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Overview of  
concurrent programming 

•  There are four main approaches: 
–  Sequential programming (no concurrency) 
–  Declarative concurrency (streams in a functional language) 
–  Message passing with active objects (Erlang, SALSA) 
–  Atomic actions on shared state (Java, C++) 

•  The atomic action approach is the most difficult, yet it is 
the one you will probably be most exposed to! 

•  But, if you have the choice, which approach to use? 
–  Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, otherwise use actors and message passing. 
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Actors/SALSA 
•  Actor Model  

–  A reasoning framework to model concurrent 
computations  

–  Programming abstractions for distributed open 
systems 

G. Agha, Actors: A Model of Concurrent Computation in Distributed 
Systems. MIT Press, 1986. 

Agha, Mason, Smith and Talcott, “A Foundation for Actor 
Computation”, J. of Functional Programming, 7, 1-72, 1997. 

•  SALSA 
–  Simple Actor Language System and 

Architecture 
–  An actor-oriented language for mobile and 

internet computing 
–  Programming abstractions for internet-based 

concurrency, distribution, mobility, and 
coordination 

C. Varela and G. Agha, “Programming dynamically reconfigurable 
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA 
2001, 36(12), pp 20-34. 



Agha, Mason, Smith & Talcott 
1.  Extend a functional language (call-by-valueλcalculus + 

ifs and pairs) with actor primitives. 

2.  Define an operational semantics for actor configurations. 

3.  Study various notions of equivalence of actor expressions 
and configurations. 

4.  Assume fairness: 
–  Guaranteed message delivery. 
–  Individual actor progress. 
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λ-Calculus as a Model for 
Sequential Computation 

Syntax: 
  e    ::= v   variable 
   | λv.e  function 
   | e(e)   application 

 
Example of beta-reduction: 
 
λx.x2(3)
      x2{3/x}     
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Actor Primitives 

•  send(a,v)
–  Sends value v  to actor a. 

•  new(b)
–  Creates a new actor with behavior b (a λ-calculus functional 

abstraction) and returns the identity/name of the newly created 
actor. 

•  ready(b)
–  Becomes ready to receive a new message with behavior b. 
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AMST Actor Language 
Examples 

b5 = rec(λy.λx.seq(send(x,5),ready(y))) 
receives an actor name x and sends the number 5 to that actor, then it 

becomes ready to process new messages with the same behavior y 
(b5). 

 
Sample usage: 

 send(new(b5), a)
 
A sink, an actor that disregards all messages: 

 sink = rec(λb.λm.ready(b))
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Reference Cell 
cell =  

rec(λb.λc.λm.if(get?(m), 
       seq(send(cust(m),c), 

           ready(b(c))), 

       if(set?(m), 

          ready(b(contents(m))), 

          ready(b(c))))) 
 

Using the cell: 
let a = new(cell(0)) in seq(send(a,mkset(7)), 
         send(a,mkset(2)), 

         send(a,mkget(c))) 
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Join Continuations 
Consider: 

 treeprod = rec(λf.λtree. 
    if(isnat(tree), 

       tree, 
       f(left(tree))*f(right(tree)))) 

 
which multiplies all leaves of a tree, which are numbers. 
 
You can do the “left” and “right” computations concurrently. 
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Tree Product Behavior 
Btreeprod = 

 rec(λb.λm. 
  seq(if(isnat(tree(m)), 

    send(cust(m),tree(m)), 

    let newcust=new(Bjoincont(cust(m))), 

    lp = new(Btreeprod), 

    rp = new(Btreeprod) in 
    seq(send(lp, 

    pr(left(tree(m)),newcust)), 

        send(rp, 

    pr(right(tree(m)),newcust)))), 

      ready(b))) 
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Tree Product (continued) 
 

 
Bjoincont = 

 λcust.λfirstnum.ready(λnum. 

   seq(send(cust,firstnum*num), 

       ready(sink))) 
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Operational Semantics of 
AMST Actor Language 

•  Operational semantics of actor language as a labeled 
transition relationship between actor configurations: 

        [label] 
k1            k2 

•  Actor configurations model open system components: 

–  Set of individually named actors 
–  Messages “en-route” 
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Actor Configurations 
 

k =  α || µ 
 
α is a function mapping actor names (represented as free 

variables) to actor states. 
 
µ is a multi-set of messages “en-route.”  
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Labeled Transition Relation 
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Semantics example summary 
k0 = [send(new(b5),a)]a  ||  {}
k6 = [nil]a, [ready(b5)]b  ||  {< a <= 5 >}
 

[new:a,b]   [snd:a]    [rcv:b,a]    [fun:b]
k0  k1      k2 k3     k4

[snd:a,5]   [fun:b]
k4  k5      k6
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This sequence of 
(labeled) transitions 

from k0 to k6 is called a 
computation sequence.



Asynchronous communication 

k0 = [ready(cell(0))]a  
     || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Three receive transitions are enabled at k0. 
 

[rcv:a,s(7)] 
k0    k1

[rcv:a,s(2)] 
k0    k1’

[rcv:a,g(c)] 
k0    k1”
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Multiple enabled 
transitions can lead 
to nondeterministic 

behavior

The set of all 
computations 

sequences from k0 is 
called the 

computation tree 
τ(k0).



Nondeterministic behavior (1) 

k0 = [ready(cell(0))]a  
     || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}
k1  * [ready(cell(7))]a  
     || {<a<=s(2)>, <a<=g(c)>}

k1’ * [ready(cell(2))]a  
     || {<a<=s(7)>, <a<=g(c)>}

k1” * [ready(cell(0))]a  
     || {<a<=s(7)>, <a<=s(2)>, <c<=0>}
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Customer c will get 2 or 7.

Customer c will get 0.



Nondeterministic behavior (2) 

k0 = [ready(cell(0))]a  
     || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.: 
 

[rcv:a,g(c)]     [rcv:a,s(7)]     [rcv:a,s(2)]
k0    k1  *        k2   *          k3

kf = [ready(cell(2))]a  || {<c<=0>}
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Final cell state is 2.



Nondeterministic behavior (3) 

k0 = [ready(cell(0))]a  
     || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.: 
 

[rcv:a,s(2)]     [rcv:a,g(c)]     [rcv:a,s(7)]
k0    k1  *        k2   *          k3

kf = [ready(cell(7))]a  || {<c<=2>}
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Final cell state is 7.
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Erlang support for Actors 
•  Actors in Erlang are modeled as processes.  Processes start 

by executing an arbitrary function.  Related functions are 
grouped into modules. 

•  Messages can be any Erlang terms, e.g., atoms, tuples 
(fixed arity), or lists (variable arity).  Messages are sent 
asynchronously. 

•  State is modeled implicitly with function arguments. 
Actors explicitly call receive to get a message, and must 
use tail-recursion to get new messages, i.e., control loop is 
explicit.  



Reference Cell in Erlang 
-module(cell). 
-export([cell/1]). 
 

cell(Content) ->  
  receive 
    {set, NewContent} -> cell(NewContent);  
    {get, Customer}   -> Customer ! Content,  
                         cell(Content) 
  end. 
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Encapsulated state Content.

Message 
handlers

State change.

Explicit control loop:  Actions 
at the end of a message need 

to include tail-recursive 
function call.  Otherwise actor 

(process) terminates.



Reference Cell in Erlang 
-module(cell). 
-export([cell/1]). 
 

cell(Content) ->  
  receive 
    {set, NewContent} -> cell(NewContent);  
    {get, Customer}   -> Customer ! Content,  
                         cell(Content) 
  end. 
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Content is an argument to 
the cell function.

{set, NewContent} is a 
tuple pattern.  set is an 
atom. NewContent is a 

variable.
Messages are checked one by 
one, and for each message, 

first pattern that applies gets 
its actions (after ->) 

executed.  If no pattern 
matches, messages remain in 

actor’s mailbox.



Cell Tester in Erlang 
-module(cellTester). 
-export([main/0]). 
 

main() -> C = spawn(cell,cell,[0]), 
          C!{set,7}, 
          C!{set,2}, 
          C!{get,self()}, 
          receive 
             Value -> 

                io:format("~w~n”,[Value]) 
          end. 
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Actor creation (spawn)

Message passing (!)

receive waits until a 
message is available.



Cell Tester in Erlang 
-module(cellTester). 
-export([main/0]). 
 

main() -> C = spawn(cell,cell,[0]), 
          C!{set,7}, 
          C!{set,2}, 
          C!{get,self()}, 
          receive 
             Value -> 

                io:format("~w~n",[Value]) 
          end. 
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[0] is a list with the arguments 
to the module’s function. General 

form:
spawn(module, function, 

arguments) 

Function calls take the form: 
module:function(args)

self() is a built-in 
function (BIF) that 

returns the process id of 
the current process.
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SALSA support for Actors 
 
•  Programmers define behaviors for actors.  Actors are 

instances of behaviors. 

•  Messages are modeled as potential method invocations.  
Messages are sent asynchronously. 

•  State is modeled as encapsulated objects/primitive types. 
 
•  Tokens represent future message return values.  

Continuation primitives are used for coordination. 
 



C. Varela 26 

Reference Cell Example 

module cell; 
 
behavior Cell { 
 Object content; 
  
 Cell(Object initialContent) {  

         content = initialContent;  
   } 
  
 Object get() { return content; } 
  
 void set(Object newContent) { 
  content = newContent; 
 } 

} 

Encapsulated state content.

Actor constructor.

Message handlers.

State change.
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Reference Cell Example 

module cell; 
 
behavior Cell { 
 Object content; 
  
 Cell(Object initialContent) {  

         content = initialContent;  
   } 
  
 Object get() { return content; } 
  
 void set(Object newContent) { 
  content = newContent; 
 } 

} 

return asynchronously 
sets token associated to 

get message.

