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Actor Languages Summary 
•  Actors are concurrent entities that react to messages. 

–  State is completely encapsulated. There is no shared memory! 
–  Message passing is asynchronous. 
–  Actors can create new actors.  Run-time has to ensure fairness. 

•  AMST extends the call by value lambda calculus with actor primitives.  
State is modeled as function arguments.  Actors use ready to receive 
new messages. 

•  Erlang extends a functional programming language core with processes 
that run arbitrary functions.  State is implicit in the function’s 
arguments.  Control loop is explicit:  actors use receive to get a 
message, and tail-form recursive call to continue.  Ending a function 
denotes process (actor) termination. 

•  SALSA extends an object-oriented programming language (Java) with 
universal actors.  State is explicit, encapsulated in instance variables.  
Control loop is implicit: ending a message handler, signals readiness to 
receive a new message.  Actors are garbage-collected. 
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Causal order 
•  In a sequential program all execution  states are totally 

ordered 

•  In a concurrent program all execution states of a given actor 
are totally ordered 

•  The execution state of the concurrent program as a whole is 
partially ordered 
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Total order 
•  In a sequential program all execution  states are totally 

ordered 

computation step 

sequential 
execution 
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Causal order in the actor model 

•  In a concurrent program all execution states of a given 
actor are totally ordered 

•  The execution state of the concurrent program is partially 
ordered 

computation step 

actor A1 

actor A2 

actor A3 

Create new 
actor 

Send a 
message 
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Nondeterminism 

•  An execution is nondeterministic if there is a computation 
step in which there is a choice what to do next 

•  Nondeterminism appears naturally when there is 
asynchronous message passing 
–  Messages can arrive or be processed in an order different from the 

sending order. 
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Example of nondeterminism 

time 

Actor 1 

m1 

time 

Actor 2 

Actor a can receive messages m1 and m2 in any order. 

m2 

time 

Actor a 
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Tree Product Behavior Revisited 

module treeprod; 
import tree.Tree; 
 
behavior JoinTreeProduct { 
 
    int multiply(Object[] results){  
      return (Integer) results[0] * (Integer) results[1];  
    } 
    int compute(Tree t){ 
      if (t.isLeaf()) return t.value(); 
      else { 
        JoinTreeProduct lp = new JoinTreeProduct(); 
        JoinTreeProduct rp = new JoinTreeProduct(); 
        join { 
          lp <- compute(t.left()); 
          rp <- compute(t.right()); 
        } @ multiply(token) @ currentContinuation; 
      } 
    } 
} 

Notice we use token-passing 
continuations (@,token), a 

join block (join), and a first-
class continuation 

(currentContinuation).
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Concurrency Control in SALSA 

•  SALSA provides three main coordination constructs: 
–  Token-passing continuations 

•  To synchronize concurrent activities 
•  To notify completion of message processing 
•  Named tokens enable arbitrary synchronization (data-flow) 

–  Join blocks 
•  Used for barrier synchronization for multiple concurrent 

activities 
•  To obtain results from otherwise independent concurrent 

processes 
–  First-class continuations 

•  To delegate producing a result to another message, or actor 
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Token Passing Continuations 
•  Ensures that each message in the continuation expression is sent after 

the previous message has been processed. It also enables the use of a 
message handler return value as an argument for a later message 
(through the token keyword). 

–  Example: 

a1 <- m1() @  
a2 <- m2( token ); 
 

Send m1 to a1 asking a1 to forward the result of processing m1 to a2 
(as the argument of message m2). 
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Token Passing Continuations 
•  @ syntax using token as an argument is syntactic sugar. 

–  Example 1: 
a1 <- m1() @  
a2 <- m2( token ); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2( t ); 
 

–  Example 2: 
a1 <- m1() @  
a2 <- m2(); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2():waitfor( t ); 
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Named Tokens 
•  Tokens can be named to enable more loosely-

coupled synchronization 

–  Example: 

token t1 = a1 <- m1();  
token t2 = a2 <- m2(); 
token t3 = a3 <- m3( t1 );  
token t4 = a4 <- m4( t2 ); 
a <- m(t1,t2,t3,t4); 
 

Sending m(…) to a will be delayed until 
messages m1()..m4()  have been 
processed.   m1() can proceed 
concurrently with m2(). 
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Causal order in the actor model 

computation step 

actor A1 

actor A2 

actor A3 

create new 
actor 

bind (”return”) a token 

receive a message with a token 

x 

y 
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Deterministic Cell Tester 
Example 

module cell; 
 
behavior TokenCellTester { 
 

 void act( String[] args ) { 
       

  Cell c = new Cell(0); 
  standardOutput <- print( ”Initial Value:” ) @ 
  c <- get() @ 
  standardOutput <- println( token ) @ 
  c <- set(2) @ 
  standardOutput <- print( ”New Value:” ) @ 
  c <- get() @ 
  standardOutput <- println( token ); 

 
   } 
} 

token can be 
optionally used to get 

the return value 
(completion proof) of 
the previous message.

