
C. Varela 1

Concurrency control abstractions
(PDCS 9, CPE 5*)

Carlos Varela

Rennselaer Polytechnic Institute

October 15, 2019

* Concurrent Programming in Erlang, by J. Armstrong, R. Virding, C. Wikström, M. Williams

C. Varela 2

Actor Languages Summary
•  Actors are concurrent entities that react to messages.

–  State is completely encapsulated. There is no shared memory!
–  Message passing is asynchronous.
–  Actors can create new actors. Run-time has to ensure fairness.

•  AMST extends the call by value lambda calculus with actor primitives.
State is modeled as function arguments. Actors use ready to receive
new messages.

•  Erlang extends a functional programming language core with processes
that run arbitrary functions. State is implicit in the function’s
arguments. Control loop is explicit: actors use receive to get a
message, and tail-form recursive call to continue. Ending a function
denotes process (actor) termination.

•  SALSA extends an object-oriented programming language (Java) with
universal actors. State is explicit, encapsulated in instance variables.
Control loop is implicit: ending a message handler, signals readiness to
receive a new message. Actors are garbage-collected.

C. Varela 3

Causal order
•  In a sequential program all execution states are totally

ordered

•  In a concurrent program all execution states of a given actor
are totally ordered

•  The execution state of the concurrent program as a whole is
partially ordered

C. Varela 4

Total order
•  In a sequential program all execution states are totally

ordered

computation step

sequential
execution

C. Varela 5

Causal order in the actor model

•  In a concurrent program all execution states of a given
actor are totally ordered

•  The execution state of the concurrent program is partially
ordered

computation step

actor A1

actor A2

actor A3

Create new
actor

Send a
message

C. Varela 6

Nondeterminism

•  An execution is nondeterministic if there is a computation
step in which there is a choice what to do next

•  Nondeterminism appears naturally when there is
asynchronous message passing
–  Messages can arrive or be processed in an order different from the

sending order.

C. Varela 7

Example of nondeterminism

time

Actor 1

m1

time

Actor 2

Actor a can receive messages m1 and m2 in any order.

m2

time

Actor a

C. Varela 8

Tree Product Behavior Revisited

module treeprod;
import tree.Tree;

behavior JoinTreeProduct {

 int multiply(Object[] results){
 return (Integer) results[0] * (Integer) results[1];
 }
 int compute(Tree t){
 if (t.isLeaf()) return t.value();
 else {
 JoinTreeProduct lp = new JoinTreeProduct();
 JoinTreeProduct rp = new JoinTreeProduct();
 join {
 lp <- compute(t.left());
 rp <- compute(t.right());
 } @ multiply(token) @ currentContinuation;
 }
 }
}

Notice we use token-passing
continuations (@,token), a

join block (join), and a first-
class continuation

(currentContinuation).

C. Varela 9

Concurrency Control in SALSA

•  SALSA provides three main coordination constructs:
–  Token-passing continuations

•  To synchronize concurrent activities
•  To notify completion of message processing
•  Named tokens enable arbitrary synchronization (data-flow)

–  Join blocks
•  Used for barrier synchronization for multiple concurrent

activities
•  To obtain results from otherwise independent concurrent

processes
–  First-class continuations

•  To delegate producing a result to another message, or actor

C. Varela 10

Token Passing Continuations
•  Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

–  Example:

a1 <- m1() @
a2 <- m2(token);

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).

C. Varela 11

Token Passing Continuations
•  @ syntax using token as an argument is syntactic sugar.

–  Example 1:
a1 <- m1() @
a2 <- m2(token);

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2(t);

–  Example 2:
a1 <- m1() @
a2 <- m2();

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2():waitfor(t);

C. Varela 12

Named Tokens
•  Tokens can be named to enable more loosely-

coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until
messages m1()..m4() have been
processed. m1() can proceed
concurrently with m2().

