
C. Varela 1

Programming Languages
(CSCI 4430/6430)

Part 2: Concurrent Programming: Summary

Carlos Varela
Rennselaer Polytechnic Institute

November 1, 2019

C. Varela 2

Overview of
concurrent programming

•  There are four main approaches:
–  Sequential programming (no concurrency)
–  Declarative concurrency (streams in a functional language)
–  Message passing with active objects (Erlang, SALSA)
–  Atomic actions on shared state (Java, C++)

•  The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

•  But, if you have the choice, which approach to use?
–  Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, otherwise use actors and message passing.

C. Varela 3

Actors/SALSA
•  Actor Model

–  A reasoning framework to model concurrent
computations

–  Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

Agha, Mason, Smith and Talcott, “A Foundation for Actor
Computation”, J. of Functional Programming, 7, 1-72, 1997.

•  SALSA
–  Simple Actor Language System and

Architecture
–  An actor-oriented language for mobile and

internet computing
–  Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

Agha, Mason, Smith & Talcott
1.  Extend a functional language (call-by-valueλcalculus +

ifs and pairs) with actor primitives.

2.  Define an operational semantics for actor configurations.

3.  Study various notions of equivalence of actor expressions
and configurations.

4.  Assume fairness:
–  Guaranteed message delivery.
–  Individual actor progress.

C. Varela 4

λ-Calculus as a Model for
Sequential Computation

Syntax:
 e ::= v variable
 | λv.e function
 | e(e) application

Example of beta-reduction:

λx.x2(3)
 x2{3/x}

C. Varela 5

 λx.x2 3

 32

Actor Primitives

•  send(a,v)
–  Sends value v to actor a.

•  new(b)
–  Creates a new actor with behavior b (a λ-calculus functional

abstraction) and returns the identity/name of the newly created
actor.

•  ready(b)
–  Becomes ready to receive a new message with behavior b.

C. Varela 6

AMST Actor Language
Examples

b5 = rec(λy.λx.seq(send(x,5),ready(y)))
receives an actor name x and sends the number 5 to that actor, then it

becomes ready to process new messages with the same behavior y
(b5).

Sample usage:

 send(new(b5), a)

A sink, an actor that disregards all messages:

 sink = rec(λb.λm.ready(b))

C. Varela 7

Reference Cell
cell =

rec(λb.λc.λm.if(get?(m),
 seq(send(cust(m),c),

 ready(b(c))),

 if(set?(m),

 ready(b(contents(m))),

 ready(b(c)))))

Using the cell:
let a = new(cell(0)) in seq(send(a,mkset(7)),
 send(a,mkset(2)),

 send(a,mkget(c)))

C. Varela 8

Join Continuations
Consider:

 treeprod = rec(λf.λtree.
 if(isnat(tree),

 tree,
 f(left(tree))*f(right(tree))))

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.

C. Varela 9

Tree Product Behavior
Btreeprod =

 rec(λb.λm.
 seq(if(isnat(tree(m)),

 send(cust(m),tree(m)),

 let newcust=new(Bjoincont(cust(m))),

 lp = new(Btreeprod),

 rp = new(Btreeprod) in
 seq(send(lp,

 pr(left(tree(m)),newcust)),

 send(rp,

 pr(right(tree(m)),newcust)))),

 ready(b)))

C. Varela 10

Tree Product (continued)

Bjoincont =

 λcust.λfirstnum.ready(λnum.

 seq(send(cust,firstnum*num),

 ready(sink)))

C. Varela 11

Operational Semantics of
AMST Actor Language

•  Operational semantics of actor language as a labeled
transition relationship between actor configurations:

 [label]
k1 k2

•  Actor configurations model open system components:

–  Set of individually named actors
–  Messages “en-route”

C. Varela 12

Actor Configurations

k = α || µ

α is a function mapping actor names (represented as free

variables) to actor states.

µ is a multi-set of messages “en-route.”

C. Varela 13

Labeled Transition Relation

C. Varela 14

Semantics example summary
k0 = [send(new(b5),a)]a || {}
k6 = [nil]a, [ready(b5)]b || {< a <= 5 >}

[new:a,b] [snd:a] [rcv:b,a] [fun:b]
k0 k1 k2 k3 k4

[snd:a,5] [fun:b]
k4 k5 k6

C. Varela 15

This sequence of
(labeled) transitions

from k0 to k6 is called a
computation sequence.

Asynchronous communication

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Three receive transitions are enabled at k0.

[rcv:a,s(7)]
k0 k1

[rcv:a,s(2)]
k0 k1’

[rcv:a,g(c)]
k0 k1”

C. Varela 16

Multiple enabled
transitions can lead
to nondeterministic

behavior

The set of all
computations

sequences from k0 is
called the

computation tree
τ(k0).

Nondeterministic behavior (1)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}
k1 * [ready(cell(7))]a
 || {<a<=s(2)>, <a<=g(c)>}

k1’ * [ready(cell(2))]a
 || {<a<=s(7)>, <a<=g(c)>}

k1” * [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <c<=0>}

C. Varela 17

Customer c will get 2 or 7.

Customer c will get 0.

Nondeterministic behavior (2)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.:

[rcv:a,g(c)] [rcv:a,s(7)] [rcv:a,s(2)]
k0 k1 * k2 * k3

kf = [ready(cell(2))]a || {<c<=0>}

C. Varela 18

Final cell state is 2.

Nondeterministic behavior (3)

k0 = [ready(cell(0))]a
 || {<a<=s(7)>, <a<=s(2)>, <a<=g(c)>}

Order of three receive transitions determines final state, e.g.:

[rcv:a,s(2)] [rcv:a,g(c)] [rcv:a,s(7)]
k0 k1 * k2 * k3

kf = [ready(cell(7))]a || {<c<=2>}

C. Varela 19

Final cell state is 7.

C. Varela 20

Erlang support for Actors
•  Actors in Erlang are modeled as processes. Processes start

by executing an arbitrary function. Related functions are
grouped into modules.

•  Messages can be any Erlang terms, e.g., atoms, tuples
(fixed arity), or lists (variable arity). Messages are sent
asynchronously.

•  State is modeled implicitly with function arguments.
Actors explicitly call receive to get a message, and must
use tail-recursion to get new messages, i.e., control loop is
explicit.

Reference Cell in Erlang
-module(cell).
-export([cell/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

C. Varela 21

Encapsulated state Content.

Message
handlers

State change.

Explicit control loop: Actions
at the end of a message need

to include tail-recursive
function call. Otherwise actor

(process) terminates.

Reference Cell in Erlang
-module(cell).
-export([cell/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

C. Varela 22

Content is an argument to
the cell function.

{set, NewContent} is a
tuple pattern. set is an
atom. NewContent is a

variable.
Messages are checked one by
one, and for each message,

first pattern that applies gets
its actions (after ->)

executed. If no pattern
matches, messages remain in

actor’s mailbox.