@ syntax enforces a 
sequential order of 
message execution. 
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Cell Tester Example with Named 
Tokens 

module cell; 
 
behavior NamedTokenCellTester { 
 

 void act(String args[]){ 
 

  Cell c = new Cell(0); 
  token p0 = standardOutput <- print("Initial Value:"); 
  token t0 = c <- get(); 
  token p1 = standardOutput <- println(t0):waitfor(p0); 
  token t1 = c <- set(2):waitfor(t0); 
  token p2 = standardOutput <- print("New Value:"):waitfor(p1); 
  token t2 = c <- get():waitfor(t1); 
  standardOutput <- println(t2):waitfor(p2);  
 } 

} We use t0, t1, t2 
tokens to ensure cell 

messages are 
processed in order.

We use p0, p1, p2 
tokens to ensure 
printing in order.
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Join Blocks 

•  Provide a mechanism for synchronizing the processing of a set of 
messages. 

•  Set of results is sent along as a token containing an array of results. 
–  Example: 

UniversalActor[] actors = { searcher0, searcher1,  
               searcher2, searcher3 }; 

join {  
 for (int i=0; i < actors.length; i++){ 
     actors[i] <- find( phrase ); 
  } 
} @ resultActor <- output( token ); 
 
Send the find( phrase ) message to each actor in actors[] then after all 

have completed send the result to resultActor as the argument of an 
output( … ) message. 
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Example: Acknowledged 
Multicast 

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @  
 cust <- n(token); 



C. Varela 18 

Lines of Code Comparison 

31 100 168 Acknowledged Multicast 

SALSA Foundry Java 
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First Class Continuations 

•  Enable actors to delegate computation to a third party independently of 
the processing context. 

•  For example: 
 
  int m(…){ 
    b <- n(…) @ currentContinuation; 

  } 
Ask (delegate) actor b to respond to this message m on behalf of current actor 

(self) by processing b’s message n. 
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Delegate Example 

module fibonacci; 
 
behavior Calculator { 
   
 int fib(int n) {  
  Fibonacci f = new Fibonacci(n); 
  f <- compute() @ currentContinuation; 
 } 
 int add(int n1, int n2) {return n1+n2;}  
  
 void act(String args[]) { 
  fib(15) @ standardOutput <- println(token); 
  fib(5) @ add(token,3) @ 
  standardOutput <- println(token); 
 } 

} 

fib(15) 

 is syntactic sugar for: 
self <- fib(15)
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Fibonacci Example 
module fibonacci; 
 
behavior Fibonacci { 

 int n; 
  
 Fibonacci(int n)  { this.n = n; } 
  
 int add(int x, int y) { return x + y; } 
  
 int compute() { 
  if (n == 0)  return 0; 
  else if (n <= 2)  return 1; 
  else { 
   Fibonacci fib1 = new Fibonacci(n-1); 
   Fibonacci fib2 = new Fibonacci(n-2); 
   token x = fib1<-compute();  
   token y = fib2<-compute(); 
   add(x,y) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  n = Integer.parseInt(args[0]); 
  compute() @ standardOutput<-println(token); 
 } 

} 
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Fibonacci Example 2 
module fibonacci2; 
 
behavior Fibonacci { 

   
 int add(int x, int y) { return x + y; } 
  
 int compute(int n) { 
  if (n == 0)  return 0; 
  else if (n <= 2) return 1; 
  else { 
   Fibonacci fib = new Fibonacci(); 
   token x = fib <- compute(n-1);  
   compute(n-2) @ add(x,token) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  int n = Integer.parseInt(args[0]); 
  compute(n) @ standardOutput<-println(token); 
 } 

} 

compute(n-2) is a 
message to self.
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Execution of  
salsa Fibonacci 6 
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F2 

Create new actor 

Synchronize on 
result 

Non-blocked actor 
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Concurrency control in Erlang 

•  Erlang uses a selective receive mechanism to help 
coordinate concurrent activities: 
–  Message patterns and guards 

•  To select the next message (from possibly many) to execute. 
•  To receive messages from a specific process (actor). 
•  To receive messages of a specific kind (pattern). 

–  Timeouts 
•  To enable default activities to fire in the absence of messages 

(following certain patterns). 
•  To create timers. 

