1. Suppose we roll a fair six-sided die until a six comes up.
 (a) What is the probability that we roll the die \(n \) times?
 (b) What is the expected number of times we roll the die?

2. Let \(s \) be a randomly generated bit string of length six.
 (a) Let \(X \) be the random variable equal to the number of ones in \(s \) minus the number of zeros in \(s \).
 What is the expected value of \(s \).
 (b) Let \(Y \) be the random variable equal to the sum of the first two bits in \(s \). What is the expected value and variance of \(Y \).

3. Consider the language \(L = \{ y^k x y^\ell \mid k \geq 1, \ell \geq 2 \} \), over the alphabet \(\Sigma = \{ x, y, z \} \).
 (a) Construct a DFA that accepts this language.
 (b) Give a regular expression that describes this language.

4. Consider the language \(L = \{ w \mid w \text{ is of the form } 10^k1, \text{ where } k \text{ is a positive even number} \} \). The alphabet is \(\Sigma = \{ 0, 1 \} \).
 (a) Give a regular expression that describes this language.
 (b) Construct an NFA that accepts this language.