Cell Tester in Erlang
-module(cellTester).
-export([main/0]).

main() -> C = spawn(cell,cell,[0]),
 C!{set,7},
 C!{set,2},
 C!{get,self()},
 receive
 Value ->

 io:format("~w~n”,[Value])
 end.

C. Varela 23

Actor creation (spawn)

Message passing (!)

receive waits until a
message is available.

Cell Tester in Erlang
-module(cellTester).
-export([main/0]).

main() -> C = spawn(cell,cell,[0]),
 C!{set,7},
 C!{set,2},
 C!{get,self()},
 receive
 Value ->

 io:format("~w~n",[Value])
 end.

C. Varela 24

[0] is a list with the arguments
to the module’s function. General

form:
spawn(module, function,

arguments)

Function calls take the form:
module:function(args)

self() is a built-in
function (BIF) that

returns the process id of
the current process.

C. Varela 25

SALSA support for Actors

•  Programmers define behaviors for actors. Actors are

instances of behaviors.

•  Messages are modeled as potential method invocations.
Messages are sent asynchronously.

•  State is modeled as encapsulated objects/primitive types.

•  Tokens represent future message return values.

Continuation primitives are used for coordination.

C. Varela 26

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

Encapsulated state content.

Actor constructor.

Message handlers.

State change.

C. Varela 27

Reference Cell Example

module cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

return asynchronously
sets token associated to

get message.

Implicit control loop:
End of message implies
ready to receive next

message.

C. Varela 28

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 c <- set(7);
 c <- set(2);
 token t = c <- get();
 standardOutput <- println(t);
 }

}

Actor creation (new)

Message passing (<-)

println message can
only be processed
when token t from
c’s get() message

handler has been
produced.

C. Varela 29

Cell Tester Example

module cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(0);
 c <- set(7);
 c <- set(2);
 token t = c <- get();
 standardOutput <- println(t);
 }

}

All message
passing is

asynchronous.

println message is
called partial until

token t is produced.
Only full messages
(with no pending

tokens) are delivered
to actors.

Tree Product Behavior in Erlang
-module(treeprod).
-export([treeprod/0,join/1]).

treeprod() ->
 receive
 {{Left, Right}, Customer} ->
 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),

 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->
 Customer ! Number
 end,
 treeprod().

join(Customer) -> receive V1 -> receive V2 -> Customer ! V1*V2 end end.

C. Varela 30

Tree Product Sample Execution

2> TP = spawn(treeprod,treeprod,[]).

<0.40.0>

3> TP ! {{{{5,6},2},{3,4}},self()}.

{{{{5,6},2},{3,4}},<0.33.0>}

4> flush().
Shell got 720

ok

5>

C. Varela 31

C. Varela 32

Tree Product Behavior in SALSA

module treeprod;
import tree.Tree;

behavior TreeProduct {

 int multiply(Object[] results){
 return (Integer) results[0] * (Integer) results[1];
 }
 int compute(Tree t){
 if (t.isLeaf()) return t.value();
 else {
 TreeProduct lp = new TreeProduct();
 TreeProduct rp = new TreeProduct();
 join {
 lp <- compute(t.left());
 rp <- compute(t.right());
 } @ multiply(token) @ currentContinuation;
 }
 }
}

This code uses token-passing
continuations (@,token), a

join block (join), and a first-
class continuation

(currentContinuation).

Tree Product Tester
module treeprod;
import tree.Tree;

behavior TreeProductTester {

 void act(String[] args) {

 Tree t = new Tree(new Tree(new Tree(5,6),new Tree(2)),
 new Tree(3,4));
 TreeProduct tp = new TreeProduct();

 tp <- compute(t) @ standardOutput <- println(token);
 }
}

C. Varela 33

Use as follows:
% javac tree/Tree.java
% salsac treeprod/*
% salsa treeprod/TreeProductTester
720

C. Varela 34

Actor Languages Summary
•  Actors are concurrent entities that react to messages.

–  State is completely encapsulated. There is no shared memory!
–  Message passing is asynchronous.
–  Actor run-time has to ensure fairness.

•  AMST extends the call by value lambda calculus with actor primitives.
State is modeled as function arguments. Actors use ready to receive
new messages.

•  Erlang extends a functional programming language core with
processes that run arbitrary functions. State is implicit in the
function’s arguments. Control loop is explicit: actors use receive
to get a message, and tail-form recursive call to continue.

•  SALSA extends an object-oriented programming language (Java) with
universal actors. State is encapsulated in instance variables. Control
loop is implicit: ending a message handler, signals readiness to receive
a new message.

C. Varela 35

Concurrency Control in SALSA

•  SALSA provides three main coordination constructs:
–  Token-passing continuations

•  To synchronize concurrent activities
•  To notify completion of message processing
•  Named tokens enable arbitrary synchronization (data-flow)

–  Join blocks
•  Used for barrier synchronization for multiple concurrent

activities
•  To obtain results from otherwise independent concurrent

processes
–  First-class continuations

•  To delegate producing a result to another message, or actor

C. Varela 36

Token Passing Continuations
•  Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

–  Example:

a1 <- m1() @
a2 <- m2(token);

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).

C. Varela 37

Token Passing Continuations
•  @ syntax using token as an argument is syntactic sugar.

–  Example 1:
a1 <- m1() @
a2 <- m2(token);

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2(t);

–  Example 2:
a1 <- m1() @
a2 <- m2();

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2():waitfor(t);

C. Varela 38

Named Tokens
•  Tokens can be named to enable more loosely-

coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until
messages m1()..m4() have been
processed. m1() can proceed
concurrently with m2().

C. Varela 39

Join Blocks

•  Provide a mechanism for synchronizing the processing of a set of
messages.

•  Set of results is sent along as a token containing an array of results.
–  Example:

UniversalActor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
 for (int i=0; i < actors.length; i++){
 actors[i] <- find(phrase);
 }
} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all

have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 40

First Class Continuations

•  Enable actors to delegate computation to a third party independently of
the processing context.

•  For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }
Ask (delegate) actor b to respond to this message m on behalf of current actor

(self) by processing b’s message n.

