
1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Declarativeness, iterative computation (VRH 3.1-3.2)

Carlos Varela
RPI

October 10, 2006

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Overview

• What is declarativeness?
– Classification,
– Advantages for large and small programs

• Control Abstractions
– Iterative programs

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Declarative operations (1)
• An operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

• A declarative operation is:
– Independent (depends only on its arguments, nothing else)
– Stateless (no internal state is remembered between calls)
– Deterministic (call with same operations always give same results)

• Declarative operations can be composed together to yield
other declarative components
– All basic operations of the declarative model are declarative and

combining them always gives declarative components

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Declarative
operation

Arguments

Results

Declarative operations (2)

rest of computation

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Why declarative components (1)

• There are two reasons why they are important:
• (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.

– The complexity (reasoning complexity) of a program composed of
declarative components is the sum of the complexity of the components

– In general the reasoning complexity of programs that are composed of
nondeclarative components explodes because of the intimate interaction
between components

• (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).

– Simple algebraic and logical reasoning techniques can be used

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Why declarative components (2)
• Since declarative components are

mathematical functions, algebraic
reasoning is possible i.e.
substituting equals for equals

• The declarative model of chapter 2
guarantees that all programs written
are declarative

• Declarative components can be
written in models that allow stateful
data types, but there is no guarantee

!

Given

f (a) = a
2

We can replace f (a) in any other

equation

b = 7 f (a)2 becomes b = 7a4

2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Classification of
declarative programming

Declarative
programming

Descriptive

Programmable

Observational

Definitional
Declarative
model

Functional
programming

Nondeterministic
logic programming

Deterministic
logic programming

• The word declarative means many things to
many people. Let’s try to eliminate the
confusion.

• The basic intuition is to program by defining
the what without explaining the how

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Descriptive language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

| 〈x〉 = 〈record〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration

Other descriptive languages include HTML and XML

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Descriptive language

<person id = ”530101-xxx”>
<name> Seif </name>
<age> 48 </age>

</person>

Other descriptive languages include HTML and XMLXML

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Kernel language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

| 〈x〉 = 〈v〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end procedure introduction
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’ procedure application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Why the KL is declarative

• All basic operations are declarative
• Given the components (sub-statements) are declarative,

– sequential composition
– local statement
– procedure definition
– procedure call
– if statement
– case statement

are all declarative (independent, stateless, deterministic).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Iterative computation
• An iterative computation is a one whose execution stack is

bounded by a constant, independent of the length of the
computation

• Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1
! ! !...

3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

The general scheme
fun {Iterate Si}

if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end
• IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

The computation model

• STACK : [R={Iterate S0}]
• STACK : [S1 = {Transform S0},

R={Iterate S1}]

• STACK : [R={Iterate Si}]
• STACK : [Si+1 = {Transform Si},

R={Iterate Si+1}]

• STACK : [R={Iterate Si+1}]

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
! = +

= "

! = ! "

! !

! = ! " = + " =

< <

< " < +

g g x g

g x

g x

g

g x g x g x g

g g

i e g g x g g x

(/) /

(/) / /

/ , /

. . ,

2

2 2 2

2 2 2 1

2 2 0

#

#

#

#

#

#

For to be a better guess than g: <

i.e.

 < ,

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
• Accurate enough is defined as:

| x – g2 | / x < 0.00001

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

SqrtIter
fun {SqrtIter Guess X}

 if {GoodEnough Guess X} then Guess

 else
 Guess1 = {Improve Guess X} in

 {SqrtIter Guess1 X}

 end

end
• Compare to the general scheme:

– The state is the pair Guess and X
– IsDone is implemented by the procedure GoodEnough

– Transform is implemented by the procedure Improve

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

The program version 1
fun {Sqrt X}

 Guess = 1.0

in {SqrtIter Guess X}

end

fun {SqrtIter Guess X}

 if {GoodEnough Guess X} then
Guess

 else

 {SqrtIter {Improve Guess X} X}

 end

end

fun {Improve Guess X}
 (Guess + X/Guess)/2.0
end
fun {GoodEnough Guess X}
 {Abs X - Guess*Guess}/X < 0.00001
end

4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Using local procedures

• The main procedure Sqrt uses the helper procedures
SqrtIter, GoodEnough, Improve, and Abs

• SqrtIter is only needed inside Sqrt

• GoodEnough and Improve are only needed inside SqrtIter

• Abs (absolute value) is a general utility
• The general idea is that helper procedures should not be

visible globally, but only locally

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Sqrt version 2
local
 fun {SqrtIter Guess X}
 if {GoodEnough Guess X} then Guess
 else {SqrtIter {Improve Guess X} X} end
 end
 fun {Improve Guess X}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess X}
 {Abs X - Guess*Guess}/X < 0.000001
 end
in
 fun {Sqrt X}
 Guess = 1.0
 in {SqrtIter Guess X} end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local
 fun {SqrtIter Guess X}
 fun {Improve}

 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
 end
 in
 if {GoodEnough} then Guess
 else {SqrtIter {Improve} X} end
 end
in fun {Sqrt X}
 Guess = 1.0 in
 {SqrtIter Guess X}
 end
end C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local
 fun {SqrtIter Guess X}
 fun {Improve}

 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
 end
 in
 if {GoodEnough} then Guess
 else {SqrtIter {Improve} X} end
 end
in fun {Sqrt X}
 Guess = 1.0 in
 {SqrtIter Guess X}
 end
end

The program has a single
drawback: on each iteration two
procedure values are created,
one for Improve and one for
GoodEnough

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Sqrt final version
fun {Sqrt X}
 fun {Improve Guess}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess}
 {Abs X - Guess*Guess}/X < 0.000001
 end
 fun {SqrtIter Guess}
 if {GoodEnough Guess} then Guess
 else {SqrtIter {Improve Guess} } end
 end
 Guess = 1.0
in {SqrtIter Guess}
end

The final version is
a compromise between
abstraction and efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

From a general scheme
to a control abstraction (1)

fun {Iterate Si}
if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end
• IsDone and Transform are problem dependent

5

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

From a general scheme
to a control abstraction (2)

fun {Iterate S IsDone Transform}

if {IsDone S} then S

else S1 in

S1 = {Transform S}

{Iterate S1 IsDone Transform}

end

end

fun {Iterate Si}
if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Sqrt using the Iterate abstraction
fun {Sqrt X}
 fun {Improve Guess}
 (Guess + X/Guess)/2.0
 end
 fun {GoodEnough Guess}
 {Abs X - Guess*Guess}/X < 0.000001
 end
 Guess = 1.0
in
 {Iterate Guess GoodEnough Improve}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Sqrt using the control abstraction
fun {Sqrt X}

{Iterate

 1.0

 fun {$ G} {Abs X - G*G}/X < 0.000001 end

 fun {$ G} (G + X/G)/2.0 end

}

end

Iterate could become a linguistic abstraction

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Exercises

43. Modify the Pascal function to use local functions for
AddList, ShiftLeft, ShiftRight. Think about the
abstraction and efficiency tradeoffs.

44. VRH Exercise 3.10.2 (page 230)
45. *VRH Exercise 3.10.3 (page 230)
46. *Develop a control abstraction for iterating over a list of

elements.

