Harder to Learn

What happened to the “difficulty” (complexity) of f?

- Simple f \implies can use small \mathcal{H} to get $E_{\text{in}} \approx 0$ (need smaller N).
- Complex f \implies need large \mathcal{H} to get $E_{\text{in}} \approx 0$ (need larger N).
Revising the Learning Problem – Adding in Probability

UNKNOWN TARGET FUNCTION

\(f : \mathcal{X} \mapsto \mathcal{Y} \)

\(y_n = f(x_n) \)

TRAINING EXAMPLES

\((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

LEARNING ALGORITHM

\(\mathcal{A} \)

FINAL HYPOTHESIS

\(g \)

HYPOTHESIS SET

\(\mathcal{H} \)

UNKNOWN INPUT DISTRIBUTION

\(P(x) \)

\(x_1, x_2, \ldots, x_N \)

\(x \)

\(g(x) \approx f(x) \)
Error Measure: How to quantify that \(h \approx f \).

Noise: \(y_n \neq f(x_n) \).
Finger Print Recognition

Two types of error.

\[
\begin{array}{c|cc}
\mathbf{f} & +1 & -1 \\
\hline
\mathbf{h} & +1 & 0 & 1 \\
& -1 & 10 & 0 \\
\end{array}
\]

Supermarket

\[
\begin{array}{c|cc}
\mathbf{f} & +1 & -1 \\
\hline
\mathbf{h} & +1 & 0 & 1000 \\
& -1 & 1 & 0 \\
\end{array}
\]

CIA

In any application you need to think about how to penalize each type of error.

Take Away

Error measure is specified by the user.

- If not, choose one that is
 - plausible (conceptually appealing)
 - friendly (practically appealing)
Almost All Error Measures are Pointwise

Compare h and f on individual points \mathbf{x} using a pointwise error $e(h(\mathbf{x}), f(\mathbf{x}))$:

- **Binary error:**
 \[
e(h(\mathbf{x}), f(\mathbf{x})) = \left[h(\mathbf{x}) \neq f(\mathbf{x}) \right] \quad \text{(classification)}
 \]

- **Squared error:**
 \[
e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2 \quad \text{(regression)}
 \]

In-sample error:
\[
E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\mathbf{x}_n), f(\mathbf{x}_n)).
\]

Out-of-sample error:
\[
E_{\text{out}}(h) = \mathbb{E}_{\mathbf{x}}[e(h(\mathbf{x}), f(\mathbf{x}))].
\]
Noisy Targets

Consider two customers with the same credit data. They can have different behaviors.

The target ‘function’ is not a deterministic function but a stochastic function.

\[f(x) = P(y|x) \]
Learning Setup with Error Measure and Noisy Targets

- **Training Examples**
 \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

- **Unknown Target Distribution**
 \(P(y \mid x)\)
 \(y_n \sim P(y \mid x_n)\)

- **Unknown Input Distribution**
 \(P(x)\)

- **Error Measure**
 \(g(x) \approx f(x)\)

- **Learning Algorithm**
 \(\mathcal{A}\)

- **Hypothesis Set**
 \(\mathcal{H}\)

- **Final Hypothesis**
 \(g\)