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Overview of
programming distributed systems

It is harder than concurrent programming!
Yet unavoidable in today’s information-oriented society, e.g.:

— Internet, mobile devices

— Web services

— Cloud computing
Communicating processes with independent address spaces
Limited network performance

— Orders of magnitude difference between WAN, LAN, and intra-machine
communication.

Localized heterogeneous resources, e.g, I/0O, specialized devices.
Partial failures, e.g. hardware failures, network disconnection

Openness: creates security, naming, composability 1ssues.
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SALSA Revisited

Actor

« SALSA

— Simple Actor Language System and
Architectuare S/

— An actor-oriented language for mobile and
internet computing

— Programming abstractions for internet-based
concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable Mailbox
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA Methods R
2001 Intriguing Technology Track, 36(12), pp 20-34. N Lo _______

Thread

Internal varjables

* Advantages for distributed computing

— Actors encapsulate state and concurrency:

» Actors can run in different machines.

» Actors can change location dynamically.
— Communication is asynchronous:

 Fits real world distributed systems.
— Actors can fail independently.
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World-Wide Computer (WWC)

Distributed computing platform.

Provides a run-time system for universal actors.
Includes naming service implementations.
Remote message sending protocol.

Support for universal actor migration.
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Abstractions for Worldwide
Computing

Universal Actors, a new abstraction provided to guarantee unique actor
names across the Internet.

Theaters, extended Java virtual machines to provide execution
environment and network services to universal actors:

— Access to local resources.
— Remote message sending.

— Migration.

Naming service, to register and locate universal actors, transparently
updated upon universal actor creation, migration, garbage collection.
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Universal Actor Names (UAN)

Consists of human readable names.
Provides location transparency to actors.
Name to locator mapping updated as actors migrate.

UAN servers provide mapping between names and
locators.
— Example Universal Actor Name:

uan://wwc.cs.rpi.edu:3030/cvarela/calendar
| J L J

Name server Unique
address and relative
(optional) port.  actor name.
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WWC Theaters
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Universal Actor Locators (UAL)

* Theaters provide an execution environment for universal
actors.

« Provide a layer beneath actors for message passing and
migration.

 When an actor migrates, its UAN remains the same, while
its UAL changes to refer to the new theater.

« Example Universal Actor Locator:

rmsp://wwc.cs.rpi.edu:4040
| J

Theater’s IP
address and
(optional) port.
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SALSA Language Support for Worldwide
Computing

* SALSA provides linguistic abstractions for:

— Universal naming (UAN & UAL).

— Remote actor creation.

— Location-transparent message sending.
— Migration.

— Coordination.

 SALSA-compiled code closely tied to WWC run-time platform.
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Universal Actor Creation

« To create an actor locally

TravelAgent a = new TravelAgent () ;

* To create an actor with a specified UAN and UAL.:

TravelAgent a = new TravelAgent () at (uan, ual);

e To create an actor with a specified UAN at current location:
TravelAgent a = new TravelAgent () at (uan);
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Message Sending

TravelAgent a = new TravelAgent ()

a <- book( flight );

Message sending syntax is
the same (<-),
independently of actor’s
location.

C. Varela 11



Remote Message Sending

e Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName (“uan://myhost/ta’) ;

a <- printlItinerary();

C. Varela 12



Reference Cell Service Example

module dcell; . ]
implements ActorService

behavior Cell implements ActorService{ signals that actors with this
behavior are not to be

Object tent;
ject conten garbage collected.

Cell (Object initialContent) {
content = initialContent;

}

Object get() {

standardOutput <- println (“Returning: ”“+content) ;
return content;

}

void set (Object newContent) {

standardOutput <- println (“Setting: "“+newContent) ;
content = newContent;
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Reterence Cell Tester

module dcell;
behavior CellTester {
void act( String[] args ) {
if (args.length !'= 2){
standardError <- println(

“Usage: salsa dcell.CellTester <UAN> <UAL>") ;
return;

}
Cell c = new Cell(0) at (new UAN(args[0]), new UAL(args[1l]));

standardOutput <- print( “Initial Value:” ) d
c <- get() @ standardOutput <- println( token );

}
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Reterence Cell Client Example

module dcell;
behavior GetCellValue {

void act( String[] args ) {
if (args.length !'= 1) {
standardOutput <- println/(
“Usage: salsa dcell.GetCellValue <CellUAN>") ;

return;

}

Cell c = (Cell) Cell.getReferenceByName (args[0]) ;
standardOutput <- print(“Cell Value:”) @

c <- get() @
standardOutput <- println(token) ;
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Address Book Service

module addressbook;
import java.util.*

behavior AddressBook implements ActorService {

Hashtable name2email;
AddressBook () {
name2email = new HashTable() ;
}
String getName (String email) { .. }
String getEmail (String name) { .. }
boolean addUser (String name, String email) { .. }

void act( String[] args ) {
if (args.length !'= 0){
standardOutput<-println (“Usage: salsa -Duan=<UAN> -Dual=<UAL>
addressbook .AddressBook’) ;
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Address Book Add User
Example

module addressbook;

behavior AddUser {
void act( String[] args ) {
if (args.length !'= 3){
standardOutput<-println (“Usage: salsa

addressbook .AddUser <AddressBookUAN> <Name> <Email>") ;

return;

