Distributed systems abstractions
(PDCS 9, CPE 6*)

Carlos Varela

Rensselaer Polytechnic Institute

October 18, 2019

* Concurrent Programming in Erlang, by J. Armstrong, R. Virding, C. Wikstrom, M. Williams

C. Varela

Overview of
programming distributed systems

It is harder than concurrent programming!
Yet unavoidable in today’s information-oriented society, e.g.:

— Internet, mobile devices

— Web services

— Cloud computing
Communicating processes with independent address spaces
Limited network performance

— Orders of magnitude difference between WAN, LAN, and intra-machine
communication.

Localized heterogeneous resources, e.g, I/0O, specialized devices.
Partial failures, e.g. hardware failures, network disconnection

Openness: creates security, naming, composability 1ssues.

C. Varela 2

SALSA Revisited

Actor

« SALSA

— Simple Actor Language System and
Architectuare S/

— An actor-oriented language for mobile and
internet computing

— Programming abstractions for internet-based
concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable Mailbox
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA Methods R
2001 Intriguing Technology Track, 36(12), pp 20-34. N Lo _______

Thread

Internal varjables

* Advantages for distributed computing

— Actors encapsulate state and concurrency:

» Actors can run in different machines.

» Actors can change location dynamically.
— Communication is asynchronous:

 Fits real world distributed systems.
— Actors can fail independently.

C. Varela 3

World-Wide Computer (WWC)

Distributed computing platform.

Provides a run-time system for universal actors.
Includes naming service implementations.
Remote message sending protocol.

Support for universal actor migration.

C. Varela

Abstractions for Worldwide
Computing

Universal Actors, a new abstraction provided to guarantee unique actor
names across the Internet.

Theaters, extended Java virtual machines to provide execution
environment and network services to universal actors:

— Access to local resources.
— Remote message sending.

— Migration.

Naming service, to register and locate universal actors, transparently
updated upon universal actor creation, migration, garbage collection.

C. Varela 5

Universal Actor Names (UAN)

Consists of human readable names.
Provides location transparency to actors.
Name to locator mapping updated as actors migrate.

UAN servers provide mapping between names and
locators.
— Example Universal Actor Name:

uan://wwc.cs.rpi.edu:3030/cvarela/calendar
| J L J

Name server Unique
address and relative
(optional) port. actor name.

C. Varela

WWC Theaters

N

RMSP Server

relative UAL

SALSA Reference

Hashtable

> Listener

Universal Actor Run—Time System

OK

Universal
Actors

O
O

Environment

Actors

OO
O

World Wide Computing Theater

C. Varela

yvyy

System
Resources

Universal Actor Locators (UAL)

* Theaters provide an execution environment for universal
actors.

« Provide a layer beneath actors for message passing and
migration.

 When an actor migrates, its UAN remains the same, while
its UAL changes to refer to the new theater.

« Example Universal Actor Locator:

rmsp://wwc.cs.rpi.edu:4040
| J

Theater’s IP
address and
(optional) port.

C. Varela 8

SALSA Language Support for Worldwide
Computing

* SALSA provides linguistic abstractions for:

— Universal naming (UAN & UAL).

— Remote actor creation.

— Location-transparent message sending.
— Migration.

— Coordination.

 SALSA-compiled code closely tied to WWC run-time platform.

C. Varela

Universal Actor Creation

« To create an actor locally

TravelAgent a = new TravelAgent () ;

* To create an actor with a specified UAN and UAL.:

TravelAgent a = new TravelAgent () at (uan, ual);

e To create an actor with a specified UAN at current location:
TravelAgent a = new TravelAgent () at (uan);

C. Varela

10

Message Sending

TravelAgent a = new TravelAgent ()

a <- book(flight);

Message sending syntax is
the same (<-),
independently of actor’s
location.

C. Varela 11

Remote Message Sending

e Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName (“uan://myhost/ta’) ;

a <- printlItinerary();

C. Varela 12

Reference Cell Service Example

module dcell; .]
implements ActorService

behavior Cell implements ActorService{ signals that actors with this
behavior are not to be

Object tent;
ject conten garbage collected.

Cell (Object initialContent) {
content = initialContent;

}

Object get() {

standardOutput <- println (“Returning: ”“+content) ;
return content;

}

void set (Object newContent) {

standardOutput <- println (“Setting: "“+newContent) ;
content = newContent;

C. Varela 13

Reterence Cell Tester

module dcell;
behavior CellTester {
void act(String[] args) {
if (args.length !'= 2){
standardError <- println(

“Usage: salsa dcell.CellTester <UAN> <UAL>") ;
return;

}
Cell c = new Cell(0) at (new UAN(args[0]), new UAL(args[1l]));

standardOutput <- print(“Initial Value:”) d
c <- get() @ standardOutput <- println(token);

}

C. Varela

14

Reterence Cell Client Example

module dcell;
behavior GetCellValue {

void act(String[] args) {
if (args.length !'= 1) {
standardOutput <- println/(
“Usage: salsa dcell.GetCellValue <CellUAN>") ;

return;

}

Cell c = (Cell) Cell.getReferenceByName (args[0]) ;
standardOutput <- print(“Cell Value:”) @

c <- get() @
standardOutput <- println(token) ;

C. Varela

15

Address Book Service

module addressbook;
import java.util.*

behavior AddressBook implements ActorService {

Hashtable name2email;
AddressBook () {
name2email = new HashTable() ;
}
String getName (String email) { .. }
String getEmail (String name) { .. }
boolean addUser (String name, String email) { .. }

void act(String[] args) {
if (args.length !'= 0){
standardOutput<-println (“Usage: salsa -Duan=<UAN> -Dual=<UAL>
addressbook .AddressBook’) ;

