
C. Varela 1 

State, Object-Oriented Programming 
Explicit State, Polymorphism (CTM 6.1-6.4.4) 

Objects, Classes, and Inheritance (CTM 7.1-7.2) 
 

Carlos Varela 
Rensselaer Polytechnic Institute 

October 25, 2019 
 

Adapted with permission from: 
Seif Haridi 

KTH 
Peter Van Roy 

UCL 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2 

Declarative operations (1) 
•  An  operation is declarative if whenever it is called with 

the same arguments, it returns the same results 
independent of any other computation state 

•  A declarative operation is: 
–  Independent (depends only on its arguments, nothing else) 
–  Stateless (no internal state is remembered between calls) 
–  Deterministic (call with same operations always give same results) 

•  Declarative operations can be composed together to yield 
other declarative components  
–  All basic operations of the declarative model are declarative and 

combining them always gives declarative components 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3 

Declarative 
operation 

Arguments 

Results 

Declarative operations (2) 

rest of computation 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4 

Why declarative components (1) 

•  There are two reasons why they are important: 
•  (Programming in the large) A declarative component can be written,  

tested, and proved correct independent of other components and of its 
own past history. 
–  The complexity (reasoning complexity) of a program composed of 

declarative components is the sum of the complexity of the components 
–  In general the reasoning complexity of programs that are composed of 

nondeclarative components explodes because of the intimate interaction 
between components 

•  (Programming in the small) Programs written in the declarative model 
are much easier to reason about than programs written in more 
expressive models (e.g., an object-oriented model). 
–  Simple algebraic and logical reasoning techniques can be used 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5 

Why declarative components (2) 
•  Since declarative components are 

mathematical functions, algebraic 
reasoning is possible i.e. 
substituting equals for equals 

•  The declarative model of CTM 
Chapter 2 guarantees that all 
programs written are declarative 

•  Declarative components can be 
written in models that allow stateful 
data types, but there is no guarantee  

€ 

Given
f (a) = a2

We can replace f (a) in any other 
equation
b = 7 f (a)2  becomes b = 7a4



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6 

Classification of 
declarative programming 

Declarative 
programming 

Descriptive 

Programmable 

Observational 

Definitional Declarative  
model 

Functional  
programming 

Deterministic 
logic programming 

•  The word declarative means many things to 
many people.  Let’s try to eliminate the 
confusion. 

•  The basic intuition is to program by defining 
the what without explaining the how   



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7 

Oz kernel language 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 
 |  proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end    procedure introduction 
 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end      conditional 
 |  ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’       procedure application 
 |  case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 

 

The following defines the syntax of a statement, 〈s〉 denotes a statement  



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8 

Why the Oz KL is declarative 

•  All basic operations are declarative 
•  Given the components (sub-statements) are declarative, 

–  sequential composition 
–  local statement 
–  procedure definition 
–  procedure call 
–  if statement 
–  case statement 

are all declarative (independent, stateless, deterministic). 



C. Varela 9 

What is state? 
•  State is a sequence of 

values in time that contains 
the intermediate results of a 
desired computation 

•  Declarative programs can 
also have state according to 
this definition 

•  Consider the following 
program 

fun {Sum Xs A}  
   case Xs  
   of X|Xr then {Sum Xr A+X}  
   [] nil then A  
   end  
end 
 
{Browse {Sum [1 2 3 4] 0}} 



C. Varela 10 

What is implicit state? 
The two arguments Xs and A 
represent an implicit state 

 Xs   A 
[1 2 3 4]  0 
[2 3 4]  1 
[3 4]   3 
[4]   6 
nil   10 

fun {Sum Xs A}  
   case Xs  
   of X|Xr then {Sum Xr A+X}  
   [] nil then A  
   end  
end 
 
{Browse {Sum [1 2 3 4] 0}} 



C. Varela 11 

What is explicit state: Example? 

X An unbound 
variable 

X 
A cell C is created   
with initial value 5 
X is bound to C 

 5  

X 
The cell C, which X is  
bound to, is assigned  
the value 6 

 6  

C 

C 



C. Varela 12 

What is explicit state: Example? 

