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Overview

• What is declarativeness?
– Classification,
– Advantages for large and small programs

• Control Abstractions
– Iterative programs
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Declarative operations (1)
• An  operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

• A declarative operation is:
– Independent (depends only on its arguments, nothing else)
– Stateless (no internal state is remembered between calls)
– Deterministic (call with same operations always give same results)

• Declarative operations can be composed together to yield
other declarative components
– All basic operations of the declarative model are declarative and

combining them always gives declarative components
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Declarative
operation

Arguments

Results

Declarative operations (2)

rest of computation
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Why declarative components (1)

• There are two reasons why they are important:
• (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.

– The complexity (reasoning complexity) of a program composed of
declarative components is the sum of the complexity of the components

– In general the reasoning complexity of programs that are composed of
nondeclarative components explodes because of the intimate interaction
between components

• (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).

– Simple algebraic and logical reasoning techniques can be used
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Why declarative components (2)
• Since declarative components are

mathematical functions, algebraic
reasoning is possible i.e.
substituting equals for equals

• The declarative model of chapter 2
guarantees that all programs written
are declarative

• Declarative components can be
written in models that allow stateful
data types, but there is no guarantee

! 

Given

f (a) = a
2

We can replace f (a) in any other 

equation

b = 7 f (a)2  becomes b = 7a4
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Classification of
declarative programming

Declarative
programming

Descriptive

Programmable

Observational

Definitional
Declarative 
model

Functional 
programming

Nondeterministic
logic programming

Deterministic
logic programming

• The word declarative means many things to
many people.  Let’s try to eliminate the
confusion.

• The basic intuition is to program by defining
the what without explaining the how
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Descriptive language

〈s〉 ::= skip                                              empty statement
     |  〈x〉 = 〈y〉                                      variable-variable binding

|  〈x〉 = 〈record〉 variable-value binding
|  〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration

Other descriptive languages include HTML and XML 
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Descriptive language

<person id = ”530101-xxx”>
<name> Seif </name>
<age> 48 </age>

</person>

Other descriptive languages include HTML and XMLXML  
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Kernel language

〈s〉 ::= skip                                              empty statement
     |  〈x〉 = 〈y〉                                      variable-variable binding

|  〈x〉 = 〈v〉 variable-value binding
|  〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end procedure introduction
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’ procedure application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

The following defines the syntax of a statement, 〈s〉 denotes a statement 
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Why the KL is declarative

• All basic operations are declarative
• Given the components (sub-statements) are declarative,

– sequential composition
– local statement
– procedure definition
– procedure call
– if statement
– case statement

are all declarative (independent, stateless, deterministic).
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Iterative computation
• An iterative computation is a one whose execution stack is

bounded by a constant, independent of the length of the
computation

• Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1
! ! !...
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The general scheme
fun {Iterate Si}

if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end
• IsDone and Transform are problem dependent
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The computation model

• STACK : [ R={Iterate S0}]
• STACK : [ S1 = {Transform S0},

R={Iterate S1} ]

• STACK : [ R={Iterate Si}]
• STACK : [ Si+1 = {Transform Si},

R={Iterate Si+1} ]

• STACK : [ R={Iterate Si+1}]
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Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
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Newton’s method for the
square root of a positive real number

• Given a real number x, start with a guess g, and improve
this guess iteratively until it is accurate enough

• The improved guess g’ is the average of g and x/g:
• Accurate enough is defined as:

| x – g2 | / x < 0.00001
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SqrtIter
fun {SqrtIter Guess X}

   if {GoodEnough Guess X} then Guess

   else
 Guess1 = {Improve Guess X} in

      {SqrtIter Guess1 X}

   end

end
• Compare to the general scheme:

– The state is the pair Guess and X
– IsDone is implemented by the procedure GoodEnough

– Transform is implemented by the procedure Improve
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The program version 1
fun {Sqrt X}