C. Varela 16

Address Book Add User
Example

module addressbook;

behavior AddUser {
void act(String[] args) {
if (args.length !'= 3){
standardOutput<-println (“Usage: salsa

addressbook .AddUser <AddressBookUAN> <Name> <Email>") ;

return;

}

AddressBook book = (AddressBook)
AddressBook.getReferenceByName (new UAN (args[0])) ;

book<-addUser (args (1), args(2));

C. Varela

17

Address Book Get Email
Example

module addressbook;

behavior GetEmail ({
void act(String[] args) {
if (args.length != 2) {
standardOutput <- println(“Usage: salsa
addressbook.GetEmail <AddressBookUAN> <Name>") ;
return;
}
getEmail (args (0) ,args (1)) ;
}

void getEmail (String uan, String name) {

try{

AddressBook book = (AddressBook)
AddressBook.getReferenceByName (new UAN (uan)) ;

standardOutput <- print(name + “’s email: “) @
book <- getEmail (name) @
standardOutput <- println(token) ;

} catch (MalformedUANException e) {
standardError<-println(e) ;

}

C. Varela

18

Erlang Language Support for Distributed
Computing

Erlang provides linguistic abstractions for:

— Registered processes (actors).

— Remote process (actor) creation.
— Remote message sending.

— Process (actor) groups.

— Error detection.

Erlang-compiled code closely tied to Erlang node run-time platform.

C. Varela

19

Erlang Nodes

 To return our own node name:

node ()

e To return a list of other known node names:

nodes ()

If £1ag is true, monitoring starts. If
false, monitoring stops. When a

* To monitor a node: monitored node fails, {nodedown,
Node} is sent to monitoring process.

monitor node (Node, Flag)

C. Varela 20

Actor Creation

travel is the module name,
agent is the function name,
Agent is the actor name.

« To create an actor locally

Agent = spawn (travel, agent, []);

e To create an actor in a specified remote node:

Agent = spawn (host, travel, agent, []);

host is the node name.

C. Varela 21

Actor Registration

ta is the registered name (an atom),
Agent is the actor name (PID).

e To register an actor:
register (ta, Agent)

e To return the actor identified with a registered name:
whereis (ta)

 To remove the association between an atom and an actor:

unregister (ta)

C. Varela 22

Message Sending

Agent = spawn (travel, agent, []),

register (ta, Agent)

Agent ! {book, Flight}
ta ! {book, Flight}

Message sending syntax is
the same (') with actor
name (Agent) or registered
name (ta).

C. Varela 23

Remote Message Sending

 To send a message to a remote registered actor:

{ta, host} ! {book, Flight}

C. Varela

24

Reference Cell Service Example

-module (dcell) .
-export([cell/1l,start/1]).

cell (Content) ->

receive
{set, NewContent} -> cell (NewContent) ;
{get, Customer} -> Customer ! Content,
cell (Content)
end.

start (Content) ->
register (dcell, spawn(dcell, cell, [Content]))

C. Varela

25

Reterence Cell Tester

-module (dcellTester) .
-export ([main/0]) .

main ()

-> dcell:start(0),
dcell! {get, self()},
receive
Value ->
io:format (”Initial Value:~w~n”, [Value])
end.

C. Varela

26

Reterence Cell Client Example

-module (dcellClient) .
-export ([getCellValue/1]).

getCellValue (Node) ->
{dcell, Node}!{get, self()},
receive
Value ->
io:format (”Initial Value:~w~n”, [Value])
end.

C. Varela

27

Address Book Service

-module (addressbook) .
-export ([start/0,addressbook/1]) .

start () ->
register (addressbook, spawn (addressbook, addressbook, [[]])).

addressbook (Data) ->
receive
{From, {addUser, Name, Email}} ->
From ! {addressbook, ok},
addressbook (add (Name, Email, Data));
{From, {getName, Email}} ->
From ! {addressbook, getname (Email, Data)},
addressbook (Data) ;
{From, {getEmail, Name}} ->
From ! {addressbook, getemail (Name, Data)},
addressbook (Data)
end.

add (Name, Email, Data) -> ..
getname (Email, Data) -> ..
getemail (Name, Data) -> ..

C. Varela

Address Book Client Example

-module (addressbook client).
-export ([getEmail/l,getName/1l,addUser/2]).

addressbook_server () -> 'addressbook@127.0.0.1'.

getEmail (Name) -> call addressbook({getEmail, Name}) .
getName (Email) -> call addressbook ({getName, Email}) .
addUser (Name, Email) -> call addressbook ({addUser, Name, Email}).

call addressbook (Msg) ->
AddressBookServer = addressbook server(),
monitor_node(AddressBookServer,_true),
{addressbook, AddressBookServer} ! {self(), Msg},
receive
{addressbook, Reply} ->
monitor node (AddressBookServer, false),
Reply; B
{nodedown, AddressBookServer} ->
no
end.

C. Varela

29

51.

52.

53.
54.
55.
56.

Exercises

How would you implement the join block linguistic
abstraction considering different potential distributions of
its participating actors?

CTM Exercise 11.11.3 (page 746). Implement the
example using SALSA/WWC and Erlang.

PDCS Exercise 9.6.3 (page 203).

PDCS Exercise 9.6.9 (page 204).

PDCS Exercise 9.6.12 (page 204).

Write the same distributed programs in Erlang.

C. Varela 30