X An unbound 
variable 

X 
A cell C is created  
with initial value 
5 
X is bound to C 

 5  

X 
The cell C, which X is  
bound to, is assigned  
the value 6 

 6  

C 

C 

•  The cell is a value 
container with a unique 
identity 
•  X is really bound to 
the identity of the cell 
•  When the cell is 
assigned, X does not 
change 



C. Varela 13 

What is explicit state? 

•  X = {NewCell I} 
–  Creates a cell with initial value I 
–  Binds X to the identity of the cell 

•  Example: X = {NewCell 0} 
•  {Assign X J} 

–  Assumes X is bound to a cell C (otherwise exception) 
–  Changes the content of C to become J 

•  Y = {Access X} 
–  Assumes X is bound to a cell C (otherwise exception) 
–  Binds Y to the value contained in C 



C. Varela 14 

Examples 

•  X = {NewCell 0} 

•  {Assign X 5} 
 

•  Y = X 
 

•  {Assign Y 10} 
 
•  {Access X} == 10   % 

returns true 
•  X == Y   % returns true 

X  0  

X  5  

Y 

X 10  

Y 



C. Varela 15 

Examples 

•  X = {NewCell 10} 
Y = {NewCell 10} 

•  X == Y   % returns false 
•  Because X and Y refer to 

different cells, with 
different identities 
 
 

•  {Access X} == {Access Y} 
returns true 

X  10  

Y  10  



C. Varela 16 

The model extended with cells 

Semantic stack 

w = f(x) 
z = person(a:y) 
y = α1 
u = α2 
x 

α1: w 
α2: x 
.... 
.... 

single assignment 
store 

mutable store 



C. Varela 17 

The stateful model 

〈s〉 ::= skip                                                empty statement 
 |   〈s1〉 〈s2〉                                        statement sequence  

      |   ...                                                    
 |  {NewCell 〈x〉 〈c〉}       cell creation 
 |  {Exchange 〈c〉 〈x〉 〈y〉}     cell exchange 

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the 
content of the cell 〈c〉 to 〈y〉  



C. Varela 18 

The stateful model 

 |  {NewCell 〈x〉 〈c〉}       cell creation 
 |  {Exchange 〈c〉 〈x〉 〈y〉}     cell exchange 

proc {Assign C X} {Exchange C _ X} end 

fun {Access C} X in{Exchange C X X}X end 

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the 
content of the cell 〈c〉 to 〈y〉  

C := X is syntactic sugar for {Assign C X} 
@C is syntactic sugar for {Access C} 

X=C:=Y is syntactic sugar for {Exchange C X Y} 



C. Varela 19 

Abstract data types (revisited) 
•  For a given functionality, there are many ways to package 

the ADT.  We distinguish three axes. 
•  Open vs. secure ADT: is the internal representation visible 

to the program or hidden? 
•  Declarative vs. stateful ADT: does the ADT have 

encapsulated state or not? 
•  Bundled vs. unbundled ADT: is the data kept together with 

the operations or is it separable? 
•  Let us see what our stack ADT looks like with some of 

these possibilities  



C. Varela 20 

Stack: 
Open, declarative, and unbundled 

•  Here is the basic stack, as we saw it before: 
 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of X|S1 then E=X  S1 end end 
fun {IsEmpty S} S==nil end 
 

•  This is completely unprotected.  Where is it useful?  
Primarily, in small programs in which expressiveness is 
more important than security. 



C. Varela 21 

Stack: 
Secure, declarative, and unbundled 
•  We can make the declarative stack secure by using a wrapper: 

 
local Wrap Unwrap 
in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} case {Unwrap S} of X|S1 then E=X {Wrap S1} end end 
 fun {IsEmpty S} {Unwrap S} ==nil end 

end 

•  Where is this useful?  In large programs where we want to protect the 
implementation of a declarative component. 



C. Varela 22 

Stack: 
Secure, stateful, and unbundled 

•  Let us combine the wrapper with state: 
local Wrap Unwrap 
in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap {NewCell nil}} end 
 proc {Push W X} C={Unwrap W} in {Assign C X|{Access C}} end 
 fun {Pop W} C={Unwrap W} in 
  case {Access C} of X|S then {Assign C S} X end 
 end 
 fun {IsEmpty W} {Access {Unwrap W}}==nil end  

end 
•  This version is stateful but lets us store the stack separate from the operations.  

