8.1 Assume \(TSP(G, b) \) if \(\text{returns} \) \(\text{false} \) if no tour of length \(b \) or less exists \(G \).

Sum up all the distances of \(G \).

\(TSP_{opt} \) calls \(TSP(G, b) \) as a binary search primitive.

\(TSP_{opt}(G) \)

let \(S \) be the sum of all distances.

return \(\text{Binary Search}(G, 0, S) \)

\(\text{Binary Search Tour}(G, l, u) \)

\[b = l + u/2 \]

if \(TSP(G, b) \neq \text{false} \)

return \(\text{Binary Search Tour}(G, l, b) \)

else return \(\text{Binary Search Tour}(G, b, u) \)
8.4

a. Clique 3 can be checked in polynomial time.

b. Reduction is in the wrong reduction.

 We must reduce known NP-complete Problem Clique to Clique 3.

c. C is a vertex if \(V - C \) is an independent set in \(G \).

d. Largest clique can be of size 4.

 Take all possible subsets \(\geq 4 \), to test whether there is clique of size \(k \).
8. 10

a. We can view this as a generalization of the clique problem. Let \(G, k \) be a clique instance.

Construct a subgraph \(H \) which is a clique of size \(k \).

b. This is a generalization of the Ruderka path.

Given a graph with \(n \) vertices, let \(g = n - 1 \).
9.4. Keep inserting the smallest degree vertex in the independent set. Delete that vertex. Repeat the step till no more vertex is left.

St: Largest independent set size is x.

For each vertex we would have picked one of the $d+1$ vertices. Size will be at most $\frac{x}{d+1}$.

9.6. Find the MST of the designated nodes.

Let that cost be X.

If the optimal Steiner tree has cost Y,

we can do an eulerian traversal of the optimal Steiner

and keeping only the designated vertices.

\[2Y \geq X \]

\[\therefore X \leq 2Y \]
7.1 The optimal solution is on the upper right corner of the convex feasible region (5, 2) and has the value \(5x + 3y = 31\).

7.2 Let \(MN\) be the quantity between Mexico and New York, \(MC\) between Mexico and California, \(KN\) between Kansas and New York, and \(KC\) between Kansas and California.

\[
\begin{align*}
\text{min} & \quad 4MN + MC + 2KN + 2KC \\
MN + KN & = 10 \quad MN + KN \leq 10 \quad MN + KC \geq 10 \\
MC + KC & = 8 \quad MC + KC \leq 13 \quad MC + KC \geq 15 \\
MN + MC & = 6 \quad MN + MC \leq 8 \quad MN + MC \geq 8 \\
KN + KC & = 15 \quad KN + KC \leq 15 \quad KN + KC \geq 15 \\
\end{align*}
\]
\(MN, MC, KN, KC > 0\)

7.3 Let \(q_i\) be the quantity in cubic meters of material \(i\).

\[
\begin{align*}
\text{max} & \quad 1000q_1 + 1200q_2 + 1200q_3 \\
2q_1 + q_2 + 3q_3 & \leq 100 \\
q_1 + q_2 + q_3 & \leq 60 \\
q_1 & \leq 40 \quad q_2 \leq 30 \quad q_3 \leq 20 \\
q_1, q_2, q_3 & > 0
\end{align*}
\]
7.4. Let R be regular CPU bear
S be Strong CPU bear
\[\max R + 1.5S \]
\[S \leq 2R \]
\[R + S \leq 3000 \]
\[R, S \geq 0 \]

7.10

\[
\begin{align*}
SA & \rightarrow DG T & 4 \\
SA & \rightarrow B E GT & 2 \\
SB & \rightarrow EG T & 1 \\
SC & \rightarrow FT & 4 \\
SC & \rightarrow BE GT & \frac{2}{13}
\end{align*}
\]