Learning From Data
Lecture 5
Training Versus Testing

The Two Questions of Learning
Theory of Generalization ($E_{\text{in}} \approx E_{\text{out}}$)
An Effective Number of Hypotheses
A Combinatorial Puzzle

M. Magdon-Ismail
CSCI 4100/6100
RECAP: The Two Questions of Learning

1. Can we make sure that $E_{\text{out}}(g)$ is close enough to $E_{\text{in}}(g)$?
2. Can we make $E_{\text{in}}(g)$ small enough?

The Hoeffding generalization bound:

$$E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$

E_{in}: training (eg. the practice exam)

E_{out}: testing (eg. the real exam)

There is a tradeoff when picking $|\mathcal{H}|$.
What Will The Theory of Generalization Achieve?

\[E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}} \]

The new bound will be applicable to infinite \(\mathcal{H} \).
Why is $|\mathcal{H}|$ an Overkill

How did $|\mathcal{H}|$ come in?

Bad events

$\mathcal{B}_g = \{|E_{out}(g) - E_{in}(g)| > \epsilon\}$

$\mathcal{B}_m = \{|E_{out}(h_m) - E_{in}(h_m)| > \epsilon\}$

We do not know which g, so use a worst case union bound.

$$\Pr[\mathcal{B}_g] \leq \Pr[\text{any } \mathcal{B}_m] \leq \sum_{m=1}^{\mathcal{H}} \Pr[\mathcal{B}_m].$$

- \mathcal{B}_m are events (sets of outcomes); they can overlap.
- If the \mathcal{B}_m overlap, the union bound is loose.
- If many h_m are similar, the \mathcal{B}_m overlap.
- There are “effectively” fewer than $|\mathcal{H}|$ hypotheses.
- We can replace $|\mathcal{H}|$ by something smaller.

$|\mathcal{H}|$ fails to account for similarity between hypotheses.
We need a way to measure the diversity of \mathcal{H}.

A simple idea:

Fix any set of N data points.

If \mathcal{H} is diverse it should be able to implement all functions

...on these N points.
A Data Set Reveals the True Colors of an \mathcal{H}
A Data Set Reveals the True Colors of an \mathcal{H}

\mathcal{H}

\mathcal{H} through the eyes of the \mathcal{D}
From the point of view of \mathcal{D}, the entire \mathcal{H} is just one *dichotomy*.
An Effective Number of Hypotheses

If \mathcal{H} is diverse it should be able to implement many dichotomys.

$|\mathcal{H}|$ only captures the maximum possible diversity of \mathcal{H}.

Consider an $h \in \mathcal{H}$, and a data set x_1, \ldots, x_N.

h gives us an N-tuple of ± 1’s:

$(h(x_1), \ldots, h(x_N))$.

A dichotomy of the inputs.

If \mathcal{H} is diverse, we get many different dichotomies.

If \mathcal{H} contains similar functions, we only get a few dichotomies.

The growth function quantifies this.
The Growth Function \(m_\mathcal{H}(N) \)

Define the the restriction of \(\mathcal{H} \) to the inputs \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \):

\[
\mathcal{H}(\mathbf{x}_1, \ldots, \mathbf{x}_N) = \{(h(\mathbf{x}_1), \ldots, h(\mathbf{x}_N)) \mid h \in \mathcal{H}\}
\]

(set of dichotomies induced by \(\mathcal{H} \))

\[m_\mathcal{H}(N) \leq 2^N.\]

Can we replace \(|\mathcal{H}|\) by \(m_\mathcal{H}\), an effective number of hypotheses?

- Replacing \(|\mathcal{H}|\) with \(2^N\) is no help in the bound. (why?)
- We want \(m_\mathcal{H}(N) \leq \text{poly}(N)\) to get a useful error bar.

\[
\left(\text{the error bar is } \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}} \right)
\]
Example: 2-D Perceptron Model

$m_H(3) = 8 = 2^3$.

$m_H(4) = 14 < 2^4$.

What is $m_H(5)$?
Example: 1-D Positive Ray Model

- \(h(x) = \text{sign}(x - w_0) \)
- Consider \(N \) points.
- There are \(N + 1 \) dichotomies depending on where you put \(w_0 \).
- \(m_{\mathcal{H}}(N) = N + 1 \).
Example: Positive Rectangles in 2-D

\[\mathcal{H} \text{ implements all dichotomies} \]

\[m_{\mathcal{H}}(4) = 2^4 \]

\[m_{\mathcal{H}}(5) < 2^5 \]

We have not computed \(m_{\mathcal{H}}(5) \) – not impossible, but tricky.
Example Growth Functions

<table>
<thead>
<tr>
<th></th>
<th>(\cdot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdot \bullet)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2-D perceptron</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>1-D pos. ray</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>2-D pos. rectangles</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>(< 2^5)</td>
</tr>
</tbody>
</table>

- \(m_H(N) \) drops below \(2^N \) – there is hope for the generalization bound.
- A break point is any \(n \) for which \(m_H(n) < 2^n \).
A Combinatorial Puzzle

A set of dichotomys

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
A Combinatorial Puzzle

Two points are *shattered*
A Combinatorial Puzzle

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

No pair of points is shattered
A Combinatorial Puzzle

If \(N = 4 \) how many possible dichotomies with no 2 points shattered?