The same operations work on all stacks. 



C. Varela 23 

Stack: 
Secure, stateful, and bundled 

•  This is the simplest way to make a secure stateful stack: 
 
proc {NewStack ?Push ?Pop ?IsEmpty} 

 C={NewCell nil} 
in 

 proc {Push X} {Assign C X|{Access C}} end 
 fun {Pop}  case {Access C} of X|S then {Assign C S}  X  end end 
 fun {IsEmpty} {Access C} ==nil end 

end 
•  Compare the declarative with the stateful versions: the declarative 

version needs two arguments per operation, the stateful version uses 
higher-order programming (instantiation) 

•  With some syntactic support, this is object-based programming 



C. Varela 24 

Four ways to package a stack 
•  Open, declarative, and unbundled: the usual declarative 

style, e.g., in Prolog and Scheme 
•  Secure, declarative, and unbundled: use wrappers to make 

the declarative style secure 
•  Secure, stateful, and unbundled: an interesting variation on 

the usual object-oriented style 
•  Secure, stateful, and bundled: the usual object-oriented 

style, e.g., in Smalltalk and Java 
•  Other possibilities: there are four more possibilities!  

Exercise:  Try to write all of them. 



C. Varela; Adapted from S. Haridi and P. Van Roy 25 

Encapsulated stateful abstract 
datatypes ADT 

•  These are stateful entities that can be accessed only by the 
external interface 

•  The implementation is not visible outside 
•  We show two methods to build stateful abstract data types: 

–  The functor based approach (record interface) 
–  The procedure dispatch approach 



C. Varela; Adapted from S. Haridi and P. Van Roy 26 

The functor-based approach 
fun {NewCounter I} 
    S = {NewCell I} 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1 end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse @S} end 
in  o(inc:Inc dec:Dec get:Get put:Put display:Display) 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 27 

The functor-based approach 
fun {NewCounter I} 
    S = {NewCell I} 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse @S} end 
in  o(inc:Inc dec:Dec get:Get put:Put browse:Display) 
end 

The state is collected in cell S 
The state is completely encapsulated 
i.e. not visible outside 



C. Varela; Adapted from S. Haridi and P. Van Roy 28 

The functor-based approach 
fun {NewCounter I} 
    S = {NewCell I} 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse @S} end 
in  o(inc:Inc dec:Dec get:Get put:Put display:Display) 
end 

The interface is created for each 
instance Counter  



C. Varela; Adapted from S. Haridi and P. Van Roy 29 

fun {NewCounter I} 
    S = {NewCell I} 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse S.v} end 
in  o(inc:Inc dec:Dec get:Get put:Put display:Display) 
end 

The functor-based approach 

functions that access 
the state by lexical scope 



C. Varela; Adapted from S. Haridi and P. Van Roy 30 

Call pattern 
declare C1 C2 
C1 = {NewCounter 0} 
C2 = {NewCounter 100} 
 
{C1.inc} 
{C1.display} 
 
{C2.dec} 
{C2.display} 



C. Varela; Adapted from S. Haridi and P. Van Roy 31 

Defined as a functor 
functor Counter 
export inc:Inc dec:Dec get:Get put:Put display:Display init:Init 
define 

 S 
    proc {Init init(I)} S = {NewCell I} end 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1 end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse @S} end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 32 

Functors 
•  Functors have been used as a specification of modules 
•  Also functors have been used as a specification of abstract 

datatypes 
•  How to create a stateful entity from a functor? 