Implicit control loop:  
End of message implies 
ready to receive next 

message.
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Cell Tester Example 

module cell; 
 
behavior CellTester { 
 

 void act( String[] args ) { 
       

  Cell c = new Cell(0); 
  c <- set(7); 
  c <- set(2); 
  token t = c <- get(); 
  standardOutput <- println( t ); 
 } 

} 

Actor creation (new)

Message passing (<-)

println message can 
only be processed 
when token t from 
c’s get() message 

handler has been 
produced.
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Cell Tester Example 

module cell; 
 
behavior CellTester { 
 

 void act( String[] args ) { 
       

  Cell c = new Cell(0); 
  c <- set(7); 
  c <- set(2); 
  token t = c <- get(); 
  standardOutput <- println( t ); 
 } 

} 

All message 
passing is 

asynchronous.

println message is 
called partial until 

token t is produced.  
Only full messages 
(with no pending 

tokens) are delivered 
to actors.



Tree Product Behavior in Erlang 
-module(treeprod). 
-export([treeprod/0,join/1]). 
 

treeprod() ->  
  receive 
    {{Left, Right}, Customer} -> 
       NewCust = spawn(treeprod,join,[Customer]), 
       LP = spawn(treeprod,treeprod,[]), 
       RP = spawn(treeprod,treeprod,[]), 

       LP!{Left,NewCust}, 
       RP!{Right,NewCust}; 
    {Number, Customer} ->  
       Customer ! Number 
  end, 
  treeprod(). 

 
join(Customer) -> receive V1 -> receive V2 -> Customer ! V1*V2 end end. 
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Tree Product Sample Execution 
 

 
2> TP = spawn(treeprod,treeprod,[]). 

<0.40.0> 

3> TP ! {{{{5,6},2},{3,4}},self()}. 

{{{{5,6},2},{3,4}},<0.33.0>} 

4> flush(). 
Shell got 720 

ok 

5>  
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Tree Product Behavior in SALSA 

module treeprod; 
import tree.Tree; 
 
behavior TreeProduct { 
 
    int multiply(Object[] results){  
      return (Integer) results[0] * (Integer) results[1];  
    } 
    int compute(Tree t){ 
      if (t.isLeaf()) return t.value(); 
      else { 
        TreeProduct lp = new TreeProduct(); 
        TreeProduct rp = new TreeProduct(); 
        join { 
          lp <- compute(t.left()); 
          rp <- compute(t.right()); 
        } @ multiply(token) @ currentContinuation; 
      } 
    } 
} 

This code uses token-passing 
continuations (@,token), a 

join block (join), and a first-
class continuation 

(currentContinuation).



Tree Product Tester 
module treeprod; 
import tree.Tree; 
 

behavior TreeProductTester { 
 
    void act( String[] args ) { 

 Tree t = new Tree(new Tree(new Tree(5,6),new Tree(2)), 
    new Tree(3,4)); 
 TreeProduct tp = new TreeProduct(); 

 tp <- compute(t) @ standardOutput <- println(token); 
    } 
} 
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Use as follows: 
% javac tree/Tree.java 
% salsac treeprod/* 
% salsa treeprod/TreeProductTester 
720 
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Actor Languages Summary 
•  Actors are concurrent entities that react to messages. 

–  State is completely encapsulated. There is no shared memory! 
–  Message passing is asynchronous. 
–  Actor run-time has to ensure fairness. 

•  AMST extends the call by value lambda calculus with actor primitives.  
State is modeled as function arguments.  Actors use ready to receive 
new messages. 

•  Erlang extends a functional programming language core with 
processes that run arbitrary functions.  State is implicit in the 
function’s arguments.  Control loop is explicit:  actors use receive 
to get a message, and tail-form recursive call to continue. 

•  SALSA extends an object-oriented programming language (Java) with 
universal actors.  State is encapsulated in instance variables.  Control 
loop is implicit: ending a message handler, signals readiness to receive 
a new message. 
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Concurrency Control in SALSA 

•  SALSA provides three main coordination constructs: 
–  Token-passing continuations 

•  To synchronize concurrent activities 
•  To notify completion of message processing 
•  Named tokens enable arbitrary synchronization (data-flow) 

–  Join blocks 
•  Used for barrier synchronization for multiple concurrent 

activities 
•  To obtain results from otherwise independent concurrent 

processes 
–  First-class continuations 

•  To delegate producing a result to another message, or actor 
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Token Passing Continuations 
•  Ensures that each message in the continuation expression is sent after 

the previous message has been processed. It also enables the use of a 
message handler return value as an argument for a later message 
(through the token keyword). 

–  Example: 

a1 <- m1() @  
a2 <- m2( token ); 
 

Send m1 to a1 asking a1 to forward the result of processing m1 to a2 
(as the argument of message m2). 
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Token Passing Continuations 
•  @ syntax using token as an argument is syntactic sugar. 

–  Example 1: 
a1 <- m1() @  
a2 <- m2( token ); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2( t ); 
 

–  Example 2: 
a1 <- m1() @  
a2 <- m2(); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2():waitfor( t ); 
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Named Tokens 
•  Tokens can be named to enable more loosely-

coupled synchronization 

–  Example: 

token t1 = a1 <- m1();  
token t2 = a2 <- m2(); 
token t3 = a3 <- m3( t1 );  
token t4 = a4 <- m4( t2 ); 
a <- m(t1,t2,t3,t4); 
 

Sending m(…) to a will be delayed until 
messages m1()..m4()  have been 
processed.   m1() can proceed 
concurrently with m2(). 
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Join Blocks 

•  Provide a mechanism for synchronizing the processing of a set of 
messages. 

•  Set of results is sent along as a token containing an array of results. 
–  Example: 

UniversalActor[] actors = { searcher0, searcher1,  
               searcher2, searcher3 }; 

join {  
 for (int i=0; i < actors.length; i++){ 
     actors[i] <- find( phrase ); 
  } 
} @ resultActor <- output( token ); 
 
Send the find( phrase ) message to each actor in actors[] then after all 

have completed send the result to resultActor as the argument of an 
output( … ) message. 
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First Class Continuations 

•  Enable actors to delegate computation to a third party independently of 
the processing context. 

•  For example: 
 
  int m(…){ 
    b <- n(…) @ currentContinuation; 

  } 
Ask (delegate) actor b to respond to this message m on behalf of current actor 

(self) by processing b’s message n. 
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Delegate Example 

module fibonacci; 
 
behavior Calculator { 
   
 int fib(int n) {  
  Fibonacci f = new Fibonacci(n); 
  f <- compute() @ currentContinuation; 
 } 
 int add(int n1, int n2) {return n1+n2;}  
  
 void act(String args[]) { 
  fib(15) @ standardOutput <- println(token); 
  fib(5) @ add(token,3) @ 
  standardOutput <- println(token); 
 } 

} 

fib(15) 

 is syntactic sugar for: 
self <- fib(15)
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Fibonacci Example 
module fibonacci; 
 
behavior Fibonacci { 

 int n; 
  
 Fibonacci(int n)  { this.n = n; } 
  
 int add(int x, int y) { return x + y; } 
  
 int compute() { 
  if (n == 0)  return 0; 
  else if (n <= 2)  return 1; 
  else { 
   Fibonacci fib1 = new Fibonacci(n-1); 
   Fibonacci fib2 = new Fibonacci(n-2); 
   token x = fib1<-compute();  
   token y = fib2<-compute(); 
   add(x,y) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  n = Integer.parseInt(args[0]); 
  compute() @ standardOutput<-println(token); 
 } 

} 
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Fibonacci Example 2 
module fibonacci2; 
 
behavior Fibonacci { 

   
 int add(int x, int y) { return x + y; } 
  
 int compute(int n) { 
  if (n == 0)  return 0; 
  else if (n <= 2) return 1; 
  else { 
   Fibonacci fib = new Fibonacci(); 
   token x = fib <- compute(n-1);  
   compute(n-2) @ add(x,token) @ currentContinuation; 
  } 
 } 
  
 void act(String args[]) { 
  int n = Integer.parseInt(args[0]); 
  compute(n) @ standardOutput<-println(token); 
 } 

} 

compute(n-2) is a 
message to self.
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Execution of  
salsa Fibonacci 6 

F6 

F5 

F4 F2 

F3 

F2 

F1 

F2 

F3 

F2 

F1 

F4 

F1 F3 

F2 

Create new actor 

Synchronize on 
result 

Non-blocked actor 
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Concurrency control in Erlang 

•  Erlang uses a selective receive mechanism to help 
coordinate concurrent activities: 
–  Message patterns and guards 

•  To select the next message (from possibly many) to execute. 
•  To receive messages from a specific process (actor). 
•  To receive messages of a specific kind (pattern). 

–  Timeouts 
•  To enable default activities to fire in the absence of messages 

(following certain patterns). 
•  To create timers. 

–  Zero timeouts (after 0) 
•  To implement priority messages, to flush a mailbox. 



Selective Receive 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
end 

receive suspends until a message in the actor’s mailbox 
matches any of the patterns including optional guards. 

•  Patterns are tried in order.  On a match, the message is 
removed from the mailbox and the corresponding pattern’s 
actions are executed. 

•  When a message does not match any of the patterns, it is 
left in the mailbox for future receive actions. 
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Selective Receive Example 
Example program and mailbox (head at top): 
 
receive 

    msg_b -> … 
end 

receive tries to match msg_a and fails.  msg_b can be 
matched, so it is processed.  Suppose execution continues: 

 
receive 

    msg_c -> … 
    msg_a -> … 
end 
The next message to be processed is msg_a since it is the 

next in the mailbox and it matches the 2nd pattern. 
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msg_a 

msg_b 

msg_c 

msg_a 

msg_c 



Receiving from a specific actor 
 
Actor ! {self(), message} 

 

self() is a Built-In-Function (BIF) that returns the current 
(executing) process id (actor name).  Ids can be part of a 
message. 

 
receive 

    {ActorName, Msg} when ActorName == A1 -> 
       … 
end 

receive can then select only messages that come from a 
specific actor, in this example, A1.  (Or other actors that 
know A1’s actor name.) 
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Receiving a specific kind of 
message  

 
counter(Val) -> 
  receive 

    increment -> counter(Val+1); 
    {From,get} ->  
      From ! {self(), Val}, 
      counter(Val); 
    stop -> true; 
    Other -> counter(Val) 

  end. 

 
counter is a behavior that can receive increment 

messages, get request messages, and stop messages.  
Other message kinds are ignored. 
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increment is an atom 
whereas Other is a 

variable (that matches 
anything!). 