C. Varela 41

Delegate Example

module fibonacci;

behavior Calculator {

 int fib(int n) {
 Fibonacci f = new Fibonacci(n);
 f <- compute() @ currentContinuation;
 }
 int add(int n1, int n2) {return n1+n2;}

 void act(String args[]) {
 fib(15) @ standardOutput <- println(token);
 fib(5) @ add(token,3) @
 standardOutput <- println(token);
 }

}

fib(15)

 is syntactic sugar for:
self <- fib(15)

C. Varela 42

Fibonacci Example
module fibonacci;

behavior Fibonacci {

 int n;

 Fibonacci(int n) { this.n = n; }

 int add(int x, int y) { return x + y; }

 int compute() {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib1 = new Fibonacci(n-1);
 Fibonacci fib2 = new Fibonacci(n-2);
 token x = fib1<-compute();
 token y = fib2<-compute();
 add(x,y) @ currentContinuation;
 }
 }

 void act(String args[]) {
 n = Integer.parseInt(args[0]);
 compute() @ standardOutput<-println(token);
 }

}

C. Varela 43

Fibonacci Example 2
module fibonacci2;

behavior Fibonacci {

 int add(int x, int y) { return x + y; }

 int compute(int n) {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib = new Fibonacci();
 token x = fib <- compute(n-1);
 compute(n-2) @ add(x,token) @ currentContinuation;
 }
 }

 void act(String args[]) {
 int n = Integer.parseInt(args[0]);
 compute(n) @ standardOutput<-println(token);
 }

}

compute(n-2) is a
message to self.

C. Varela 44

Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Create new actor

Synchronize on
result

Non-blocked actor

C. Varela 45

Concurrency control in Erlang

•  Erlang uses a selective receive mechanism to help
coordinate concurrent activities:
–  Message patterns and guards

•  To select the next message (from possibly many) to execute.
•  To receive messages from a specific process (actor).
•  To receive messages of a specific kind (pattern).

–  Timeouts
•  To enable default activities to fire in the absence of messages

(following certain patterns).
•  To create timers.

–  Zero timeouts (after 0)
•  To implement priority messages, to flush a mailbox.

Selective Receive
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
end

receive suspends until a message in the actor’s mailbox
matches any of the patterns including optional guards.

•  Patterns are tried in order. On a match, the message is
removed from the mailbox and the corresponding pattern’s
actions are executed.

•  When a message does not match any of the patterns, it is
left in the mailbox for future receive actions.

C. Varela 46

Selective Receive Example
Example program and mailbox (head at top):

receive

 msg_b -> …
end

receive tries to match msg_a and fails. msg_b can be
matched, so it is processed. Suppose execution continues:

receive

 msg_c -> …
 msg_a -> …
end
The next message to be processed is msg_a since it is the

next in the mailbox and it matches the 2nd pattern.

C. Varela 47

msg_a

msg_b

msg_c

msg_a

msg_c

Receiving from a specific actor

Actor ! {self(), message}

self() is a Built-In-Function (BIF) that returns the current
(executing) process id (actor name). Ids can be part of a
message.

receive

 {ActorName, Msg} when ActorName == A1 ->
 …
end

receive can then select only messages that come from a
specific actor, in this example, A1. (Or other actors that
know A1’s actor name.)

C. Varela 48

Receiving a specific kind of
message

counter(Val) ->
 receive

 increment -> counter(Val+1);
 {From,get} ->
 From ! {self(), Val},
 counter(Val);
 stop -> true;
 Other -> counter(Val)

 end.

counter is a behavior that can receive increment

messages, get request messages, and stop messages.
Other message kinds are ignored.

C. Varela 49

increment is an atom
whereas Other is a

variable (that matches
anything!).

Order of message patterns matters

receive
 {{Left, Right}, Customer} ->

 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),
 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->

 Customer ! Number
end

In this example, a binary tree is represented as a tuple
{Left, Right}, or as a Number, e.g.,

 {{{5,6},2},{3,4}}

C. Varela 50

{Left,Right} is a
more specific pattern
than Number is (which
matches anything!).
Order of patterns is

important.

Selective Receive with Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after TimeOutExpr ->
 ActionsT
end

TimeOutExpr evaluates to an integer interpreted as
milliseconds.

If no message has been selected within this time, the timeout
occurs and ActionsT are scheduled for evaluation.

A timeout of infinity means to wait indefinitely.

C. Varela 51

Timer Example

sleep(Time) ->
 receive

 after Time ->
 true
 end.

sleep(Time) suspends the current actor for Time
milliseconds.

C. Varela 52

Timeout Example
receive
 click ->
 receive

 click ->
 double_click
 after double_click_interval() ->
 single_click
 end
 ...

end

double_click_interval evaluates to the number of
milliseconds expected between two consecutive mouse
clicks, for the receive to return a double_click.
Otherwise, a single_click is returned.

C. Varela 53

Zero Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after 0 ->
 ActionsT
end

A timeout of 0 means that the timeout will occur
immediately, but Erlang tries all messages currently in the
mailbox first.

C. Varela 54

Zero Timeout Example

flush_buffer() ->
 receive

 AnyMessage ->
 flush_buffer()
 after 0 ->
 true
 end.

flush_buffer() completely empties the mailbox of the
current actor.

C. Varela 55

Priority Messages

priority_receive() ->
 receive

 interrupt ->
 interrupt
 after 0 ->
 receive
 AnyMessage ->
 AnyMessage

 end
 end.

priority_receive() will return the first message in
the actor’s mailbox, except if there is an interrupt
message, in which case, interrupt will be given
priority.

 C. Varela 56

C. Varela 57

Overview of
programming distributed systems

•  It is harder than concurrent programming!
•  Yet unavoidable in today’s information-oriented society, e.g.:

–  Internet, mobile devices
–  Web services
–  Cloud computing

•  Communicating processes with independent address spaces
•  Limited network performance

–  Orders of magnitude difference between WAN, LAN, and intra-machine
communication.

•  Localized heterogeneous resources, e.g, I/O, specialized devices.
•  Partial failures, e.g. hardware failures, network disconnection
•  Openness: creates security, naming, composability issues.

C. Varela 58

Universal Actor Names (UAN)
•  Consists of human readable names.
•  Provides location transparency to actors.
•  Name to locator mapping updated as actors migrate.
•  UAN servers provide mapping between names and

locators.
–  Example Universal Actor Name:

 uan://wwc.cs.rpi.edu:3030/cvarela/calendar

 Name server
address and

(optional) port.

Unique
relative

actor name.

C. Varela 59

WWC Theaters

Theater address
and port. Actor location.

C. Varela 60

Universal Actor Locators (UAL)

•  Theaters provide an execution environment for universal
actors.

•  Provide a layer beneath actors for message passing and
migration.

•  When an actor migrates, its UAN remains the same, while
its UAL changes to refer to the new theater.

•  Example Universal Actor Locator:
 rmsp://wwc.cs.rpi.edu:4040

Theater’s IP
address and

(optional) port.

C. Varela 61

SALSA Language Support for Worldwide
Computing

•  SALSA provides linguistic abstractions for:

–  Universal naming (UAN & UAL).
–  Remote actor creation.
–  Location-transparent message sending.
–  Migration.
–  Coordination.

•  SALSA-compiled code closely tied to WWC run-time platform.