C. Varela; Adapted from S. Haridi and P. Van Roy 33 

Explicit creation of objects from 
functors 

•  Given a variable F that is bound to a functor 
•  [O] = {Module.apply [F]} 

creates stateful ADT  object O that is an instance of F 

•  Given the functor F is stored on a file ’f.ozf’ 
•  [O] = {Module.link [’f.ozf’]} 

creates stateful ADT  object O that is an instance of F 



C. Varela; Adapted from S. Haridi and P. Van Roy 34 

Defined as a functor 
functor Counter 
export inc:Inc dec:Dec get:Get put:Put display:Display init:Init 
define 

 S 
    proc {Init init(I)} S = {NewCell I} end 
    proc {Inc} S := @S + 1 end 
    proc {Dec} S := @S - 1 end 
    fun {Get} @S end 
    proc {Put I} S := I end 
    proc {Display} {Browse @S} end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 35 

Pattern of use 
fun {New Functor Init} 

 M in 
 [M] = {Module.apply [Functor]} 
 {M.init Init} 
 M 

End 
 
declare C1 C2 
C1 = {New Counter init(0)} 
C2 = {New Counter init(100)} 
{C1.inc} {C1.put 50} {C1.display} 
{C2.dec} {C2.display} 

Generic function to 
create objects from 
functors 

Object interface is a 
record with procedure 
values inside fields 



C. Varela; Adapted from S. Haridi and P. Van Roy 36 

The procedure-based approach 
fun {Counter} 
    S 

 proc {Inc inc(Value)} S := @S + Value end 
 proc {Display display} {Browse @S} end 
 proc {Init init(I)} S = {NewCell I} end 
 D = o(inc:Inc display:Display init:Init) 

in  proc{$ M} {D.{Label M} M} end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 37 

The procedure-based approach 
fun {Counter} 
    S 

 ... 
 D = o(inc:Inc display:Display init:Init) 

in  proc{$ M} {D.{Label M} M} end 
end 
fun {New Class InitialMethod} 

 O = {Class} 
in {O InitialMethod} O end 



C. Varela; Adapted from S. Haridi and P. Van Roy 38 

Example 
•  The following shows how an object is created from 

a class using the procedure New/3, whose first 
argument is the class, the second is the initial 
method, and the result is the object. 

•   New/3 is a generic procedure for creating objects 
from classes. 

 declare C = {New Counter init(0)} 
{C display} 
{C inc(1)} 
{C display} 

Object interface is as a procedure of 
one argument, which expects a record 



C. Varela; Adapted from S. Haridi and P. Van Roy 39 

Object-oriented programming 
•  Supports 

–  Encapsulation 
–  Compositionality 
–  Instantiation 

•  Plus  
–  Inheritance 



C. Varela; Adapted from S. Haridi and P. Van Roy 40 

Inheritance 
•  Programs can be built in hierarchical structure from ADT’s 

that depend on other ADT’s (Components) 
•  Object-oriented programming (inheritance) is based on the 

idea that ADTs have so much in common 
•  For example, sequences (stacks, lists, queues) 
•  Object oriented programming enables building ADTs 

incrementally, through inheritance 
•  An ADT can be defined to inherit from another abstract 

data type, substantially sharing functionality with that 
abstract data type 

•  Only the difference between an abstract datatype and its 
ancestor has to be specified 



C. Varela; Adapted from S. Haridi and P. Van Roy 41 

What is object-oriented 
programming? 

•  OOP (Object-oriented programming) = encapsulated state 
+ inheritance 

•  Object 
–  An entity with unique identity that encapsulates state 
–  State can be accessed in a controlled way from outside 
–  The access is provided by means of methods (procedures that can 

directly access the internal state) 
•  Class 

–  A specification of objects in an incremental way 
–  Incrementality is achieved inheriting from other classes by 

specifying how its objects (instances) differ from the objects of the 
inherited classes 



C. Varela; Adapted from S. Haridi and P. Van Roy 42 

Instances (objects) 

Interface (what methods 
are available) 

 
State (attributes) 
 
 
Procedures (methods) 