Order of message patterns matters 
 
receive 
    {{Left, Right}, Customer} -> 

       NewCust = spawn(treeprod,join,[Customer]), 
       LP = spawn(treeprod,treeprod,[]), 
       RP = spawn(treeprod,treeprod,[]), 
       LP!{Left,NewCust}, 
       RP!{Right,NewCust}; 
    {Number, Customer} ->  

       Customer ! Number 
end 

 
In this example, a binary tree is represented as a tuple 
{Left, Right}, or as a Number, e.g.,  

         {{{5,6},2},{3,4}} 
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{Left,Right} is a 
more specific pattern 
than Number is (which 
matches anything!).  
Order of patterns is 

important.



Selective Receive with Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after TimeOutExpr -> 
       ActionsT 
end 

TimeOutExpr evaluates to an integer interpreted as 
milliseconds. 

If no message has been selected within this time, the timeout 
occurs and ActionsT are scheduled for evaluation. 

A timeout of infinity means to wait indefinitely.   
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Timer Example 
 
sleep(Time) -> 
       receive 

          after Time -> 
             true 
       end. 

 

sleep(Time) suspends the current actor for Time 
milliseconds. 
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Timeout Example 
receive 
    click -> 
       receive 

           click ->  
             double_click 
       after double_click_interval() -> 
             single_click 
       end 
    ... 

end 

double_click_interval evaluates to the number of 
milliseconds expected between two consecutive mouse 
clicks, for the receive to return a double_click.  
Otherwise, a single_click is returned. 
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Zero Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after 0 -> 
       ActionsT 
end 

A timeout of 0 means that the timeout will occur 
immediately, but Erlang tries all messages currently in the 
mailbox first. 
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Zero Timeout Example 
 
flush_buffer() -> 
       receive 

          AnyMessage -> 
             flush_buffer() 
          after 0 -> 
             true 
       end. 
 

flush_buffer() completely empties the mailbox of the 
current actor. 
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Priority Messages 
 
priority_receive() -> 
       receive 

          interrupt -> 
             interrupt 
          after 0 -> 
             receive 
                AnyMessage -> 
                   AnyMessage 

             end 
       end. 
 

priority_receive() will return the first message in 
the actor’s mailbox, except if there is an interrupt 
message, in which case, interrupt will be given 
priority. 
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Overview of  
programming distributed systems 

•  It is harder than concurrent programming! 
•  Yet unavoidable in today’s information-oriented society, e.g.: 

–  Internet, mobile devices 
–  Web services 
–  Cloud computing 

•  Communicating processes with independent address spaces 
•  Limited network performance 

–  Orders of magnitude difference between WAN, LAN, and intra-machine 
communication. 

•  Localized heterogeneous resources, e.g, I/O, specialized devices. 
•  Partial failures, e.g. hardware failures, network disconnection 
•  Openness:  creates security, naming, composability issues. 
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Universal Actor Names (UAN) 
•  Consists of human readable names. 
•  Provides location transparency to actors. 
•  Name to locator mapping updated as actors migrate. 
•  UAN servers provide mapping between names and 

locators. 
–  Example Universal Actor Name: 

          uan://wwc.cs.rpi.edu:3030/cvarela/calendar 

 Name server 
address and 

(optional) port. 

Unique 
relative 

actor name. 
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WWC Theaters 

Theater address 
and port. Actor location. 
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Universal Actor Locators (UAL) 

•  Theaters provide an execution environment for universal 
actors. 

•  Provide a layer beneath actors for message passing and 
migration. 

•  When an actor migrates, its UAN remains the same, while 
its UAL changes to refer to the new theater. 

•  Example Universal Actor Locator: 
                        rmsp://wwc.cs.rpi.edu:4040 

Theater’s IP 
address and 

(optional) port. 
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SALSA Language Support for Worldwide 
Computing 

•  SALSA provides linguistic abstractions for: 

–  Universal naming (UAN & UAL). 
–  Remote actor creation. 
–  Location-transparent message sending. 
–  Migration. 
–  Coordination. 

•  SALSA-compiled code closely tied to WWC run-time platform. 
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Universal Actor Creation 

•  To create an actor locally  
 

TravelAgent a = new TravelAgent(); 

•  To create an actor with a specified UAN and UAL: 

TravelAgent a = new TravelAgent() at (uan, ual); 

•  To create an actor with a specified UAN at current location: 
 

TravelAgent a = new TravelAgent() at (uan); 
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Message Sending 
 

 
TravelAgent a = new TravelAgent(); 

 

a <- book( flight ); 

Message sending syntax is 
the same (<-), 

independently of actor’s 
location.
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Remote Message Sending 

•  Obtain a remote actor reference by name.  

TravelAgent a = (TravelAgent) 
TravelAgent.getReferenceByName(“uan://myhost/ta”); 

 

a <- printItinerary(); 
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Reference Cell Service Example 
module dcell; 
 
behavior Cell implements ActorService{ 
 

 Object content; 
  
 Cell(Object initialContent) {  

         content = initialContent;  
   } 

  
 Object get() {  
  standardOutput <- println (“Returning: ”+content); 
  return content; 
 } 
  
 void set(Object newContent) { 
  standardOutput <- println (“Setting: ”+newContent); 
  content = newContent; 
 } 

} 

implements ActorService 
signals that actors with this 

behavior are not to be 
garbage collected.
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Reference Cell Tester 
module dcell; 
 
behavior CellTester { 
 

  void act( String[] args ) { 
       
      if (args.length != 2){ 

  standardError <- println( 
              “Usage: salsa dcell.CellTester <UAN> <UAL>”); 

  return; 
   } 

 
   Cell c = new Cell(0) at (new UAN(args[0]), new UAL(args[1])); 

 
      standardOutput <- print( “Initial Value:” ) @ 
      c <- get() @ standardOutput <- println( token ); 
    } 
} 
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Reference Cell Client Example 

module dcell; 
 
behavior GetCellValue { 
 

 void act( String[] args ) { 
      if (args.length != 1){ 

  standardOutput <- println( 
            “Usage: salsa dcell.GetCellValue <CellUAN>”); 

  return; 
    } 

 
    Cell c = (Cell) Cell.getReferenceByName(args[0]); 

 
    standardOutput <- print(“Cell Value:”) @ 
    c <- get() @ 
    standardOutput <- println(token); 

   } 
} 
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Address Book Service 

module addressbook; 
import java.util.* 
 
behavior AddressBook implements ActorService { 

 Hashtable name2email; 
 AddressBook() {  

         name2email = new HashTable();  
   }   

 String getName(String email) { … } 
 String getEmail(String name) { … } 
 boolean addUser(String name, String email) { … } 

 
 void act( String[] args ) { 

      if (args.length != 0){ 
  standardOutput<-println(“Usage: salsa -Duan=<UAN> -Dual=<UAL> 
           addressbook.AddressBook”); 
    } 

   } 
} 
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Address Book Add User 
Example 

 
module addressbook; 
 
behavior AddUser { 

 void act( String[] args ) { 
      if (args.length != 3){ 

  standardOutput<-println(“Usage: salsa 
    addressbook.AddUser <AddressBookUAN> <Name> <Email>”); 
  return; 
    } 
    AddressBook book = (AddressBook)  
  AddressBook.getReferenceByName(new UAN(args[0])); 
    book<-addUser(args(1), args(2)); 

   } 
} 
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Address Book Get Email 
Example 

module addressbook; 
 
behavior GetEmail { 

 void act( String[] args ) { 
      if (args.length != 2){ 

  standardOutput <- println(“Usage: salsa 
    addressbook.GetEmail <AddressBookUAN> <Name>”); 
  return; 
    } 
    getEmail(args(0),args(1)); 
 } 

 
 void getEmail(String uan, String name){ 
  try{ 
     AddressBook book = (AddressBook)  
   AddressBook.getReferenceByName(new UAN(uan)); 
        standardOutput <- print(name + “’s email: “) @ 
        book <- getEmail(name) @ 
        standardOutput <- println(token); 
  } catch(MalformedUANException e){ 
     standardError<-println(e); 
  } 
 } 

} 
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Erlang Language Support for Distributed 
Computing 

•  Erlang provides linguistic abstractions for: 

–  Registered processes (actors). 
–  Remote process (actor) creation. 
–  Remote message sending. 
–  Process (actor) groups. 
–  Error detection. 