C. Varela 13

Causal order in the actor model

computation step

actor A1

actor A2

actor A3

create new
actor

bind (”return”) a token

receive a message with a token

x

y

C. Varela 14

Deterministic Cell Tester
Example

module cell;

behavior TokenCellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 standardOutput <- print(”Initial Value:”) @
 c <- get() @
 standardOutput <- println(token) @
 c <- set(2) @
 standardOutput <- print(”New Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

token can be
optionally used to get

the return value
(completion proof) of
the previous message.

@ syntax enforces a
sequential order of
message execution.

C. Varela 15

Cell Tester Example with Named
Tokens

module cell;

behavior NamedTokenCellTester {

 void act(String args[]){

 Cell c = new Cell(0);
 token p0 = standardOutput <- print("Initial Value:");
 token t0 = c <- get();
 token p1 = standardOutput <- println(t0):waitfor(p0);
 token t1 = c <- set(2):waitfor(t0);
 token p2 = standardOutput <- print("New Value:"):waitfor(p1);
 token t2 = c <- get():waitfor(t1);
 standardOutput <- println(t2):waitfor(p2);
 }

} We use t0, t1, t2
tokens to ensure cell

messages are
processed in order.

We use p0, p1, p2
tokens to ensure
printing in order.

C. Varela 16

Join Blocks

•  Provide a mechanism for synchronizing the processing of a set of
messages.

•  Set of results is sent along as a token containing an array of results.
–  Example:

UniversalActor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
 for (int i=0; i < actors.length; i++){
 actors[i] <- find(phrase);
 }
} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all

have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 17

Example: Acknowledged
Multicast

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @
 cust <- n(token);

C. Varela 18

Lines of Code Comparison

31 100 168 Acknowledged Multicast

SALSA Foundry Java

C. Varela 19

First Class Continuations

•  Enable actors to delegate computation to a third party independently of
the processing context.

•  For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }
Ask (delegate) actor b to respond to this message m on behalf of current actor

(self) by processing b’s message n.

C. Varela 20

Delegate Example

module fibonacci;

behavior Calculator {

 int fib(int n) {
 Fibonacci f = new Fibonacci(n);
 f <- compute() @ currentContinuation;
 }
 int add(int n1, int n2) {return n1+n2;}

 void act(String args[]) {
 fib(15) @ standardOutput <- println(token);
 fib(5) @ add(token,3) @
 standardOutput <- println(token);
 }

}

fib(15)

 is syntactic sugar for:
self <- fib(15)

C. Varela 21

Fibonacci Example
module fibonacci;

behavior Fibonacci {

 int n;

 Fibonacci(int n) { this.n = n; }

 int add(int x, int y) { return x + y; }

 int compute() {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib1 = new Fibonacci(n-1);
 Fibonacci fib2 = new Fibonacci(n-2);
 token x = fib1<-compute();
 token y = fib2<-compute();
 add(x,y) @ currentContinuation;
 }
 }

 void act(String args[]) {
 n = Integer.parseInt(args[0]);
 compute() @ standardOutput<-println(token);
 }

}

C. Varela 22

Fibonacci Example 2
module fibonacci2;

behavior Fibonacci {

 int add(int x, int y) { return x + y; }

 int compute(int n) {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib = new Fibonacci();
 token x = fib <- compute(n-1);
 compute(n-2) @ add(x,token) @ currentContinuation;
 }
 }

 void act(String args[]) {
 int n = Integer.parseInt(args[0]);
 compute(n) @ standardOutput<-println(token);
 }

}

compute(n-2) is a
message to self.

C. Varela 23

Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Create new actor

Synchronize on
result

Non-blocked actor

C. Varela 24

Concurrency control in Erlang

•  Erlang uses a selective receive mechanism to help
coordinate concurrent activities:
–  Message patterns and guards

•  To select the next message (from possibly many) to execute.
•  To receive messages from a specific process (actor).
•  To receive messages of a specific kind (pattern).

–  Timeouts
•  To enable default activities to fire in the absence of messages

(following certain patterns).
•  To create timers.

–  Zero timeouts (after 0)
•  To implement priority messages, to flush a mailbox.