C. Varela 62

Universal Actor Creation

•  To create an actor locally

TravelAgent a = new TravelAgent();

•  To create an actor with a specified UAN and UAL:

TravelAgent a = new TravelAgent() at (uan, ual);

•  To create an actor with a specified UAN at current location:

TravelAgent a = new TravelAgent() at (uan);

C. Varela 63

Message Sending

TravelAgent a = new TravelAgent();

a <- book(flight);

Message sending syntax is
the same (<-),

independently of actor’s
location.

C. Varela 64

Remote Message Sending

•  Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName(“uan://myhost/ta”);

a <- printItinerary();

C. Varela 65

Reference Cell Service Example
module dcell;

behavior Cell implements ActorService{

 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() {
 standardOutput <- println (“Returning: ”+content);
 return content;
 }

 void set(Object newContent) {
 standardOutput <- println (“Setting: ”+newContent);
 content = newContent;
 }

}

implements ActorService
signals that actors with this

behavior are not to be
garbage collected.

C. Varela 66

Reference Cell Tester
module dcell;

behavior CellTester {

 void act(String[] args) {

 if (args.length != 2){

 standardError <- println(
 “Usage: salsa dcell.CellTester <UAN> <UAL>”);

 return;
 }

 Cell c = new Cell(0) at (new UAN(args[0]), new UAL(args[1]));

 standardOutput <- print(“Initial Value:”) @
 c <- get() @ standardOutput <- println(token);
 }
}

C. Varela 67

Reference Cell Client Example

module dcell;

behavior GetCellValue {

 void act(String[] args) {
 if (args.length != 1){

 standardOutput <- println(
 “Usage: salsa dcell.GetCellValue <CellUAN>”);

 return;
 }

 Cell c = (Cell) Cell.getReferenceByName(args[0]);

 standardOutput <- print(“Cell Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

C. Varela 68

Address Book Service

module addressbook;
import java.util.*

behavior AddressBook implements ActorService {

 Hashtable name2email;
 AddressBook() {

 name2email = new HashTable();
 }

 String getName(String email) { … }
 String getEmail(String name) { … }
 boolean addUser(String name, String email) { … }

 void act(String[] args) {

 if (args.length != 0){
 standardOutput<-println(“Usage: salsa -Duan=<UAN> -Dual=<UAL>
 addressbook.AddressBook”);
 }

 }
}

C. Varela 69

Address Book Add User
Example

module addressbook;

behavior AddUser {

 void act(String[] args) {
 if (args.length != 3){

 standardOutput<-println(“Usage: salsa
 addressbook.AddUser <AddressBookUAN> <Name> <Email>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-addUser(args(1), args(2));

 }
}

C. Varela 70

Address Book Get Email
Example

module addressbook;

behavior GetEmail {

 void act(String[] args) {
 if (args.length != 2){

 standardOutput <- println(“Usage: salsa
 addressbook.GetEmail <AddressBookUAN> <Name>”);
 return;
 }
 getEmail(args(0),args(1));
 }

 void getEmail(String uan, String name){
 try{
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(uan));
 standardOutput <- print(name + “’s email: “) @
 book <- getEmail(name) @
 standardOutput <- println(token);
 } catch(MalformedUANException e){
 standardError<-println(e);
 }
 }

}

C. Varela 71

Erlang Language Support for Distributed
Computing

•  Erlang provides linguistic abstractions for:

–  Registered processes (actors).
–  Remote process (actor) creation.
–  Remote message sending.
–  Process (actor) groups.
–  Error detection.

•  Erlang-compiled code closely tied to Erlang node run-time platform.

C. Varela 72

Erlang Nodes

•  To return our own node name:

node()

•  To return a list of other known node names:

nodes()

•  To monitor a node:

monitor_node(Node, Flag)

If flag is true, monitoring starts. If
false, monitoring stops. When a

monitored node fails, {nodedown,
Node} is sent to monitoring process.

C. Varela 73

Actor Creation

•  To create an actor locally

Agent = spawn(travel, agent, []);

•  To create an actor in a specified remote node:

Agent = spawn(host, travel, agent, []);

travel is the module name,
agent is the function name,
Agent is the actor name.

host is the node name.

C. Varela 74

Actor Registration

•  To register an actor:

register(ta, Agent)

•  To return the actor identified with a registered name:

whereis(ta)

•  To remove the association between an atom and an actor:

unregister(ta)

ta is the registered name (an atom),
Agent is the actor name (PID).

C. Varela 75

Message Sending

Agent = spawn(travel, agent, []),

register(ta, Agent)

Agent ! {book, Flight}
ta ! {book, Flight}

Message sending syntax is
the same (!) with actor

name (Agent) or registered
name (ta).

C. Varela 76

Remote Message Sending

•  To send a message to a remote registered actor:

{ta, host} ! {book, Flight}

C. Varela 77

Reference Cell Service Example
-module(dcell).
-export([cell/1,start/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

start(Content) ->
 register(dcell, spawn(dcell, cell, [Content]))

C. Varela 78

Reference Cell Tester
-module(dcellTester).
-export([main/0]).

main() -> dcell:start(0),
 dcell!{get, self()},
 receive
 Value ->
 io:format(”Initial Value:~w~n”,[Value])
 end.

C. Varela 79

Reference Cell Client Example

-module(dcellClient).
-export([getCellValue/1]).

getCellValue(Node) ->
 {dcell, Node}!{get, self()},
 receive
 Value ->
 io:format(”Initial Value:~w~n”,[Value])
 end.

C. Varela 80

Address Book Service
-module(addressbook).
-export([start/0,addressbook/1]).

start() ->
 register(addressbook, spawn(addressbook, addressbook, [[]])).

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 From ! {addressbook, ok},
 addressbook(add(Name, Email, Data));
 {From, {getName, Email}} ->
 From ! {addressbook, getname(Email, Data)},
 addressbook(Data);
 {From, {getEmail, Name}} ->
 From ! {addressbook, getemail(Name, Data)},
 addressbook(Data)
 end.

add(Name, Email, Data) -> …
getname(Email, Data) -> …
getemail(Name, Data) -> …

C. Varela 81

Address Book Client Example
-module(addressbook_client).
-export([getEmail/1,getName/1,addUser/2]).

addressbook_server() -> 'addressbook@127.0.0.1'.

getEmail(Name) -> call_addressbook({getEmail, Name}).
getName(Email) -> call_addressbook({getName, Email}).
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}).

call_addressbook(Msg) ->
 AddressBookServer = addressbook_server(),
 monitor_node(AddressBookServer, true),
 {addressbook, AddressBookServer} ! {self(), Msg},
 receive
 {addressbook, Reply} ->
 monitor_node(AddressBookServer, false),
 Reply;
 {nodedown, AddressBookServer} ->
 no
 end.