•  Erlang-compiled code closely tied to Erlang node run-time platform. 
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Erlang Nodes 

•  To return our own node name: 
 

node() 
 

•  To return a list of other known node names: 

nodes() 
 

•  To monitor a node: 

monitor_node(Node, Flag) 
 

If flag is true, monitoring starts.  If 
false, monitoring stops. When a 

monitored node fails, {nodedown, 
Node} is sent to monitoring process.
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Actor Creation 

•  To create an actor locally  
 

Agent = spawn(travel, agent, []); 

•  To create an actor in a specified remote node: 

Agent = spawn(host, travel, agent, []); 

travel is the module name, 
agent is the function name, 
Agent is the actor name.

host is the node name.
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Actor Registration 

•  To register an actor: 
 

register(ta, Agent) 
 

•  To return the actor identified with a registered name: 

whereis(ta) 
 

•  To remove the association between an atom and an actor: 

unregister(ta) 
 

ta is the registered name (an atom), 
Agent is the actor name (PID).
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Message Sending 
 

 
Agent = spawn(travel, agent, []), 

register(ta, Agent) 
 

Agent ! {book, Flight} 
ta ! {book, Flight} 

 

Message sending syntax is 
the same (!) with actor 

name (Agent) or registered 
name (ta).
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Remote Message Sending 

•  To send a message to a remote registered actor:  

{ta, host} ! {book, Flight} 
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Reference Cell Service Example 
-module(dcell). 
-export([cell/1,start/1]). 
 

cell(Content) ->  
  receive 
    {set, NewContent} -> cell(NewContent);  
    {get, Customer}   -> Customer ! Content,  
                         cell(Content) 
  end. 

 
start(Content) ->  
  register(dcell, spawn(dcell, cell, [Content])) 
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Reference Cell Tester 
-module(dcellTester). 
-export([main/0]). 
 

main() -> dcell:start(0), 
          dcell!{get, self()}, 
          receive 
             Value -> 
                io:format(”Initial Value:~w~n”,[Value]) 
          end. 
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Reference Cell Client Example 

-module(dcellClient). 
-export([getCellValue/1]). 
 

getCellValue(Node) -> 
          {dcell, Node}!{get, self()}, 
          receive 
             Value -> 
                io:format(”Initial Value:~w~n”,[Value]) 
          end. 
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Address Book Service 
-module(addressbook). 
-export([start/0,addressbook/1]). 
 
start() -> 
    register(addressbook, spawn(addressbook, addressbook, [[]])). 
 
addressbook(Data) ->  
  receive 
    {From, {addUser, Name, Email}} -> 
       From ! {addressbook, ok}, 
       addressbook(add(Name, Email, Data)); 
    {From, {getName, Email}} -> 
       From ! {addressbook, getname(Email, Data)}, 
       addressbook(Data); 
    {From, {getEmail, Name}} -> 
       From ! {addressbook, getemail(Name, Data)}, 
       addressbook(Data) 
  end. 
 
add(Name, Email, Data) -> … 
getname(Email, Data) -> … 
getemail(Name, Data) -> … 
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Address Book Client Example 
-module(addressbook_client). 
-export([getEmail/1,getName/1,addUser/2]). 
 
addressbook_server() -> 'addressbook@127.0.0.1'. 
 
getEmail(Name) -> call_addressbook({getEmail, Name}). 
getName(Email) -> call_addressbook({getName, Email}). 
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}). 
 
call_addressbook(Msg) -> 
    AddressBookServer = addressbook_server(), 
    monitor_node(AddressBookServer, true), 
    {addressbook, AddressBookServer} ! {self(), Msg}, 
    receive 
       {addressbook, Reply} -> 
           monitor_node(AddressBookServer, false), 
           Reply; 
       {nodedown, AddressBookServer} -> 
           no 
    end. 
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Advanced Features of Actor 
Languages 

•  SALSA and Erlang support the basic primitives of the actor model: 
–  Actors can create new actors. 
–  Message passing is asynchronous. 
–  State is encapsulated. 
–  Run-time ensures fairness. 

•  SALSA also introduces advanced coordination abstractions: tokens, join 
blocks, and first-class continuations; SALSA supports distributed 
systems development including actor mobility and garbage collection.  
Research projects have also investigated load balancing, malleability 
(IOS), scalability (COS), and visualization (OverView). 

•  Erlang introduces a selective receive abstraction to enforce different 
orders of message delivery, including a timeout mechanism to bypass 
blocking behavior of receive primitive.  Erlang also provides error 
handling abstractions at the language level, and dynamic (hot) code 
loading capabilities. 
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Moving Cell Tester Example 
module dcell; 
 
behavior MovingCellTester { 
 

  void act( String[] args ) { 
       
      if (args.length != 3){ 

  standardError <- println(“Usage:  
    salsa dcell.MovingCellTester <UAN> <UAL1> <UAL2>”); 
  return; 
   } 

 
   Cell c = new Cell(“Hello”) at (new UAN(args[0]), new UAL(args[1])); 

 
      standardOutput <- print( ”Initial Value:” ) @ 
      c <- get() @ standardOutput <- println( token ) @ 
      c <- set(“World”) @ 
      standardOutput <- print( ”New Value:” ) @ 
      c <- get() @ standardOutput <- println( token ) @ 
      c <- migrate(args[2]) @ 

   c <- set(“New World”) @ 
      standardOutput <- print( ”New Value at New Location:” ) @ 
      c <- get() @ standardOutput <- println( token ); 
   } 
} 
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Address Book Migrate Example 

 
module addressbook; 
 
behavior MigrateBook { 

 void act( String[] args ) { 
      if (args.length != 2){ 

  standardOutput<-println(“Usage: salsa 
    addressbook.MigrateBook <AddressBookUAN> <NewUAL>”); 
  return; 
    } 
    AddressBook book = (AddressBook)  
  AddressBook.getReferenceByName(new UAN(args[0])); 
    book<-migrate(args(1)); 

   } 
} 
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Actor Garbage Collection 

•  Implemented since SALSA 1.0 using pseudo-root 
approach. 

•  Includes distributed cyclic garbage collection. 
•  For more details, please see: 
 
Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile Actor 

Systems: The Pseudo Root Approach. In Proceedings of the First International 
Conference on Grid and Pervasive Computing (GPC 2006), Taichung, Taiwan, May 
2006. Springer-Verlag LNCS. 

Wei-Jen Wang, Carlos Varela, Fu-Hau Hsu, and Cheng-Hsien Tang. Actor Garbage 
Collection Using Vertex-Preserving Actor-to-Object Graph Transformations. In 
Advances in Grid and Pervasive Computing, volume 6104 of Lecture Notes in Computer 
Science, Bologna, pages 244-255, May 2010. Springer Berlin / Heidelberg. 
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Actor GC vs. Object GC 

Blocked ActorRoot Actor Unblocked Actor Reference

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

1 2 3 4

5 6 7

Passive Object Reference Graph

8

9

8

9

Live Actor

Live Object
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IOS:  Load Balancing and 
Malleability 

•  Middleware 
–  A software layer between distributed applications and 

operating systems. 
–  Alleviates application programmers from directly dealing 

with distribution issues 
•  Heterogeneous hardware/O.S.s 
•  Load balancing 
•  Fault-tolerance 
•  Security 
•  Quality of service 

•  Internet Operating System (IOS) 
–  A decentralized framework for adaptive, scalable execution 
–  Modular architecture to evaluate different distribution and 

reconfiguration strategies 

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:  
Middleware for Adaptive Distributed Computing”, International Journal of High 
Performance Computing and Applications, 2006. 

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware 
Framework for Dynamically Reconfigurable Scientific Computing”, Grid Computing and 
New Frontiers of High Performance Processing, Elsevier 2005.  

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic 
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp. 
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Component Malleability 
•  New type of reconfiguration: 

–  Applications can dynamically change component granularity 
•  Malleability can provide many benefits for HPC 

applications: 
–  Can more adequately reconfigure applications in response to a 

dynamically changing environment: 
•  Can scale application in response to dynamically joining 

resources to improve performance. 
•  Can provide soft fault-tolerance in response to dynamically 

leaving resources. 
–  Can be used to find the ideal granularity for different architectures. 
–  Easier programming of concurrent applications, as parallelism can 

be provided transparently. 
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Component Malleability 

•  Modifying application component granularity dynamically (at run-
time) to improve scalability and performance. 

•  SALSA-based malleable actor implementation. 
•  MPI-based malleable process implementation. 
•  IOS decision module to trigger split and merge reconfiguration. 
•  For more details, please see: 

 
El Maghraoui, Desell, Szymanski and Varela,“Dynamic Malleability in MPI 

Applications”, CCGrid 2007, Rio de Janeiro, Brazil, May 2007, nominated 
for Best Paper Award. 
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Distributed Systems Visualization 

•  Generic online Java-based distributed systems visualization tool 
•  Uses a declarative Entity Specification Language (ESL) 
•  Instruments byte-code to send events to visualization layer. 
•  For more details, please see: 

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for Generic Online 
Visualization of Distributed Systems. In Proceedings of the European Joint Conferences 
on Theory and Practice of Software (ETAPS 2004), eclipse Technology eXchange (eTX) 
Workshop, Barcelona, Spain, March 2004.  

 

Gustavo A. Guevara S., Travis Desell, Jason Laporte, and Carlos A. Varela. Modular 
Visualization of Distributed Systems. CLEI Electronic Journal, 14:1-17, April 2011. 
Note: Best papers from CLEI 2010.  



Example Specifications for SALSA 

entity UniversalActor is salsa.language.UniversalActor$State { 
 when start putMessageInMailbox(salsa.language.Message message) 
  -> communication(message.getSource().getId(), 
                 message.getTarget().getId()); 
 when finish finalize() 
  -> deletion(this.getId()); 

} 
 
 
entity WWCSystem is wwc.messaging.WWCSystem$State { 
        when start createActor(salsa.naming.UAN uan, 

      salsa.naming.UAL ual,  
      java.lang.String className) 
  -> creation(uan.getId(), ual.getHostAndPort()); 

 
        when start addActor(salsa.language.Actor actor) 

  -> migration(actor.getUAN().getId(), 
         actor.getUAL().getHostAndPort()); 

} 



Chord application topology 
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Open Source Code 
•  Consider to contribute! 
•  Visit our web pages for more info: 

–  SALSA: http://wcl.cs.rpi.edu/salsa/ 
–  IOS: http://wcl.cs.rpi.edu/ios/ 
–  OverView: http://wcl.cs.rpi.edu/overview/ 
–  COS: http://wcl.cs.rpi.edu/cos/ 
–  PILOTS: http://wcl.cs.rpi.edu/pilots/ 
–  MilkyWay@Home: http://milkyway.cs.rpi.edu/ 
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Erlang Language Support for Fault-Tolerant 
Computing 

•  Erlang provides linguistic abstractions for: 

–  Error detection. 
•  Catch/throw exception handling. 
•  Normal/abnormal process termination. 
•  Node monitoring and exit signals. 