Selective Receive
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
end

receive suspends until a message in the actor’s mailbox
matches any of the patterns including optional guards.

•  Patterns are tried in order. On a match, the message is
removed from the mailbox and the corresponding pattern’s
actions are executed.

•  When a message does not match any of the patterns, it is
left in the mailbox for future receive actions.

C. Varela 25

Selective Receive Example
Example program and mailbox (head at top):

receive

 msg_b -> …
end

receive tries to match msg_a and fails. msg_b can be
matched, so it is processed. Suppose execution continues:

receive

 msg_c -> …
 msg_a -> …
end
The next message to be processed is msg_a since it is the

next in the mailbox and it matches the 2nd pattern.

C. Varela 26

msg_a

msg_b

msg_c

msg_a

msg_c

Receiving from a specific actor

Actor ! {self(), message}

self() is a Built-In-Function (BIF) that returns the current
(executing) process id (actor name). Ids can be part of a
message.

receive

 {ActorName, Msg} when ActorName == A1 ->
 …
end

receive can then select only messages that come from a
specific actor, in this example, A1. (Or other actors that
know A1’s actor name.)

C. Varela 27

Receiving a specific kind of
message

counter(Val) ->
 receive

 increment -> counter(Val+1);
 {From,get} ->
 From ! {self(), Val},
 counter(Val);
 stop -> true;
 Other -> counter(Val)

 end.

counter is a behavior that can receive increment

messages, get request messages, and stop messages.
Other message kinds are ignored.

C. Varela 28

increment is an atom
whereas Other is a

variable (that matches
anything!).

Order of message patterns matters

receive
 {{Left, Right}, Customer} ->

 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),
 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->

 Customer ! Number
end

In this example, a binary tree is represented as a tuple
{Left, Right}, or as a Number, e.g.,

 {{{5,6},2},{3,4}}

C. Varela 29

{Left,Right} is a
more specific pattern
than Number is (which
matches anything!).
Order of patterns is

important.

Selective Receive with Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after TimeOutExpr ->
 ActionsT
end

TimeOutExpr evaluates to an integer interpreted as
milliseconds.

If no message has been selected within this time, the timeout
occurs and ActionsT are scheduled for evaluation.

A timeout of infinity means to wait indefinitely.

C. Varela 30

Timer Example

sleep(Time) ->
 receive

 after Time ->
 true
 end.

sleep(Time) suspends the current actor for Time
milliseconds.

C. Varela 31

Timeout Example
receive
 click ->
 receive

 click ->
 double_click
 after double_click_interval() ->
 single_click
 end
 ...

end

double_click_interval evaluates to the number of
milliseconds expected between two consecutive mouse
clicks, for the receive to return a double_click.
Otherwise, a single_click is returned.

C. Varela 32

Zero Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after 0 ->
 ActionsT
end

A timeout of 0 means that the timeout will occur
immediately, but Erlang tries all messages currently in the
mailbox first.

C. Varela 33

Zero Timeout Example

flush_buffer() ->
 receive

 AnyMessage ->
 flush_buffer()
 after 0 ->
 true
 end.

flush_buffer() completely empties the mailbox of the
current actor.

C. Varela 34

Priority Messages

priority_receive() ->
 receive

 interrupt ->
 interrupt
 after 0 ->
 receive
 AnyMessage ->
 AnyMessage

 end
 end.

priority_receive() will return the first message in
the actor’s mailbox, except if there is an interrupt
message, in which case, interrupt will be given
priority.

 C. Varela 35

C. Varela 36

Exercises

46. Download and execute the reference cell and tree product
examples in SALSA and Erlang.

47. Write a solution to the Flavius Josephus problem in
SALSA and Erlang. A description of the problem is at
CTM Section 7.8.3 (page 558).

48. PDCS Exercise 9.6.6 (page 204).
49. How would you implement token-passing continuations,

join blocks, and first-class continuations in Erlang?
50. How would you implement selective receive in SALSA?