C. Varela 82

Advanced Features of Actor
Languages

•  SALSA and Erlang support the basic primitives of the actor model:
–  Actors can create new actors.
–  Message passing is asynchronous.
–  State is encapsulated.
–  Run-time ensures fairness.

•  SALSA also introduces advanced coordination abstractions: tokens, join
blocks, and first-class continuations; SALSA supports distributed
systems development including actor mobility and garbage collection.
Research projects have also investigated load balancing, malleability
(IOS), scalability (COS), and visualization (OverView).

•  Erlang introduces a selective receive abstraction to enforce different
orders of message delivery, including a timeout mechanism to bypass
blocking behavior of receive primitive. Erlang also provides error
handling abstractions at the language level, and dynamic (hot) code
loading capabilities.

C. Varela 83

Moving Cell Tester Example
module dcell;

behavior MovingCellTester {

 void act(String[] args) {

 if (args.length != 3){

 standardError <- println(“Usage:
 salsa dcell.MovingCellTester <UAN> <UAL1> <UAL2>”);
 return;
 }

 Cell c = new Cell(“Hello”) at (new UAN(args[0]), new UAL(args[1]));

 standardOutput <- print(”Initial Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- migrate(args[2]) @

 c <- set(“New World”) @
 standardOutput <- print(”New Value at New Location:”) @
 c <- get() @ standardOutput <- println(token);
 }
}

C. Varela 84

Address Book Migrate Example

module addressbook;

behavior MigrateBook {

 void act(String[] args) {
 if (args.length != 2){

 standardOutput<-println(“Usage: salsa
 addressbook.MigrateBook <AddressBookUAN> <NewUAL>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-migrate(args(1));

 }
}

Carlos Varela 85

Actor Garbage Collection

•  Implemented since SALSA 1.0 using pseudo-root
approach.

•  Includes distributed cyclic garbage collection.
•  For more details, please see:

Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile Actor

Systems: The Pseudo Root Approach. In Proceedings of the First International
Conference on Grid and Pervasive Computing (GPC 2006), Taichung, Taiwan, May
2006. Springer-Verlag LNCS.

Wei-Jen Wang, Carlos Varela, Fu-Hau Hsu, and Cheng-Hsien Tang. Actor Garbage
Collection Using Vertex-Preserving Actor-to-Object Graph Transformations. In
Advances in Grid and Pervasive Computing, volume 6104 of Lecture Notes in Computer
Science, Bologna, pages 244-255, May 2010. Springer Berlin / Heidelberg.

Carlos Varela 86

Actor GC vs. Object GC

Blocked ActorRoot Actor Unblocked Actor Reference

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

1 2 3 4

5 6 7

Passive Object Reference Graph

8

9

8

9

Live Actor

Live Object

Carlos Varela 87

IOS: Load Balancing and
Malleability

•  Middleware
–  A software layer between distributed applications and

operating systems.
–  Alleviates application programmers from directly dealing

with distribution issues
•  Heterogeneous hardware/O.S.s
•  Load balancing
•  Fault-tolerance
•  Security
•  Quality of service

•  Internet Operating System (IOS)
–  A decentralized framework for adaptive, scalable execution
–  Modular architecture to evaluate different distribution and

reconfiguration strategies

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:
Middleware for Adaptive Distributed Computing”, International Journal of High
Performance Computing and Applications, 2006.

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware
Framework for Dynamically Reconfigurable Scientific Computing”, Grid Computing and
New Frontiers of High Performance Processing, Elsevier 2005.

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp.

Carlos Varela 88

Component Malleability
•  New type of reconfiguration:

–  Applications can dynamically change component granularity
•  Malleability can provide many benefits for HPC

applications:
–  Can more adequately reconfigure applications in response to a

dynamically changing environment:
•  Can scale application in response to dynamically joining

resources to improve performance.
•  Can provide soft fault-tolerance in response to dynamically

leaving resources.
–  Can be used to find the ideal granularity for different architectures.
–  Easier programming of concurrent applications, as parallelism can

be provided transparently.

Carlos Varela 89

Component Malleability

•  Modifying application component granularity dynamically (at run-
time) to improve scalability and performance.

•  SALSA-based malleable actor implementation.
•  MPI-based malleable process implementation.
•  IOS decision module to trigger split and merge reconfiguration.
•  For more details, please see:

El Maghraoui, Desell, Szymanski and Varela,“Dynamic Malleability in MPI

Applications”, CCGrid 2007, Rio de Janeiro, Brazil, May 2007, nominated
for Best Paper Award.

Carlos Varela 90

Distributed Systems Visualization

•  Generic online Java-based distributed systems visualization tool
•  Uses a declarative Entity Specification Language (ESL)
•  Instruments byte-code to send events to visualization layer.
•  For more details, please see:

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for Generic Online
Visualization of Distributed Systems. In Proceedings of the European Joint Conferences
on Theory and Practice of Software (ETAPS 2004), eclipse Technology eXchange (eTX)
Workshop, Barcelona, Spain, March 2004.

Gustavo A. Guevara S., Travis Desell, Jason Laporte, and Carlos A. Varela. Modular
Visualization of Distributed Systems. CLEI Electronic Journal, 14:1-17, April 2011.
Note: Best papers from CLEI 2010.

Example Specifications for SALSA

entity UniversalActor is salsa.language.UniversalActor$State {
 when start putMessageInMailbox(salsa.language.Message message)
 -> communication(message.getSource().getId(),
 message.getTarget().getId());
 when finish finalize()
 -> deletion(this.getId());

}

entity WWCSystem is wwc.messaging.WWCSystem$State {
 when start createActor(salsa.naming.UAN uan,

 salsa.naming.UAL ual,
 java.lang.String className)
 -> creation(uan.getId(), ual.getHostAndPort());

 when start addActor(salsa.language.Actor actor)

 -> migration(actor.getUAN().getId(),
 actor.getUAL().getHostAndPort());

}

Chord application topology

Carlos Varela 93

Open Source Code
•  Consider to contribute!
•  Visit our web pages for more info:

–  SALSA: http://wcl.cs.rpi.edu/salsa/
–  IOS: http://wcl.cs.rpi.edu/ios/
–  OverView: http://wcl.cs.rpi.edu/overview/
–  COS: http://wcl.cs.rpi.edu/cos/
–  PILOTS: http://wcl.cs.rpi.edu/pilots/
–  MilkyWay@Home: http://milkyway.cs.rpi.edu/

C. Varela 94

Erlang Language Support for Fault-Tolerant
Computing

•  Erlang provides linguistic abstractions for:

–  Error detection.
•  Catch/throw exception handling.
•  Normal/abnormal process termination.
•  Node monitoring and exit signals.

–  Process (actor) groups.
–  Dynamic (hot) code loading.