–  Process (actor) groups. 
–  Dynamic (hot) code loading. 
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Exception Handling 

•  To protect sequential code from errors: 
 

catch Expression 

•  To enable non-local return from a function: 

throw({ab_exception, user_exists}) 

If failure does not occur in Expression 
evaluation, catch Expression returns 

the value of the expression.
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Address Book Example 
-module(addressbook). 
-export([start/0,addressbook/1]). 
 
start() -> 
    register(addressbook, spawn(addressbook, addressbook, [[]])). 
 
addressbook(Data) ->  
  receive 
    {From, {addUser, Name, Email}} -> 
       From ! {addressbook, ok}, 
       addressbook(add(Name, Email, Data)); 
    … 
end. 
 
add(Name, Email, Data) -> 
    case getemail(Name, Data) of 
       undefined -> 
         [{Name,Email}|Data]; 
       _ ->  % if Name already exists, add is ignored. 
         Data 
    end. 
getemail(Name, Data) -> … 
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Address Book Example with 
Exception 

 
addressbook(Data) ->  
  receive 
    {From, {addUser, Name, Email}} -> 
       case catch add(Name, Email, Data) of 
         {ab_exception, user_exists} -> 
            From ! {addressbook, no}, 
            addressbook(Data); 
         NewData-> 
            From ! {addressbook, ok}, 
            addressbook(NewData) 
       end; 
    … 
end. 
 
add(Name, Email, Data) -> 
    case getemail(Name, Data) of 
       undefined -> 
         [{Name,Email}|Data]; 
       _ ->       % if Name already exists, exception is thrown. 
         throw({ab_exception,user_exists}) 
    end. 
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Normal/abnormal termination 

•  To terminate an actor, you may simply return from the function 
the actor executes (without using tail-form recursion).  This is 
equivalent to calling:    
exit(normal). 

•  Abnormal termination of a function, can be programmed: 
exit({ab_error, no_msg_handler}) 

    equivalent to: 
throw({’EXIT’,{ab_error, no_msg_handler}}) 

•  Or it can happen as a run-time error, where the Erlang run-time 
sends a signal equivalent to: 
exit(badarg)          % Wrong argument type 
exit(function_clause) % No pattern match 
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Address Book Example with 
Exception and Error Handling 

 
addressbook(Data) ->  
  receive 
    {From, {addUser, Name, Email}} -> 
       case catch add(Name, Email, Data) of 
         {ab_exception, user_exists} -> 
            From ! {addressbook, no}, 
            addressbook(Data); 
         {ab_error, What} -> …  % programmer-generated error (exit) 
         {’EXIT’, What} -> …    % run-time-generated error 
         NewData-> 
            From ! {addressbook, ok}, 
            addressbook(NewData) 
       end; 
    … 
end. 
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Node monitoring 

 

•  To monitor a node: 

monitor_node(Node, Flag) 
 

If flag is true, monitoring starts.  If 
false, monitoring stops. When a 

monitored node fails, {nodedown, 
Node} is sent to monitoring process.
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Address Book Client Example 
with Node Monitoring 

-module(addressbook_client). 
-export([getEmail/1,getName/1,addUser/2]). 
 
addressbook_server() -> 'addressbook@127.0.0.1'. 
 
getEmail(Name) -> call_addressbook({getEmail, Name}). 
getName(Email) -> call_addressbook({getName, Email}). 
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}). 
 
call_addressbook(Msg) -> 
    AddressBookServer = addressbook_server(), 
    monitor_node(AddressBookServer, true), 
    {addressbook, AddressBookServer} ! {self(), Msg}, 
    receive 
       {addressbook, Reply} -> 
           monitor_node(AddressBookServer, false), 
           Reply; 
       {nodedown, AddressBookServer} -> 
           no 
    end. 
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Process (Actor) Groups 

•  To create an actor in a specified remote node: 

Agent = spawn(host, travel, agent, []); 

•  To create an actor in a specified remote node and create a link to 
the actor: 

Agent = spawn_link(host, travel, agent, []); 

 
An ’EXIT’ signal will be sent to the originating actor if the host 
node does not exist. 
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Group Failure 

•  Default error handling for linked processes is as follows: 
–  Normal exit signal is ignored. 
–  Abnormal exit (either programmatic or system-generated): 

•  Bypass all messages to the receiving process. 
•  Kill the receiving process. 
•  Propagate same error signal to links of killed process. 

•  All linked processes will get killed if a participating process 
exits abnormally. 
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Dynamic code loading 

•  To update (module) code while running it: 
 

-module(m). 
-export([loop/0]). 
 
loop() -> 
    receive 
        code_switch -> 
            m:loop(); 
        Msg -> ... 
            loop() 
    end. 

code_switch message 
dynamically loads the 

new module code.  
Notice the difference 
between m:loop() 

and loop().
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Declarative operations (1) 
•  An  operation is declarative if whenever it is called with 

the same arguments, it returns the same results 
independent of any other computation state 

•  A declarative operation is: 
–  Independent (depends only on its arguments, nothing else) 
–  Stateless (no internal state is remembered between calls) 
–  Deterministic (call with same operations always give same results) 

•  Declarative operations can be composed together to yield 
other declarative components  
–  All basic operations of the declarative model are declarative and 

combining them always gives declarative components 
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Declarative 
operation 

Arguments 

Results 

Declarative operations (2) 

rest of computation 
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Why declarative components (1) 

•  There are two reasons why they are important: 
•  (Programming in the large) A declarative component can be written,  

tested, and proved correct independent of other components and of its 
own past history. 

–  The complexity (reasoning complexity) of a program composed of 
declarative components is the sum of the complexity of the components 

–  In general the reasoning complexity of programs that are composed of 
nondeclarative components explodes because of the intimate interaction 
between components 

•  (Programming in the small) Programs written in the declarative model 
are much easier to reason about than programs written in more 
expressive models (e.g., an object-oriented model). 

–  Simple algebraic and logical reasoning techniques can be used 
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Why declarative components (2) 
•  Since declarative components are 

mathematical functions, algebraic 
reasoning is possible i.e. 
substituting equals for equals 

•  The declarative model of CTM 
Chapter 2 guarantees that all 
programs written are declarative 

•  Declarative components can be 
written in models that allow stateful 
data types, but there is no guarantee  

€ 

Given
f (a) = a2

We can replace f (a) in any other 
equation
b = 7 f (a)2  becomes b = 7a4
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Classification of 
declarative programming 

Declarative 
programming 

Descriptive 

Programmable 

Observational 

Definitional Declarative  
model 

Functional  
programming 

Deterministic 
logic programming 

•  The word declarative means many things to 
many people.  Let’s try to eliminate the 
confusion. 

•  The basic intuition is to program by defining 
the what without explaining the how   
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Oz kernel language 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 
 |  proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end    procedure introduction 
 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end      conditional 
 |  ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’       procedure application 
 |  case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 

 

The following defines the syntax of a statement, 〈s〉 denotes a statement  
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Why the Oz KL is declarative 

•  All basic operations are declarative 
•  Given the components (sub-statements) are declarative, 

–  sequential composition 
–  local statement 
–  procedure definition 
–  procedure call 
–  if statement 
–  case statement 

are all declarative (independent, stateless, deterministic). 
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What is state? 
•  State is a sequence of 

values in time that contains 
the intermediate results of a 
desired computation 

•  Declarative programs can 
also have state according to 
this definition 

•  Consider the following 
program 

fun {Sum Xs A}  
   case Xs  
   of X|Xr then {Sum Xr A+X}  
   [] nil then A  
   end  
end 
 
{Browse {Sum [1 2 3 4] 0}} 



C. Varela 113 

What is implicit state? 
The two arguments Xs and A 
represent an implicit state 

 Xs   A 
[1 2 3 4]  0 
[2 3 4]  1 
[3 4]   3 
[4]   6 
nil   10 

fun {Sum Xs A}  
   case Xs  
   of X|Xr then {Sum Xr A+X}  
   [] nil then A  
   end  
end 
 
{Browse {Sum [1 2 3 4] 0}} 
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What is explicit state: Example? 

X An unbound 
variable 

X 
A cell C is created   
with initial value 5 
X is bound to C 

 5  

X 
The cell C, which X is  
bound to, is assigned  
the value 6 

 6  

C 

C 
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What is explicit state: Example? 

X An unbound 
variable 

X 
A cell C is created  
with initial value 
5 
X is bound to C 

 5  

X 
The cell C, which X is  
bound to, is assigned  
the value 6 

 6  

C 

C 

•  The cell is a value 
container with a unique 
identity 
•  X is really bound to 
the identity of the cell 
•  When the cell is 
assigned, X does not 
change 
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What is explicit state? 

