Link prediction analysis in the Wikipedia collaboration graph

Ferenc Molnár
Rensselaer Polytechnic Institute
12/06/2011
Contents

- Wikipedia collaboration graph
- Link prediction
- Analysis of predictors
- Results
Collaboration graph

- Wikipedia editors collaborate
 - editing the same page together in a timeframe
 - input: bipartite graph (editors, pages edited) in time

- Dynamic graph
 - nodes: editors
 - link strength \(\sim\) social link between editors

- Update rules
 - time resolution: weeks (same as input)
 - link strength +8 when 2 editors edit together
 - link strength -1 decay
Link prediction

- The problem
 - given the present, predict future social link formation

- Predictors, thresholds
 - principle of triadic closure
 - binary predictors
 - social link: link strength > link threshold
 - prediction: prediction value > prediction threshold

- My Project
 - analyze performance of many predictors
 - find the best one for Wikipedia collaboration graph
Analysis of predictors

- **Concept**
 - prediction ~ signal
 - reality ~ response

- **Statistics**
 - Sensitivity: $\Pr(\text{+} \mid \text{link will form})$
 - Specificity: $\Pr(\text{-} \mid \text{link will not form})$
 - Precision: $\Pr(\text{link will form} \mid \text{+})$
 - NPV: $\Pr(\text{link will not form} \mid \text{-})$
 - Accuracy: $\Pr(\text{correct prediction})$
 - F1 score:
 \[
 F_1 = 2 \frac{\text{precision} \cdot \text{sensitivity}}{\text{precision} + \text{sensitivity}}
 \]
- Adamic/Adar predictor
 - unique common neighbors are more valuable

\[
score(x, y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log|\Gamma(z)|}
\]

- Common neighbors
 - unweighted triadic closure

\[\text{score}(x, y) = |\Gamma(x) \cap \Gamma(y)| \]
Weighted common neighbors

depends on existing link strength

\[
score(x, y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} S(x, z)S(z, y)
\]
- Jaccard’s coefficient
 - how specific is the common neighborhood

\[
\text{score}(x, y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}
\]
- Preferential attachment
- rich gets richer

\[\text{score}(x, y) = |\Gamma(x)| \cdot |\Gamma(y)| \]

note: smaller sample size due to computational complexity
Comparison of predictors

- Weighted common neighbors
- Adamic/Adar
- Common neighbors
- Preferential attachment
- Jaccard’s coefficient

Maximum sensitivity / specificity

Maximum accuracy

*
Comparision of predictors

- Adamic/Adar: 0.6
- Weighted common neighbors: 0.6
- Common neighbors: 0.6
- Preferential attachment: 0.55
- Jaccard's coefficient: 0.4
Conclusions

- Non-significant parameters
 - link threshold
 - prediction ΔT

- Significant parameters
 - prediction threshold
 - the predictor itself

- Best predictor
 - for screening: Weighted common neighbors
 - for predicting: Weighted common neighbors, Adamic/Adar
 - for both: Adamic/Adar