   Guess = 1.0

in {SqrtIter Guess X}

end

fun {SqrtIter Guess X}

   if {GoodEnough Guess X} then
Guess

   else

      {SqrtIter {Improve Guess X} X}

   end

end

fun {Improve Guess X}
   (Guess + X/Guess)/2.0
end
fun {GoodEnough Guess X}
   {Abs X - Guess*Guess}/X < 0.00001
end
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Using local procedures

• The main procedure Sqrt uses the helper procedures
SqrtIter,  GoodEnough, Improve, and Abs

• SqrtIter is only needed inside Sqrt

• GoodEnough and Improve are only needed inside SqrtIter

• Abs (absolute value) is a general utility
• The general idea is that helper procedures should not be

visible globally, but only locally
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Sqrt version 2
local
   fun {SqrtIter Guess X}
      if {GoodEnough Guess X} then Guess
      else {SqrtIter {Improve Guess X} X} end
   end
   fun {Improve Guess X}
      (Guess + X/Guess)/2.0
   end
   fun {GoodEnough Guess X}
      {Abs X - Guess*Guess}/X < 0.000001
   end
in
   fun {Sqrt X}
      Guess = 1.0
   in {SqrtIter Guess X} end
end
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Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local
   fun {SqrtIter Guess X}
      fun {Improve}

 (Guess + X/Guess)/2.0
      end
      fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
      end
   in
       if {GoodEnough} then Guess
       else {SqrtIter {Improve} X} end
   end
in fun {Sqrt X}
       Guess = 1.0 in
       {SqrtIter Guess X}
   end
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Sqrt version 3
• Define GoodEnough and Improve inside SqrtIter
local
   fun {SqrtIter Guess X}
      fun {Improve}

 (Guess + X/Guess)/2.0
      end
      fun {GoodEnough}

 {Abs X - Guess*Guess}/X < 0.000001
      end
   in
       if {GoodEnough} then Guess
       else {SqrtIter {Improve} X} end
   end
in fun {Sqrt X}
       Guess = 1.0 in
       {SqrtIter Guess X}
   end
end

The program has a single
drawback: on each iteration two
procedure values are created,
one for Improve and one for
GoodEnough
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Sqrt final version
fun {Sqrt X}
   fun {Improve Guess}
      (Guess + X/Guess)/2.0
   end
   fun {GoodEnough Guess}
      {Abs X - Guess*Guess}/X < 0.000001
   end
   fun {SqrtIter Guess}
       if {GoodEnough Guess} then Guess
       else {SqrtIter {Improve Guess} } end
   end
   Guess = 1.0
in {SqrtIter Guess}
end

The final version is
a compromise between
abstraction and efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

From a general scheme
to a control abstraction (1)

fun {Iterate Si}
if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end
• IsDone and Transform are problem dependent



5

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

From a general scheme
to a control abstraction (2)

fun {Iterate S  IsDone Transform}

if {IsDone S} then S

else S1 in

S1 = {Transform S}

{Iterate S1 IsDone Transform}

end

end 

fun {Iterate Si}
if {IsDone Si} then Si

else Si+1 in
Si+1 = {Transform Si}

{Iterate Si+1}
end

end
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Sqrt using the Iterate abstraction
fun {Sqrt X}
   fun {Improve Guess}
      (Guess + X/Guess)/2.0
   end
   fun {GoodEnough Guess}
      {Abs X - Guess*Guess}/X < 0.000001
   end
   Guess = 1.0
in
   {Iterate Guess GoodEnough Improve}
end
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Sqrt using the control abstraction
fun {Sqrt X}

{Iterate

  1.0

  fun {$ G} {Abs X - G*G}/X < 0.000001 end

       fun {$ G} (G + X/G)/2.0 end

}

end

Iterate could become a linguistic abstraction
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Exercises

43. Modify the Pascal function to use local functions for
AddList, ShiftLeft, ShiftRight.  Think about the
abstraction and efficiency tradeoffs.

44. VRH Exercise 3.10.2 (page 230)
45. *VRH Exercise 3.10.3 (page 230)
46. *Develop a control abstraction for iterating over a list of

elements.