•  X = {NewCell I} 
–  Creates a cell with initial value I 
–  Binds X to the identity of the cell 

•  Example: X = {NewCell 0} 
•  {Assign X J} 

–  Assumes X is bound to a cell C (otherwise exception) 
–  Changes the content of C to become J 

•  Y = {Access X} 
–  Assumes X is bound to a cell C (otherwise exception) 
–  Binds Y to the value contained in C 
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The stateful model 

〈s〉 ::= skip                                                empty statement 
 |   〈s1〉 〈s2〉                                        statement sequence  

      |   ...                                                    
 |  {NewCell 〈x〉 〈c〉}       cell creation 
 |  {Exchange 〈c〉 〈x〉 〈y〉}     cell exchange 

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the 
content of the cell 〈c〉 to 〈y〉  
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The stateful model 

 |  {NewCell 〈x〉 〈c〉}       cell creation 
 |  {Exchange 〈c〉 〈x〉 〈y〉}     cell exchange 

proc {Assign C X} {Exchange C _ X} end 

fun {Access C} X in{Exchange C X X}X end 

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the 
content of the cell 〈c〉 to 〈y〉  

C := X is syntactic sugar for {Assign C X} 
@C is syntactic sugar for {Access C} 

X=C:=Y is syntactic sugar for {Exchange C X Y} 
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Abstract data types (revisited) 
•  For a given functionality, there are many ways to package 

the ADT.  We distinguish three axes. 
•  Open vs. secure ADT: is the internal representation visible 

to the program or hidden? 
•  Declarative vs. stateful ADT: does the ADT have 

encapsulated state or not? 
•  Bundled vs. unbundled ADT: is the data kept together with 

the operations or is it separable? 
•  Let us see what our stack ADT looks like with some of 

these possibilities  
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Stack: 
Secure, stateful, and bundled 

•  This is the simplest way to make a secure stateful stack: 
 
proc {NewStack ?Push ?Pop ?IsEmpty} 

 C={NewCell nil} 
in 

 proc {Push X} {Assign C X|{Access C}} end 
 fun {Pop}  case {Access C} of X|S then {Assign C S}  X  end end 
 fun {IsEmpty} {Access C} ==nil end 

end 
•  Compare the declarative with the stateful versions: the declarative 

version needs two arguments per operation, the stateful version uses 
higher-order programming (instantiation) 

•  With some syntactic support, this is object-based programming 
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Four ways to package a stack 
•  Open, declarative, and unbundled: the usual declarative 

style, e.g., in Prolog and Scheme 
•  Secure, declarative, and unbundled: use wrappers to make 

the declarative style secure 
•  Secure, stateful, and unbundled: an interesting variation on 

the usual object-oriented style 
•  Secure, stateful, and bundled: the usual object-oriented 

style, e.g., in Smalltalk and Java 
•  Other possibilities: there are four more possibilities!  

Exercise:  Try to write all of them. 
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Object-oriented programming 
•  Supports 

–  Encapsulation 
–  Compositionality 
–  Instantiation 

•  Plus  
–  Inheritance 
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Inheritance 
•  Programs can be built in hierarchical structure from ADT’s 

that depend on other ADT’s (Components) 
•  Object-oriented programming (inheritance) is based on the 

idea that ADTs have so much in common 
•  For example, sequences (stacks, lists, queues) 
•  Object oriented programming enables building ADTs 

incrementally, through inheritance 
•  An ADT can be defined to inherit from another abstract 

data type, substantially sharing functionality with that 
abstract data type 

•  Only the difference between an abstract datatype and its 
ancestor has to be specified 
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What is object-oriented 
programming? 

•  OOP (Object-oriented programming) = encapsulated state 
+ inheritance 

•  Object 
–  An entity with unique identity that encapsulates state 
–  State can be accessed in a controlled way from outside 
–  The access is provided by means of methods (procedures that can 

directly access the internal state) 
•  Class 

–  A specification of objects in an incremental way 
–  Incrementality is achieved inheriting from other classes by 

specifying how its objects (instances) differ from the objects of the 
inherited classes 
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Instances (objects) 

Interface (what methods 
are available) 

 
State (attributes) 
 
 
Procedures (methods) 
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Classes (simplified syntax) 
A class is a statement 
 
class 〈ClassVariable〉 

 attr 
     〈AttrName1〉 
  : 
     〈AttrNameN〉 
 meth 〈Pattern1〉  〈Statement〉  end 
   : 
 meth 〈PatternN〉  〈Statement〉  end 

end   
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Classes in Oz 

The class Counter has the syntactic form 

 class Counter 
   attr val 
    meth display 
           {Browse @val} 
    end 
    meth inc(Value) 
            val := @val + Value 
    end 
    meth init(Value) 
              val := Value 
    end 
end 



C. Varela; Adapted from S. Haridi and P. Van Roy 128 

Example 
•  An object is created from a class using the procedure New/
3, whose first argument is the class, the second is the initial 
method, and the result is the object (such as in the functor 
and procedure approaches) 

•  New/3 is a generic procedure for creating objects from 
classes. 

 declare C = {New Counter init(0)} 
{C display} 
{C inc(1)} 
{C display} 
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•  A class X is defined by:  
–  class X ... end 

•  Attributes are defined using the attribute-declaration 
part before the method-declaration part: 
–  attr A1 ... AN 

•  Then follows the method declarations, each has the 
form: 
–  meth E S end 

•  The expression E evaluates to a method head, which is 
a record whose label is the method name.   

Summary 
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•  An attribute A is accessed using @A.  
•  An attribute is assigned a value using A := E  
•  A class can be defined as a value: 
•  X = class $ ... end 

Summary 
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Classes as incremental ADTs 
•  Object-oriented programming allows us to define a class 

by extending existing classes 
•  Three things have to be introduced 

–  How to express inheritance, and what does it mean? 
–  How to access particular methods in the new class and in 

preexisting classes 
–  Visibility – what part of the program can see the attributes and 

methods of a class 

•  The notion of delegation as a substitute for inheritance 
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Inheritance 
•  Inheritance should be 

used as a way to 
specialize a class while 
retaining the relationship 
between methods 

•  In this way it is a just an 
extension of an ADT 

•  The other view is 
inheritance is just a (lazy) 
way to construct new 
abstract data types ! 

•  No relationships are 
preserved 

general 
class 

specialized 
class 
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Inheritance 
class Account  
   attr balance:0 
   meth transfer(Amount) 
      balance := @balance+Amount 
   end 
   meth getBal(B) 
      B = @balance 
   end 
end 
 
A={New Account transfer(100)} 
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Inheritance II 

Conservative extension 
class VerboseAccount  
   from Account 
   meth verboseTransfer(Amount) 

 ...  
   end 
end 

The class VerboseAccount has the 
methods:  
transfer, getBal, and 
verboseTransfer 
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Inheritance II 

Non-Conservative extension 
 
class AccountWithFee  
   from VerboseAccount 
   attr fee:5 
   meth transfer(Amount) 
      ... 
   end 
end 

The class AccountWithFee has the 
methods:  
transfer, getBal, and verboseTransfer 
The method transfer has been redefined 
(overridden) with another definition 
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Inheritance II 

Non-Conservative extension 
 
class AccountWithFee  
   from VerboseAccount 
   attr fee:5 
   meth transfer(Amount) 
      ... 
   end 
end 

Account 

VerboseAccount 

AccountWithFee 
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Polymorphism 

The ability for operations to take 
objects (instances) of different types. 
 
For example, the transfer method can 
be invoked in account object instances 
of three different classes. 
 
The most specific behavior should be 
executed. 

Account 

VerboseAccount 

AccountWithFee 
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Static and dynamic binding 
Dynamic binding 
•  Inside an object O we want to 

invoke a method M 
•  This is written as {self M}, and 

chooses the method visible in 
the current object (M of D) 

class C 
meth M 

class D 
a subclass of 

C 
meth M 

O 
an instance 

of D 
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Static and dynamic binding 
Static binding 
•  Inside an object O we want to 

invoke a method M in a specific 
(super) class 

•  This is written as C, M and 
chooses the method visible in 
the super class C (M of  C) 

class C 
meth M 

class D 
a subclass of 

C 
meth M 

O 
an instance 

of D 
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Static method calls 
•  Given a class  and a method head m(…), a static method-call 

has the following form: 
 C, m(…) 

•  Invokes the method defined in the class argument.  

•  A static method call can only be used  inside class 
definitions.  

•  The method call takes the current object denoted by self as 
implicit argument.  

•  The method m could be defined in the class C, or inherited 
from a super class.  
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Review of  
concurrent programming 

•  There are four basic approaches: 
–  Sequential programming (no concurrency) 
–  Declarative concurrency (streams in a functional language, Oz) 
–  Message passing with active objects (Erlang, SALSA) 
–  Atomic actions on shared state (Java) 

•  The atomic action approach is the most difficult, yet it is 
the one you will probably be most exposed to! 

•  But, if you have the choice, which approach to use? 
–  Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, else message passing if you can get away with it. 
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Concurrency 
•  How to do several things at once 
•  Concurrency: running several activities 

each running at its own pace 
•  A thread is an executing sequential 

program 
•  A program can have multiple threads by 

using the thread instruction 
•  {Browse 99*99} can immediately respond 

while Pascal is computing 

thread 
   P in 

   P = {Pascal 21} 
   {Browse P} 

end 
{Browse 99*99} 
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State 
•  How to make a function learn from its past? 
•  We would like to add memory to a function to 

remember past results 
•  Adding memory as well as concurrency is an 

essential aspect of modeling the real world 
•  Consider {FastPascal N}: we would like it to 

remember the previous rows it calculated in 
order to avoid recalculating them 

•  We need a concept (memory cell) to store, 
change and retrieve a value 

•  The simplest concept is a (memory) cell which 
is a container of a value 

•  One can create a cell, assign a value to a cell, 
and access the current value of the cell 