C. Varela; Adapted from S. Haridi and P. Van Roy 43 

Classes (simplified syntax) 
A class is a statement 
 
class 〈ClassVariable〉 

 attr 
     〈AttrName1〉 
  : 
     〈AttrNameN〉 
 meth 〈Pattern1〉  〈Statement〉  end 
   : 
 meth 〈PatternN〉  〈Statement〉  end 

end   



C. Varela; Adapted from S. Haridi and P. Van Roy 44 

Classes (simplified syntax ) 
A class can also be a value that can be in an expression position 
 
class $ 

 attr 
     〈AttrName1〉 
  : 
     〈AttrNamen〉 
 meth 〈Pattern〉  〈Statement〉  end 
   : 
 meth 〈Pattern〉  〈Statement〉  end 

end   



C. Varela; Adapted from S. Haridi and P. Van Roy 45 

Classes in Oz 

The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 46 

Attributes of Classes 

The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 

val is an attribute: 
a modifiable cell 
that is accessed by the 
atom val  



C. Varela; Adapted from S. Haridi and P. Van Roy 47 

Attributes of classes 
The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 

the attribute val  
is accessed by the 
operator @val  



C. Varela; Adapted from S. Haridi and P. Van Roy 48 

Attributes of classes 
The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 

the attribute val  
is assigned by the 
operator := 
as val := ... 



C. Varela; Adapted from S. Haridi and P. Van Roy 49 

Methods of classes 
The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 

methods 
are statements 
method head is a 
record (tuple) pattern 



C. Varela; Adapted from S. Haridi and P. Van Roy 50 

Classes in Oz 
The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 51 

Example 
•  An object is created from a class using the procedure New/
3, whose first argument is the class, the second is the initial 
method, and the result is the object (such as in the functor 
and procedure approaches) 

•  New/3 is a generic procedure for creating objects from 
classes. 

 declare C = {New Counter init(0)} 
{C display} 
{C inc(1)} 
{C display} 



C. Varela; Adapted from S. Haridi and P. Van Roy 52 

•  A class X is defined by:  
–  class X ... end 

•  Attributes are defined using the attribute-declaration 
part before the method-declaration part: 
–  attr A1 ... AN 

•  Then follows the method declarations, each has the 
form: 
–  meth E S end 

•  The expression E evaluates to a method head, which is 
a record whose label is the method name.   

Summary 



C. Varela; Adapted from S. Haridi and P. Van Roy 53 

•  An attribute A is accessed using @A.  
•  An attribute is assigned a value using A := E  
•  A class can be defined as a value: 
•  X = class $ ... end 

Summary 



C. Varela; Adapted from S. Haridi and P. Van Roy 54 

Attribute Initialization 

•  Stateful (may be updated by :=) 
•  Initialized at object creation time, all instances 

have the initial balance = 0 

•  class Account  
     attr balance:0 
     meth … end 
     …  
   end 

In general the initial value 
of an attribute could be any 
legal value (including  
classes and objects) 



C. Varela; Adapted from S. Haridi and P. Van Roy 55 

Attribute Initialization 
•  Initialization by instance 
class Account  
     attr balance 
     meth init(X) balance := X end 
     …  
end 
•  O1 = {New Account init(100)} 
•  O2 = {New Account init(50)} 
 
 



C. Varela; Adapted from S. Haridi and P. Van Roy 56 

Attribute Initialization 
•  Initialization by brand 
declare L=linux 
class RedHat 
   attr ostype:L 
   meth get(X) X = @ostype end 
end  
class SuSE  
   attr ostype:L 
   meth get(X) X = @ostype end 
end  
class Debian  
   attr ostype:L 
   meth get(X) X = @ostype end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 57 

Example 
class Queue  
   attr front back count 
   meth init  
      Q in  
      front := Q  back := Q  count := 0 
   end  
   meth put(X)  
      Q in  
      @back = X|Q  
      back := Q 
      count := @count + 1 
   end  

 ...  
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 58 

Example 
class Queue  
   attr front back count 
   meth init  
      Q in  
      front := Q  back := Q  count := 0 
   end  
   meth put(X)  
      Q in  
      @back = X|Q  
      back := Q 
      count := @count + 1 
   end  

 ...  
end 

front 

back 
Q0 

front 

back 
a | Q1 

put(a) 

  