C. Varela 95

Exception Handling

•  To protect sequential code from errors:

catch Expression

•  To enable non-local return from a function:

throw({ab_exception, user_exists})

If failure does not occur in Expression
evaluation, catch Expression returns

the value of the expression.

C. Varela 96

Address Book Example
-module(addressbook).
-export([start/0,addressbook/1]).

start() ->
 register(addressbook, spawn(addressbook, addressbook, [[]])).

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 From ! {addressbook, ok},
 addressbook(add(Name, Email, Data));
 …
end.

add(Name, Email, Data) ->
 case getemail(Name, Data) of
 undefined ->
 [{Name,Email}|Data];
 _ -> % if Name already exists, add is ignored.
 Data
 end.
getemail(Name, Data) -> …

C. Varela 97

Address Book Example with
Exception

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 case catch add(Name, Email, Data) of
 {ab_exception, user_exists} ->
 From ! {addressbook, no},
 addressbook(Data);
 NewData->
 From ! {addressbook, ok},
 addressbook(NewData)
 end;
 …
end.

add(Name, Email, Data) ->
 case getemail(Name, Data) of
 undefined ->
 [{Name,Email}|Data];
 _ -> % if Name already exists, exception is thrown.
 throw({ab_exception,user_exists})
 end.

C. Varela 98

Normal/abnormal termination

•  To terminate an actor, you may simply return from the function
the actor executes (without using tail-form recursion). This is
equivalent to calling:
exit(normal).

•  Abnormal termination of a function, can be programmed:
exit({ab_error, no_msg_handler})

 equivalent to:
throw({’EXIT’,{ab_error, no_msg_handler}})

•  Or it can happen as a run-time error, where the Erlang run-time
sends a signal equivalent to:
exit(badarg) % Wrong argument type
exit(function_clause) % No pattern match

C. Varela 99

Address Book Example with
Exception and Error Handling

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 case catch add(Name, Email, Data) of
 {ab_exception, user_exists} ->
 From ! {addressbook, no},
 addressbook(Data);
 {ab_error, What} -> … % programmer-generated error (exit)
 {’EXIT’, What} -> … % run-time-generated error
 NewData->
 From ! {addressbook, ok},
 addressbook(NewData)
 end;
 …
end.

C. Varela 100

Node monitoring

•  To monitor a node:

monitor_node(Node, Flag)

If flag is true, monitoring starts. If
false, monitoring stops. When a

monitored node fails, {nodedown,
Node} is sent to monitoring process.

C. Varela 101

Address Book Client Example
with Node Monitoring

-module(addressbook_client).
-export([getEmail/1,getName/1,addUser/2]).

addressbook_server() -> 'addressbook@127.0.0.1'.

getEmail(Name) -> call_addressbook({getEmail, Name}).
getName(Email) -> call_addressbook({getName, Email}).
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}).

call_addressbook(Msg) ->
 AddressBookServer = addressbook_server(),
 monitor_node(AddressBookServer, true),
 {addressbook, AddressBookServer} ! {self(), Msg},
 receive
 {addressbook, Reply} ->
 monitor_node(AddressBookServer, false),
 Reply;
 {nodedown, AddressBookServer} ->
 no
 end.

C. Varela 102

Process (Actor) Groups

•  To create an actor in a specified remote node:

Agent = spawn(host, travel, agent, []);

•  To create an actor in a specified remote node and create a link to
the actor:

Agent = spawn_link(host, travel, agent, []);

An ’EXIT’ signal will be sent to the originating actor if the host
node does not exist.

C. Varela 103

Group Failure

•  Default error handling for linked processes is as follows:
–  Normal exit signal is ignored.
–  Abnormal exit (either programmatic or system-generated):

•  Bypass all messages to the receiving process.
•  Kill the receiving process.
•  Propagate same error signal to links of killed process.

•  All linked processes will get killed if a participating process
exits abnormally.

C. Varela 104

Dynamic code loading

•  To update (module) code while running it:

-module(m).
-export([loop/0]).

loop() ->
 receive
 code_switch ->
 m:loop();
 Msg -> ...
 loop()
 end.

code_switch message
dynamically loads the

new module code.
Notice the difference
between m:loop()

and loop().

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 105

Declarative operations (1)
•  An operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

•  A declarative operation is:
–  Independent (depends only on its arguments, nothing else)
–  Stateless (no internal state is remembered between calls)
–  Deterministic (call with same operations always give same results)

•  Declarative operations can be composed together to yield
other declarative components
–  All basic operations of the declarative model are declarative and

combining them always gives declarative components

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 106

Declarative
operation

Arguments

Results

Declarative operations (2)

rest of computation

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 107

Why declarative components (1)

•  There are two reasons why they are important:
•  (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.

–  The complexity (reasoning complexity) of a program composed of
declarative components is the sum of the complexity of the components

–  In general the reasoning complexity of programs that are composed of
nondeclarative components explodes because of the intimate interaction
between components

•  (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).

–  Simple algebraic and logical reasoning techniques can be used

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 108

Why declarative components (2)
•  Since declarative components are

mathematical functions, algebraic
reasoning is possible i.e.
substituting equals for equals

•  The declarative model of CTM
Chapter 2 guarantees that all
programs written are declarative

•  Declarative components can be
written in models that allow stateful
data types, but there is no guarantee

€

Given
f (a) = a2

We can replace f (a) in any other
equation
b = 7 f (a)2 becomes b = 7a4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 109

Classification of
declarative programming

Declarative
programming

Descriptive

Programmable

Observational

Definitional Declarative
model

Functional
programming

Deterministic
logic programming

•  The word declarative means many things to
many people. Let’s try to eliminate the
confusion.

•  The basic intuition is to program by defining
the what without explaining the how

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 110

Oz kernel language

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration
 | proc ’{’〈x〉 〈y1〉 … 〈yn〉 ’}’ 〈s1〉 end procedure introduction
 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | ’{’ 〈x〉 〈y1〉 … 〈yn〉 ’}’ procedure application
 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 111

Why the Oz KL is declarative

•  All basic operations are declarative
•  Given the components (sub-statements) are declarative,

–  sequential composition
–  local statement
–  procedure definition
–  procedure call
–  if statement
–  case statement

are all declarative (independent, stateless, deterministic).

C. Varela 112

What is state?
•  State is a sequence of

values in time that contains
the intermediate results of a
desired computation

•  Declarative programs can
also have state according to
this definition

•  Consider the following
program

fun {Sum Xs A}
 case Xs
 of X|Xr then {Sum Xr A+X}
 [] nil then A
 end
end

{Browse {Sum [1 2 3 4] 0}}

C. Varela 113

What is implicit state?
The two arguments Xs and A
represent an implicit state

 Xs A
[1 2 3 4] 0
[2 3 4] 1
[3 4] 3
[4] 6
nil 10

fun {Sum Xs A}
 case Xs
 of X|Xr then {Sum Xr A+X}
 [] nil then A
 end
end

{Browse {Sum [1 2 3 4] 0}}

C. Varela 114

What is explicit state: Example?