•  Cells are not variables 

declare 
C = {NewCell 0} 

{Assign C {Access C}+1} 
{Browse {Access C}} 
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Nondeterminism 
•  What happens if a program has both concurrency and state 

together? 
•  This is very tricky 
•  The same program can give different results from one 

execution to the next 
•  This variability is called nondeterminism  
•  Internal nondeterminism is not a problem if it is not 

observable from outside 
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Nondeterminism (2) 
declare 
C = {NewCell 0} 
 
thread {Assign C 1} end 
thread {Assign C 2} end 

time 

C = {NewCell 0} 
cell C contains 0 

{Assign C 1} 
cell C contains 1 

{Assign C 2} 
cell C contains 2 (final value) 

t0 

t1 

t2 
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Nondeterminism (3) 
declare 
C = {NewCell 0} 
 
thread {Assign C 1} end 
thread {Assign C 2} end 

time 

C = {NewCell 0} 
cell C contains 0 

{Assign C 2} 
cell C contains 2 

{Assign C 1} 
cell C contains 1 (final value) 

t0 

t1 

t2 



S. Haridi and P. Van Roy 147 

Nondeterminism (4) 
declare 
C = {NewCell 0} 
 
thread I in 

 I = {Access C} 
 {Assign C I+1}  

end 
thread J in 
  J = {Access C} 

 {Assign C J+1}  
end 

•  What are the possible results? 
•  Both threads increment the cell C by 

1 
•  Expected final result of C is 2 

•  Is that all? 
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Nondeterminism (5) 
•  Another possible final result is the cell 

C containing the value 1 

declare 
C = {NewCell 0} 

thread I in 
 I = {Access C} 
 {Assign C I+1}  

end 
thread J in 

  J = {Access C} 
 {Assign C J+1}  

end 
time 

C = {NewCell 0} 

I = {Access C} 
I equal 0 

t0 

t1 

t2 J = {Access C} 
J equal 0 

{Assign C J+1} 
C contains 1 

{Assign C I+1} 
C contains 1 

t3 

t4 
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Lessons learned 

•  Combining concurrency and state is tricky 
•  Complex programs have many possible interleavings 
•  Programming is a question of mastering the interleavings 
•  Famous bugs in the history of computer technology are due to 

designers overlooking an interleaving (e.g., the Therac-25 radiation 
therapy machine giving doses thousands of times too high, resulting 
in death or injury) 

1.  If possible try to avoid concurrency and state together 
2.  Encapsulate state and communicate between threads using dataflow 
3.  Try to master interleavings by using atomic operations 
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Atomicity 
•  How can we master the interleavings? 
•  One idea is to reduce the number of interleavings by 

programming with coarse-grained atomic operations 
•  An operation is atomic if it is performed as a whole or 

nothing 
•  No intermediate (partial) results can be observed by any 

other concurrent activity 
•  In simple cases we can use a lock to ensure atomicity of a 

sequence of operations 
•  For this we need a new entity (a lock) 
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Atomicity (2) 
declare 
L = {NewLock} 
 
lock L then 
  sequence of ops 1 
end 

Thread 1 

 
 
 

lock L then 
  sequence of ops 2 

end 

Thread 2 
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The program 
declare 
C = {NewCell 0} 
L = {NewLock} 
 
thread 

 lock L then I in 
     I = {Access C} 
     {Assign C I+1} 
 end  

end 
thread  

 lock L then J in 
      J = {Access C} 

     {Assign C J+1} 
 end  

end 

The final result of C is 
always 2 



Locks and Deadlock: 
Dining Philosophers 
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Ph3 

Ph0 

Ph2 

Ph1 

ch0 

ch1 

ch2 

ch3 



C. Varela; Adapted with permission from S. Haridi and P. Van Roy 154 

Review of  
concurrent programming 

•  There are four basic approaches: 
–  Sequential programming (no concurrency) 
–  Declarative concurrency (streams in a functional language, Oz) 
–  Message passing with active objects (Erlang, SALSA) 
–  Atomic actions on shared state (Java) 

•  The atomic action approach is the most difficult, yet it is 
the one you will probably be most exposed to! 

•  But, if you have the choice, which approach to use? 
–  Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, else message passing if you can get away with it. 
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Declarative Concurrency 
•  This lecture is about declarative concurrency, programs 

with no observable nondeterminism, the result is a function 
•  Independent procedures that execute on their pace and may 

communicate through shared dataflow variables 
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Single-assignment Variables 
•  Variables are short-cuts for values, they cannot be assigned 

more than once 
  declare 

   V = 9999*9999 
  {Browse V*V} 

 
•  Variable identifiers: is what you type 
•  Store variable: is part of the memory system 
•  The declare statement creates a store variable and assigns 

its memory address to the identifier ’V’ in the environment 
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Dataflow 

•  What happens when multiple threads try to 
communicate? 

•  A simple way is to make communicating 
threads synchronize on the availability of data 
(data-driven execution) 

•  If an operation tries to use a variable that is not 
yet bound it will wait 

•  The variable is called a dataflow variable 

+ 

* * 

X Y Z U 
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Dataflow (II) 

•  Two important properties of dataflow 
–  Calculations work correctly independent 

of how they are partitioned between 
threads (concurrent activities) 

–  Calculations are patient, they do not 
signal error; they wait for data 
availability 

•  The dataflow property of variables 
makes sense when programs are 
composed of multiple threads  

declare X 
thread 

   {Delay 5000} X=99 
end 

{Browse ‘Start’} {Browse 
X*X} 

declare X 
thread 

   {Browse ‘Start’} {Browse 
X*X} 
end 

{Delay 5000} X=99 
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The concurrent model 

w = a 
z = person(age: y) 

x 
y = 42 

u 

Single-assignment 
store 

Semantic 
Stack 1 

Semantic 
Stack N 

Multiple semantic 
stacks (threads) 
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Concurrent declarative model 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 

 | local 〈x〉 in 〈s1〉 end        declaration 
 |  proc {〈x〉 〈y1〉 … 〈yn〉 }   〈s1〉 end     procedure introduction 

 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end     conditional 
 |  { 〈x〉 〈y1〉 … 〈yn〉 }        procedure application 

 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 
 | thread 〈s1〉 end         thread creation 

 

The following defines the syntax of a statement, 〈s〉 denotes a statement  
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The concurrent model 

Single-assignment 
store 

ST 
thread 〈s1〉 end,E Top of Stack, Thread i 
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The concurrent model 

Single-assignment 
store 

ST Top of Stack, Thread i 〈s1〉,E 
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Basic concepts 
•  The model allows multiple statements to execute ”at the 

same time” 
•  Imagine that these threads really execute in parallel, each 

has its own processor, but share the same memory 
•  Reading and writing different variables can be done 

simultaneously by different threads, as well as reading the 
same variable 

•  Writing the same variable is done sequentially 
•  The above view is in fact equivalent to an interleaving 

execution: a totally ordered sequence of computation steps, 
where threads take turns doing one or more steps in 
sequence 
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Nondeterminism 
•  An execution is nondeterministic if there is a computation 

step in which there is a choice what to do next 
•  Nondeterminism appears naturally when there is 

concurrent access to shared state 
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Example of nondeterminism 

time 

Thread 1 

x = 1 
x 
y = 5 

store 

time 

Thread 2 

x = 3 

The thread that binds x first will continue, 
the other thread will raise an exception 



C. Varela; Adapted with permission from S. Haridi and P. Van Roy 166 

Nondeterminism 
•  An execution is nondeterministic if there is a computation 

step in which there is a choice what to do next 
•  Nondeterminism appears naturally when there is 

concurrent access to shared state 
•  In the concurrent declarative model when there is only one 

binder for each dataflow variable or multiple compatible 
bindings (e.g., to partial values), the nondeterminism is not 
observable on the store (i.e. the store develops to the same 
final results) 

•  This means for correctness we can ignore the concurrency 
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Scheduling 
•  The choice of which thread to execute next and for how 

long is done by a part of the system called the scheduler 
•  A thread is runnable if its next statement to execute is not 

blocked on a dataflow variable, otherwise the thread is 
suspended 

•  A scheduler is fair if it does not starve a runnable thread, 
i.e. all runnable threads eventually execute 

•  Fair scheduling makes it easy to reason about programs 
and program composition 

•  Otherwise some correct program (in isolation) may never 
get processing time when composed with other programs 
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Example of runnable threads 
proc {Loop P N} 
   if N > 0 then 
      {P} {Loop P N-1} 
   else skip end 
end 
thread {Loop  

 proc {$} {Show 1} end  
        1000}  

end 
thread {Loop  

  proc {$} {Show 2} end  
  1000} 

end 

•  This program will interleave 
the execution of two threads, 
one printing 1, and the other 

printing 2 
•  We assume a fair scheduler 
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Dataflow computation 
•  Threads suspend on data unavailability in 

dataflow variables 
•  The {Delay X} primitive makes the thread 

suspends for X milliseconds, after that, the 
thread is runnable 

declare X 
{Browse X} 
local Y in 

   thread {Delay 1000} Y = 10*10 end 
   X = Y + 100*100 

end 
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Illustrating dataflow computation 

•  Enter incrementally the 
values of X0 to X3 

•  When X0 is bound the 
thread will compute 
Y0=X0+1, and will 
suspend again until X1 is 
bound 

declare X0 X1 X2 X3 
{Browse [X0 X1 X2 X3]} 

thread 
   Y0 Y1 Y2 Y3 

in 
   {Browse [Y0 Y1 Y2 Y3]} 

   Y0 = X0 + 1 
   Y1 = X1 + Y0 
   Y2 = X2 + Y1 
   Y3 = X3 + Y2 

   {Browse completed} 
end 



C. Varela; Adapted with permission from S. Haridi and P. Van Roy 171 

Concurrent Map 
fun {Map Xs F}  
   case Xs  
   of nil then nil  
   [] X|Xr then  

thread {F X} end|{Map Xr F}  
   end 
end  
 

•  This will fork a thread for each 
individual element in the input 
list 

•  Each thread will run only if 
both the element X and the 
procedure F is known 
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Concurrent Map Function 

fun {Map Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then thread {F X} end |{Map Xr F} 
   end 

end 
•  What this looks like in the kernel language: 
proc {Map Xs F Rs}  

 case Xs 
 of nil then Rs = nil 
 [] X|Xr then R Rr in 
    Rs = R|Rr 
    thread {F X R} end 
    {Map Xr F Rr} 
 end 

end 
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How does it work? 
•  If we enter the following statements: 

declare F X Y Z 
{Browse thread {Map X F} end} 

•  A thread executing Map is created.  
•  It will suspend immediately in the case-statement because 

X is unbound.  
•  If we thereafter enter the following statements: 

X = 1|2|Y 
fun {F X} X*X end 

•  The main thread will traverse the list creating two threads 
for the first two arguments of the list  
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How does it work? 

