1. (15 points) Suppose each non-leaf node of an m-ary has exactly m children — in other words, each node of the tree has either exactly 0 or exactly m children. Suppose we build such a tree of height $h \geq 0$ having the minimum possible number of nodes. What is the number of nodes in this “minimal” tree? Prove your answer using mathematical induction.

Solution: The answer is $mh + 1$. The proof using mathematical induction is as follows.

Basis case: For $h = 0$, there is a single node in the tree — the root node. Since $m \cdot 0 + 1 = 1$, the basis case is proved.

Induction step: For $h > 0$, suppose each minimal tree of height i, $0 \leq i < h$, has $m \cdot i + 1$ nodes, and consider a minimal tree of height h. Call this tree T and consider the subtrees of the root. $m - 1$ of these subtrees have just a single node, otherwise T wouldn’t be minimal. The other subtree is a minimal tree of height $h - 1$. By the inductive hypothesis, it has $m(h - 1) + 1$ nodes. Adding to this the $m - 1$ individual nodes and 1 for the root implies that T has $m(h - 1) + 1 + m - 1 + 1 = mh + 1$ nodes.