}

AddressBook book = (AddressBook)
AddressBook.getReferenceByName (new UAN (args[0])) ;

book<-addUser (args (1), args(2));
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Address Book Get Email
Example

module addressbook;

behavior GetEmail ({
void act( String[] args ) {
if (args.length != 2) {
standardOutput <- println(“Usage: salsa
addressbook.GetEmail <AddressBookUAN> <Name>") ;
return;
}
getEmail (args (0) ,args (1)) ;
}

void getEmail (String uan, String name) {

try{

AddressBook book = (AddressBook)
AddressBook.getReferenceByName (new UAN (uan)) ;

standardOutput <- print(name + “’s email: “) @
book <- getEmail (name) @
standardOutput <- println(token) ;

} catch (MalformedUANException e) {
standardError<-println(e) ;

}
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Erlang Language Support for Distributed
Computing

Erlang provides linguistic abstractions for:

— Registered processes (actors).

— Remote process (actor) creation.
— Remote message sending.

— Process (actor) groups.

— Error detection.

Erlang-compiled code closely tied to Erlang node run-time platform.
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Erlang Nodes

 To return our own node name:

node ()

e To return a list of other known node names:

nodes ()

If £1ag is true, monitoring starts. If
false, monitoring stops. When a

* To monitor a node: monitored node fails, {nodedown,
Node} is sent to monitoring process.

monitor node (Node, Flag)
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Actor Creation

travel is the module name,
agent is the function name,
Agent is the actor name.

« To create an actor locally

Agent = spawn (travel, agent, []);

e To create an actor in a specified remote node:

Agent = spawn (host, travel, agent, []);

host is the node name.
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Actor Registration

ta is the registered name (an atom),
Agent is the actor name (PID).

e To register an actor:
register (ta, Agent)

e To return the actor identified with a registered name:
whereis (ta)

 To remove the association between an atom and an actor:

unregister (ta)
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Message Sending

Agent = spawn (travel, agent, []),

register (ta, Agent)

Agent ! {book, Flight}
ta ! {book, Flight}

Message sending syntax is
the same (') with actor
name (Agent) or registered
name (ta).
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Remote Message Sending

 To send a message to a remote registered actor:

{ta, host} ! {book, Flight}
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Reference Cell Service Example

-module (dcell) .
-export([cell/1l,start/1]).

cell (Content) ->

receive
{set, NewContent} -> cell (NewContent) ;
{get, Customer} -> Customer ! Content,
cell (Content)
end.

start (Content) ->
register (dcell, spawn(dcell, cell, [Content]))
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Reterence Cell Tester

-module (dcellTester) .
-export ([main/0]) .

main ()

-> dcell:start(0),
dcell! {get, self()},
receive
Value ->
io:format (”Initial Value:~w~n”, [Value])
end.
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Reterence Cell Client Example

-module (dcellClient) .
-export ([getCellValue/1]).

getCellValue (Node) ->
{dcell, Node}!{get, self()},
receive
Value ->
io:format (”Initial Value:~w~n”, [Value])
end.

C. Varela

27



Address Book Service

-module (addressbook) .
-export ([start/0,addressbook/1]) .

start () ->
register (addressbook, spawn (addressbook, addressbook, [[]])).

addressbook (Data) ->
receive
{From, {addUser, Name, Email}} ->
From ! {addressbook, ok},
addressbook (add (Name, Email, Data));
{From, {getName, Email}} ->
From ! {addressbook, getname (Email, Data)},
addressbook (Data) ;
{From, {getEmail, Name}} ->
From ! {addressbook, getemail (Name, Data)},
addressbook (Data)
end.

add (Name, Email, Data) -> ..
getname (Email, Data) -> ..
getemail (Name, Data) -> ..
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Address Book Client Example

-module (addressbook client).
-export ([getEmail/l,getName/1l,addUser/2]).

addressbook_server () -> 'addressbook@127.0.0.1'.

getEmail (Name) -> call addressbook({getEmail, Name}) .
getName (Email) -> call addressbook ({getName, Email}) .
addUser (Name, Email) -> call addressbook ({addUser, Name, Email}).

call addressbook (Msg) ->
AddressBookServer = addressbook server(),
monitor_node(AddressBookServer,_true),
{addressbook, AddressBookServer} ! {self(), Msg},
receive
{addressbook, Reply} ->
monitor node (AddressBookServer, false),
Reply; B
{nodedown, AddressBookServer} ->
no
end.
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51.

52.

53.
54.
55.
56.

Exercises

How would you implement the join block linguistic
abstraction considering different potential distributions of
its participating actors?

CTM Exercise 11.11.3 (page 746). Implement the
example using SALSA/WWC and Erlang.

PDCS Exercise 9.6.3 (page 203).

PDCS Exercise 9.6.9 (page 204).

PDCS Exercise 9.6.12 (page 204).

Write the same distributed programs in Erlang.
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