•  The main thread will traverse the list creating two threads 
for the first two arguments of the list: 
 thread {F 1} end, and thread {F 2} end,  

After entering: 
 Y = 3|Z 
Z = nil 
 the program will complete the computation of the main 
thread and the newly created thread thread {F 3} end, 
resulting in the final list [1 4 9].  
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Simple concurrency with 
dataflow 

•  Declarative programs can be 
easily made concurrent 

•  Just use the thread statement 
where concurrency is needed 

 
fun {Fib X}  
   if X=<2 then 1  
   else  
      thread {Fib X-1} end + {Fib X-2}  
   end  
end 
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Understanding why 
fun {Fib X}  
   if X=<2 then 1  
   else  F1 F2 in 
      F1   =   thread {Fib X-1} end 

 F2   =  {Fib X-2}  
  

 
  F1   + F2 
end  

end 

Dataflow dependency 
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Execution of {Fib 6} 

F6 

F5 

F4 F2 

F3 

F2 

F1 

F2 

F3 

F2 

F1 

F4 

F1 F3 

F2 

Fork a thread 

Synchronize on 
result 

Running thread 
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Streams 
•  A stream is a sequence of messages 
•  A stream is a First-In First-Out (FIFO) channel 
•  The producer augments the stream with new messages, and 

the consumer reads the messages, one by one. 

x5 x4 x3 x2 x1 
producer consumer 
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Stream Communication I 

•  The data-flow property of Oz easily enables writing 
threads that communicate through streams in a producer-
consumer pattern.  

•  A stream is a list that is created incrementally by one 
thread (the producer) and subsequently consumed by one 
or more threads (the consumers).  

•  The consumers consume the same elements of the stream.  
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Stream Communication II 
•  Producer, produces incrementally the elements 
•  Transducer(s), transform(s) the elements of the stream 
•  Consumer, accumulates the results  

producer transducer transducer consumer 

thread 1 thread 2 thread 3 thread N 
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Stream communication patterns 
•  The producer, transducers, and the consumer can, in 

general, be described by certain program patterns 
•  We show various patterns 
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Producer 
fun {Producer State} 
    if {More State} then  
       X = {Produce State} in 
       X | {Producer {Transform State}} 

 else nil end 
end 
•  The definition of More, Produce, and Transform is 

problem dependent 
•  State could be multiple arguments 
•  The above definition is not a complete program! 
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Example Producer 
fun {Generate N Limit}  
   if N=<Limit then  
      N | {Generate N+1 Limit}  
   else nil end  
end  

 
•  The State is the two arguments N and Limit 
•  The predicate More is the condition N=<Limit 
•  The Produce function is the identity function on N 
•  The Transform function (N,Limit) ⇒ (N+1,Limit) 

fun {Producer State} 
   if {More State} then  

       X = {Produce State} in 
       X | {Producer {Transform State}} 

   else nil end 
end 
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Consumer Pattern 
fun {Consumer State InStream} 
   case InStream 
   of nil then {Final State} 
   [] X | RestInStream then 
      NextState = {Consume X State} in 
      {Consumer NextState RestInStream} 
   end 
end 
•  Final and Consume are problem dependent 

The consumer suspends until 
InStream is either a cons or a nil 
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Example Consumer 

fun {Sum A Xs}  
   case Xs  
   of nil then A  
   [] X|Xr then {Sum A+X Xr}  
   end  
end  
•  The State is A 
•  Final is just the identity function on State 
•  Consume takes X and State ⇒ X + State 

fun {Consumer State InStream} 
   case InStream 

   of nil then {Final State} 
   [] X | RestInStream then 

      NextState = {Consume X State} in 
      {Consumer NextState RestInStream} 

   end 
end 
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Transducer Pattern 1 

fun {Transducer State InStream} 
   case InStream 
   of nil then nil 
   [] X | RestInStream then 
      NextState#TX = {Transform X State}  
      TX | {Transducer NextState RestInStream} 
   end 
end 
•  A transducer keeps its state in State, receives messages on 

InStream and sends messages on OutStream 
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Transducer Pattern 2 

fun {Transducer State InStream} 
   case InStream 
   of nil then nil 
   [] X | RestInStream then 

 if {Test X#State} then 
          NextState#TX = {Transform X State}  
          TX | {Transducer NextState RestInStream} 

else {Transducer State RestInStream} end 
   end 
end 
•  A transducer keeps its state in State, receives messages on InStream and 

sends messages on OutStream 
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Example Transducer 

fun {Filter Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then 
      if {F X} then X|{Filter Xr F} 
      else {Filter Xr F} end 
   end 
end 

Generate Filter 

IsOdd 

6  5   4   3   2   1 5   3    1 

Filter is a transducer that 
takes an Instream and incremently 

produces an Outstream that satisfies 
the predicate F 

local Xs Ys in 
   thread Xs =  {Generate 1 100} end 
   thread Ys = {Filter Xs IsOdd} end 

   thread {Browse Ys} end 
end 
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Larger example: 
The sieve of Eratosthenes 

•  Produces prime numbers 
•  It takes a stream 2...N, peals off 2 from the rest of the stream 
•  Delivers the rest to the next sieve  

Sieve 

Filter Sieve 

Xs 

Xr 

X 

Ys Zs 

X|Zs 
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Sieve 
fun {Sieve Xs} 
   case Xs 
   of nil then nil 
   [] X|Xr then Ys in 
      thread Ys = {Filter Xr fun {$ Y} Y mod X \= 0 end} end 
      X | {Sieve Ys} 
   end 
end 
•  The program forks a filter thread on each sieve call 
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Example call 
local Xs Ys in 
   thread Xs =  {Generate 2 100000} end 
   thread Ys = {Sieve Xs} end 
   thread for Y in Ys do {Show Y} end end 
end 
  

Filter 3 Sieve Filter 2 Filter 5 

7 | 11 |... 
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Concurrent control abstraction 
•  We have seen how threads are forked by ’thread ... end’ 
•  A natural question to ask is: how can we join threads? 

fork 

join 

threads 
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Termination detection 
•  This is a special case of detecting termination of multiple threads, and 

making another thread wait on that event.  

•  The general scheme is quite easy because of dataflow variables: 

  thread 〈S1〉  X1 = unit  end 
    thread 〈S2〉   X2 = X1  end 
      ... 
    thread 〈Sn〉  Xn = Xn-1 end 
    {Wait Xn} 
    % Continue main thread 

•  When all threads terminate the variables X1 … XN will be merged together 
labeling a single box that contains the value unit.  

•  {Wait XN} suspends the main thread until XN is bound.  
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Concurrent Composition 
conc S1 [] S2 [] … [] Sn end 
 
{Conc      [ proc{$} S1 end   

     proc{$} S2 end 
                 ... 

     proc{$} Sn end]  } 
•  Takes a single argument that is a list of nullary procedures.  

•  When it is executed, the procedures are forked 
concurrently. The next statement is executed only when all 
procedures in the list terminate. 
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Conc 
 local 

   proc {Conc1 Ps I O} 
      case Ps of P|Pr then  
         M in  
         thread {P} M = I end 
         {Conc1 Pr M O} 
      [] nil then O = I 
      end 
   end 
in 
   proc {Conc Ps}  
     X in  {Conc1 Ps unit X} 
     {Wait X} 

          end 
end 

This abstraction takes 
a list of zero-argument 

procedures and terminate 
after all these threads have  

terminated 
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Example 
local 
   proc {Ping N} 
      for I in 1..N do 

       {Delay 500} {Browse ping} 
      end 
      {Browse 'ping terminate'} 
   end 
   proc {Pong N} 
      for I in 1..N do 

      {Delay 600} {Browse pong} 
      end 
      {Browse 'pong terminate'} 
   end 
in .... end 

local 
.... 
in 

   {Browse 'game started'} 
   {Conc  

 [ proc {$} {Ping 1000} end 
      proc {$} {Pong 1000} end  ]} 

    {Browse ’game terminated’} 
end 
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Futures 
•  A future is a read-only capability of a single-assignment variable. For 

example to create a future of the variable X we perform the operation !! to 
create a future Y:   Y = !!X  

•  A thread trying to use the value of a future, e.g. using Y, will suspend until the 
variable of the future, e.g. X, gets bound. 

•  One way to execute a procedure lazily, i.e. in a demand-driven manner, is to 
use the operation {ByNeed +P ?F}.  

•  ByNeed takes a zero-argument function P, and returns a future F. When a 
thread tries to access the value of F, the function {P} is called, and its result 
is bound to F.  

•  This allows us to perform demand-driven computations in a straightforward 
manner.  
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Example  

•  declare Y 
{ByNeed fun {$} 1 end Y} 
{Browse Y} 

•  we will observe that Y becomes a future, i.e. we will see Y<Future> in the 
Browser.  

•  If we try to access the value of Y, it will get bound to 1. 

•  One way to access Y is by perform the operation {Wait Y} which triggers 
the producing procedure.  
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Summary of  
concurrent programming 

•  There are four basic approaches: 
–  Sequential programming (no concurrency) 
–  Declarative concurrency (streams in a functional language, Oz) 
–  Message passing with active objects (Erlang, SALSA) 
–  Atomic actions on shared state (Java) 

•  The atomic action approach is the most difficult, yet it is 
the one you will probably be most exposed to! 

•  But, if you have the choice, which approach to use? 
–  Use the simplest approach that does the job: sequential if that is ok, 

else declarative concurrency if there is no observable 
nondeterminism, else message passing if you can get away with it. 


