Statistical and Learning Techniques in Computer Vision
Homework 2: Due Thursday September 14, 2006

1. (12 points)
 (a) In class we used the fact that when
 \[p(x) \propto e^{-\frac{1}{2}(ax^2 - 2bx)}, \]
 then \(p(x) \) is a normal distribution with variance \(\sigma^2 = 1/a \) and mean \(b/a \).
 Prove the vector version of this result:
 \[p(x) \propto e^{-\frac{1}{2}x^T Ax - 2y^T x} \]
 with symmetric, positive definite matrix \(A \), then \(p(x) \) is multivariate normal.
 In doing so, derive the mean \(\mu \) and covariance \(\Sigma \) of \(x \) in terms of \(A \) and \(y \).
 Recall that the general form of the multivariate normal distribution is
 \[f(u; \mu, \Sigma) = Ce^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, \]
 where \(C \) is chosen to ensure that \(f \) integrates to 1.
 (b) Use the foregoing result to derive the posterior distribution of the mean \(\mu \)
 of a multivariate normal distribution given samples \(X = \{x_1, \ldots, x_N\} \),
 known covariance \(\Sigma \), and a multivariate normal prior on \(\mu \) with mean \(\mu_0 \)
 and covariance \(\Sigma_0 \).

2. (8 points) Derive the mean and variance of \(\hat{p}(x) \) using Parzen windows with a
 Gaussian kernel function.

3. (10 points) Prove that the \(k \)-nearest neighbor approximation to the density is
 not differentiable and is not a density. To do this, consider points in only 1
 dimension, let \(k = 2 \), and assume the points are distinct.