X An unbound
variable

X
A cell C is created
with initial value 5
X is bound to C

 5

X
The cell C, which X is
bound to, is assigned
the value 6

 6

C

C

C. Varela 115

What is explicit state: Example?

X An unbound
variable

X
A cell C is created
with initial value
5
X is bound to C

 5

X
The cell C, which X is
bound to, is assigned
the value 6

 6

C

C

•  The cell is a value
container with a unique
identity
•  X is really bound to
the identity of the cell
•  When the cell is
assigned, X does not
change

C. Varela 116

What is explicit state?

•  X = {NewCell I}
–  Creates a cell with initial value I
–  Binds X to the identity of the cell

•  Example: X = {NewCell 0}
•  {Assign X J}

–  Assumes X is bound to a cell C (otherwise exception)
–  Changes the content of C to become J

•  Y = {Access X}
–  Assumes X is bound to a cell C (otherwise exception)
–  Binds Y to the value contained in C

C. Varela 117

The stateful model

〈s〉 ::= skip empty statement
 | 〈s1〉 〈s2〉 statement sequence

 | ...
 | {NewCell 〈x〉 〈c〉} cell creation
 | {Exchange 〈c〉 〈x〉 〈y〉} cell exchange

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the
content of the cell 〈c〉 to 〈y〉

C. Varela 118

The stateful model

 | {NewCell 〈x〉 〈c〉} cell creation
 | {Exchange 〈c〉 〈x〉 〈y〉} cell exchange

proc {Assign C X} {Exchange C _ X} end

fun {Access C} X in{Exchange C X X}X end

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the
content of the cell 〈c〉 to 〈y〉

C := X is syntactic sugar for {Assign C X}
@C is syntactic sugar for {Access C}

X=C:=Y is syntactic sugar for {Exchange C X Y}

C. Varela 119

Abstract data types (revisited)
•  For a given functionality, there are many ways to package

the ADT. We distinguish three axes.
•  Open vs. secure ADT: is the internal representation visible

to the program or hidden?
•  Declarative vs. stateful ADT: does the ADT have

encapsulated state or not?
•  Bundled vs. unbundled ADT: is the data kept together with

the operations or is it separable?
•  Let us see what our stack ADT looks like with some of

these possibilities

C. Varela 120

Stack:
Secure, stateful, and bundled

•  This is the simplest way to make a secure stateful stack:

proc {NewStack ?Push ?Pop ?IsEmpty}

 C={NewCell nil}
in

 proc {Push X} {Assign C X|{Access C}} end
 fun {Pop} case {Access C} of X|S then {Assign C S} X end end
 fun {IsEmpty} {Access C} ==nil end

end
•  Compare the declarative with the stateful versions: the declarative

version needs two arguments per operation, the stateful version uses
higher-order programming (instantiation)

•  With some syntactic support, this is object-based programming

C. Varela 121

Four ways to package a stack
•  Open, declarative, and unbundled: the usual declarative

style, e.g., in Prolog and Scheme
•  Secure, declarative, and unbundled: use wrappers to make

the declarative style secure
•  Secure, stateful, and unbundled: an interesting variation on

the usual object-oriented style
•  Secure, stateful, and bundled: the usual object-oriented

style, e.g., in Smalltalk and Java
•  Other possibilities: there are four more possibilities!

Exercise: Try to write all of them.

C. Varela; Adapted from S. Haridi and P. Van Roy 122

Object-oriented programming
•  Supports

–  Encapsulation
–  Compositionality
–  Instantiation

•  Plus
–  Inheritance

C. Varela; Adapted from S. Haridi and P. Van Roy 123

Inheritance
•  Programs can be built in hierarchical structure from ADT’s

that depend on other ADT’s (Components)
•  Object-oriented programming (inheritance) is based on the

idea that ADTs have so much in common
•  For example, sequences (stacks, lists, queues)
•  Object oriented programming enables building ADTs

incrementally, through inheritance
•  An ADT can be defined to inherit from another abstract

data type, substantially sharing functionality with that
abstract data type

•  Only the difference between an abstract datatype and its
ancestor has to be specified

C. Varela; Adapted from S. Haridi and P. Van Roy 124

What is object-oriented
programming?

•  OOP (Object-oriented programming) = encapsulated state
+ inheritance

•  Object
–  An entity with unique identity that encapsulates state
–  State can be accessed in a controlled way from outside
–  The access is provided by means of methods (procedures that can

directly access the internal state)
•  Class

–  A specification of objects in an incremental way
–  Incrementality is achieved inheriting from other classes by

specifying how its objects (instances) differ from the objects of the
inherited classes

C. Varela; Adapted from S. Haridi and P. Van Roy 125

Instances (objects)

Interface (what methods
are available)

State (attributes)

Procedures (methods)

C. Varela; Adapted from S. Haridi and P. Van Roy 126

Classes (simplified syntax)
A class is a statement

class 〈ClassVariable〉

 attr
 〈AttrName1〉
 :
 〈AttrNameN〉
 meth 〈Pattern1〉 〈Statement〉 end
 :
 meth 〈PatternN〉 〈Statement〉 end

end

C. Varela; Adapted from S. Haridi and P. Van Roy 127

Classes in Oz

The class Counter has the syntactic form

 class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 128

Example
•  An object is created from a class using the procedure New/
3, whose first argument is the class, the second is the initial
method, and the result is the object (such as in the functor
and procedure approaches)

•  New/3 is a generic procedure for creating objects from
classes.

 declare C = {New Counter init(0)}
{C display}
{C inc(1)}
{C display}

C. Varela; Adapted from S. Haridi and P. Van Roy 129

•  A class X is defined by:
–  class X ... end

•  Attributes are defined using the attribute-declaration
part before the method-declaration part:
–  attr A1 ... AN

•  Then follows the method declarations, each has the
form:
–  meth E S end

•  The expression E evaluates to a method head, which is
a record whose label is the method name.

Summary

C. Varela; Adapted from S. Haridi and P. Van Roy 130

•  An attribute A is accessed using @A.
•  An attribute is assigned a value using A := E
•  A class can be defined as a value:
•  X = class $... end

Summary

C. Varela; Adapted from S. Haridi and P. Van Roy 131

Classes as incremental ADTs
•  Object-oriented programming allows us to define a class

by extending existing classes
•  Three things have to be introduced

–  How to express inheritance, and what does it mean?
–  How to access particular methods in the new class and in

preexisting classes
–  Visibility – what part of the program can see the attributes and

methods of a class

•  The notion of delegation as a substitute for inheritance

C. Varela; Adapted from S. Haridi and P. Van Roy 132

Inheritance
•  Inheritance should be

used as a way to
specialize a class while
retaining the relationship
between methods

•  In this way it is a just an
extension of an ADT

•  The other view is
inheritance is just a (lazy)
way to construct new
abstract data types !