–  Zero timeouts (after 0) 
•  To implement priority messages, to flush a mailbox. 



Selective Receive 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
end 

receive suspends until a message in the actor’s mailbox 
matches any of the patterns including optional guards. 

•  Patterns are tried in order.  On a match, the message is 
removed from the mailbox and the corresponding pattern’s 
actions are executed. 

•  When a message does not match any of the patterns, it is 
left in the mailbox for future receive actions. 
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Selective Receive Example 
Example program and mailbox (head at top): 
 
receive 

    msg_b -> … 
end 

receive tries to match msg_a and fails.  msg_b can be 
matched, so it is processed.  Suppose execution continues: 

 
receive 

    msg_c -> … 
    msg_a -> … 
end 
The next message to be processed is msg_a since it is the 

next in the mailbox and it matches the 2nd pattern. 
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msg_a 

msg_b 

msg_c 

msg_a 

msg_c 



Receiving from a specific actor 
 
Actor ! {self(), message} 

 

self() is a Built-In-Function (BIF) that returns the current 
(executing) process id (actor name).  Ids can be part of a 
message. 

 
receive 

    {ActorName, Msg} when ActorName == A1 -> 
       … 
end 

receive can then select only messages that come from a 
specific actor, in this example, A1.  (Or other actors that 
know A1’s actor name.) 
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Receiving a specific kind of 
message  

 
counter(Val) -> 
  receive 

    increment -> counter(Val+1); 
    {From,get} ->  
      From ! {self(), Val}, 
      counter(Val); 
    stop -> true; 
    Other -> counter(Val) 

  end. 

 
counter is a behavior that can receive increment 

messages, get request messages, and stop messages.  
Other message kinds are ignored. 
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increment is an atom 
whereas Other is a 

variable (that matches 
anything!). 



Order of message patterns matters 
 
receive 
    {{Left, Right}, Customer} -> 

       NewCust = spawn(treeprod,join,[Customer]), 
       LP = spawn(treeprod,treeprod,[]), 
       RP = spawn(treeprod,treeprod,[]), 
       LP!{Left,NewCust}, 
       RP!{Right,NewCust}; 
    {Number, Customer} ->  

       Customer ! Number 
end 

 
In this example, a binary tree is represented as a tuple 
{Left, Right}, or as a Number, e.g.,  

         {{{5,6},2},{3,4}} 
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{Left,Right} is a 
more specific pattern 
than Number is (which 
matches anything!).  
Order of patterns is 

important.



Selective Receive with Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after TimeOutExpr -> 
       ActionsT 
end 

TimeOutExpr evaluates to an integer interpreted as 
milliseconds. 

If no message has been selected within this time, the timeout 
occurs and ActionsT are scheduled for evaluation. 

A timeout of infinity means to wait indefinitely.   
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Timer Example 
 
sleep(Time) -> 
       receive 

          after Time -> 
             true 
       end. 

 

sleep(Time) suspends the current actor for Time 
milliseconds. 
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Timeout Example 
receive 
    click -> 
       receive 

           click ->  
             double_click 
       after double_click_interval() -> 
             single_click 
       end 
    ... 

end 

double_click_interval evaluates to the number of 
milliseconds expected between two consecutive mouse 
clicks, for the receive to return a double_click.  
Otherwise, a single_click is returned. 
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Zero Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after 0 -> 
       ActionsT 
end 

A timeout of 0 means that the timeout will occur 
immediately, but Erlang tries all messages currently in the 
mailbox first. 
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Zero Timeout Example 
 
flush_buffer() -> 
       receive 

          AnyMessage -> 
             flush_buffer() 
          after 0 -> 
             true 
       end. 
 

flush_buffer() completely empties the mailbox of the 
current actor. 
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Priority Messages 
 
priority_receive() -> 
       receive 

          interrupt -> 
             interrupt 
          after 0 -> 
             receive 
                AnyMessage -> 
                   AnyMessage 

             end 
       end. 
 

priority_receive() will return the first message in 
the actor’s mailbox, except if there is an interrupt 
message, in which case, interrupt will be given 
priority. 
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Exercises 

46. Download and execute the reference cell and tree product 
examples in SALSA and Erlang. 

47. Write a solution to the Flavius Josephus problem in 
SALSA and Erlang.  A description of the problem is at 
CTM Section 7.8.3 (page 558). 

48. PDCS Exercise 9.6.6 (page 204). 
49. How would you implement token-passing continuations, 

join blocks, and first-class continuations in Erlang? 
50. How would you implement selective receive in SALSA? 

 