C. Varela; Adapted from S. Haridi and P. Van Roy 59 

Example 
class Queue  
   attr front back count 
    ...  
   meth get(?X)  
      Q in  
      X|Q = @front  
      front := Q 
      count := @count - 1 
   end 
   meth count(?X) X = @count end 
   ... 
end 

front 

back 
a | Q1   

X 

front 

back 
a | Q1   

X 



C. Varela; Adapted from S. Haridi and P. Van Roy 60 

Classes as incremental ADTs 
•  Object-oriented programming allows us to define a class 

by extending existing classes 
•  Three things have to be introduced 

–  How to express inheritance, and what does it mean? 
–  How to access particular methods in the new class and in 

preexisting classes 
–  Visibility – what part of the program can see the attributes and 

methods of a class 

•  The notion of delegation as a substitute for inheritance 



C. Varela; Adapted from S. Haridi and P. Van Roy 61 

Inheritance 
•  Inheritance should be 

used as a way to 
specialize a class while 
retaining the relationship 
between methods 

•  In this way it is a just an 
extension of an ADT 

•  The other view is 
inheritance is just a (lazy) 
way to construct new 
abstract data types ! 

•  No relationships are 
preserved 

general 
class 

specialized 
class 



C. Varela; Adapted from S. Haridi and P. Van Roy 62 

Inheritance 
class Account  
   attr balance:0 
   meth transfer(Amount) 
      balance := @balance+Amount 
   end 
   meth getBal(B) 
      B = @balance 
   end 
end 
 
A={New Account transfer(100)} 



C. Varela; Adapted from S. Haridi and P. Van Roy 63 

Inheritance II 

Conservative extension 
class VerboseAccount  
   from Account 
   meth verboseTransfer(Amount) 

 ...  
   end 
end 

The class VerboseAccount has the 
methods:  
transfer, getBal, and 
verboseTransfer 



C. Varela; Adapted from S. Haridi and P. Van Roy 64 

Inheritance II 

Non-Conservative extension 
 
class AccountWithFee  
   from VerboseAccount 
   attr fee:5 
   meth transfer(Amount) 
      ... 
   end 
end 

The class AccountWithFee has the 
methods:  
transfer, getBal, and verboseTransfer 
The method transfer has been redefined 
(overridden) with another definition 
 



C. Varela; Adapted from S. Haridi and P. Van Roy 65 

Inheritance II 

Non-Conservative extension 
 
class AccountWithFee  
   from VerboseAccount 
   attr fee:5 
   meth transfer(Amount) 
      ... 
   end 
end 

Account 

VerboseAccount 

AccountWithFee 



C. Varela; Adapted from S. Haridi and P. Van Roy 66 

Polymorphism 

The ability for operations to take 
objects (instances) of different types. 
 
For example, the transfer method can 
be invoked in account object instances 
of three different classes. 
 
The most specific behavior should be 
executed. 

Account 

VerboseAccount 

AccountWithFee 



C. Varela; Adapted from S. Haridi and P. Van Roy 67 

Static and dynamic binding 
Dynamic binding 
•  Inside an object O we want to 

invoke a method M 
•  This is written as {self M}, and 

chooses the method visible in 
the current object (M of D) 

class C 
meth M 

class D 
a subclass of 

C 
meth M 

O 
an instance 

of D 



C. Varela; Adapted from S. Haridi and P. Van Roy 68 

Static and dynamic binding 
Static binding 
•  Inside an object O we want to 

invoke a method M in a specific 
(super) class 

•  This is written as C, M and 
chooses the method visible in 
the super class C (M of  C) 

class C 
meth M 

class D 
a subclass of 

C 
meth M 

O 
an instance 

of D 



C. Varela; Adapted from S. Haridi and P. Van Roy 69 

Static method calls 
•  Given a class  and a method head m(…), a static method-call 

has the following form: 
 C, m(…) 

•  Invokes the method defined in the class argument.  

•  A static method call can only be used  inside class 
definitions.  

•  The method call takes the current object denoted by self as 
implicit argument.  

•  The method m could be defined in the class C, or inherited 
from a super class.  



C. Varela; Adapted from S. Haridi and P. Van Roy 70 

Exercises 
 
63. Do Java and C++ object abstractions completely 

encapsulate internal state? If so, how? If not, why?  
64. Do Java and C++ enable static access to methods defined 

in classes arbitrarily high in the inheritance hierarchy? If 
so, how? If not, why?  

65. Exercise CTM 7.9.1 (pg 567) 
66. Exercise CTM 7.9.7 (pg 568) 