•  No relationships are
preserved

general
class

specialized
class

C. Varela; Adapted from S. Haridi and P. Van Roy 133

Inheritance
class Account
 attr balance:0
 meth transfer(Amount)
 balance := @balance+Amount
 end
 meth getBal(B)
 B = @balance
 end
end

A={New Account transfer(100)}

C. Varela; Adapted from S. Haridi and P. Van Roy 134

Inheritance II

Conservative extension
class VerboseAccount
 from Account
 meth verboseTransfer(Amount)

 ...
 end
end

The class VerboseAccount has the
methods:
transfer, getBal, and
verboseTransfer

C. Varela; Adapted from S. Haridi and P. Van Roy 135

Inheritance II

Non-Conservative extension

class AccountWithFee
 from VerboseAccount
 attr fee:5
 meth transfer(Amount)
 ...
 end
end

The class AccountWithFee has the
methods:
transfer, getBal, and verboseTransfer
The method transfer has been redefined
(overridden) with another definition

C. Varela; Adapted from S. Haridi and P. Van Roy 136

Inheritance II

Non-Conservative extension

class AccountWithFee
 from VerboseAccount
 attr fee:5
 meth transfer(Amount)
 ...
 end
end

Account

VerboseAccount

AccountWithFee

C. Varela; Adapted from S. Haridi and P. Van Roy 137

Polymorphism

The ability for operations to take
objects (instances) of different types.

For example, the transfer method can
be invoked in account object instances
of three different classes.

The most specific behavior should be
executed.

Account

VerboseAccount

AccountWithFee

C. Varela; Adapted from S. Haridi and P. Van Roy 138

Static and dynamic binding
Dynamic binding
•  Inside an object O we want to

invoke a method M
•  This is written as {self M}, and

chooses the method visible in
the current object (M of D)

class C
meth M

class D
a subclass of

C
meth M

O
an instance

of D

C. Varela; Adapted from S. Haridi and P. Van Roy 139

Static and dynamic binding
Static binding
•  Inside an object O we want to

invoke a method M in a specific
(super) class

•  This is written as C, M and
chooses the method visible in
the super class C (M of C)

class C
meth M

class D
a subclass of

C
meth M

O
an instance

of D

C. Varela; Adapted from S. Haridi and P. Van Roy 140

Static method calls
•  Given a class and a method head m(…), a static method-call

has the following form:
 C, m(…)

•  Invokes the method defined in the class argument.

•  A static method call can only be used inside class
definitions.

•  The method call takes the current object denoted by self as
implicit argument.

•  The method m could be defined in the class C, or inherited
from a super class.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 141

Review of
concurrent programming

•  There are four basic approaches:
–  Sequential programming (no concurrency)
–  Declarative concurrency (streams in a functional language, Oz)
–  Message passing with active objects (Erlang, SALSA)
–  Atomic actions on shared state (Java)

•  The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

•  But, if you have the choice, which approach to use?
–  Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

S. Haridi and P. Van Roy 142

Concurrency
•  How to do several things at once
•  Concurrency: running several activities

each running at its own pace
•  A thread is an executing sequential

program
•  A program can have multiple threads by

using the thread instruction
•  {Browse 99*99} can immediately respond

while Pascal is computing

thread
 P in

 P = {Pascal 21}
 {Browse P}

end
{Browse 99*99}

S. Haridi and P. Van Roy 143

State
•  How to make a function learn from its past?
•  We would like to add memory to a function to

remember past results
•  Adding memory as well as concurrency is an

essential aspect of modeling the real world
•  Consider {FastPascal N}: we would like it to

remember the previous rows it calculated in
order to avoid recalculating them

•  We need a concept (memory cell) to store,
change and retrieve a value

•  The simplest concept is a (memory) cell which
is a container of a value

•  One can create a cell, assign a value to a cell,
and access the current value of the cell

•  Cells are not variables

declare
C = {NewCell 0}

{Assign C {Access C}+1}
{Browse {Access C}}

S. Haridi and P. Van Roy 144

Nondeterminism
•  What happens if a program has both concurrency and state

together?
•  This is very tricky
•  The same program can give different results from one

execution to the next
•  This variability is called nondeterminism
•  Internal nondeterminism is not a problem if it is not

observable from outside

S. Haridi and P. Van Roy 145

Nondeterminism (2)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 1}
cell C contains 1

{Assign C 2}
cell C contains 2 (final value)

t0

t1

t2

S. Haridi and P. Van Roy 146

Nondeterminism (3)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 2}
cell C contains 2

{Assign C 1}
cell C contains 1 (final value)

t0

t1

t2

S. Haridi and P. Van Roy 147

Nondeterminism (4)
declare
C = {NewCell 0}

thread I in

 I = {Access C}
 {Assign C I+1}

end
thread J in
 J = {Access C}

 {Assign C J+1}
end

•  What are the possible results?
•  Both threads increment the cell C by

1
•  Expected final result of C is 2

•  Is that all?

S. Haridi and P. Van Roy 148

Nondeterminism (5)
•  Another possible final result is the cell

C containing the value 1

declare
C = {NewCell 0}

thread I in
 I = {Access C}
 {Assign C I+1}

end
thread J in

 J = {Access C}
 {Assign C J+1}

end
time

C = {NewCell 0}

I = {Access C}
I equal 0

t0

t1

t2 J = {Access C}
J equal 0

{Assign C J+1}
C contains 1

{Assign C I+1}
C contains 1

t3

t4

S. Haridi and P. Van Roy 149

Lessons learned

•  Combining concurrency and state is tricky
•  Complex programs have many possible interleavings
•  Programming is a question of mastering the interleavings
•  Famous bugs in the history of computer technology are due to

designers overlooking an interleaving (e.g., the Therac-25 radiation
therapy machine giving doses thousands of times too high, resulting
in death or injury)

1.  If possible try to avoid concurrency and state together
2.  Encapsulate state and communicate between threads using dataflow
3.  Try to master interleavings by using atomic operations

S. Haridi and P. Van Roy 150

Atomicity
•  How can we master the interleavings?
•  One idea is to reduce the number of interleavings by

programming with coarse-grained atomic operations
•  An operation is atomic if it is performed as a whole or

nothing
•  No intermediate (partial) results can be observed by any

other concurrent activity
•  In simple cases we can use a lock to ensure atomicity of a

sequence of operations
•  For this we need a new entity (a lock)

S. Haridi and P. Van Roy 151

Atomicity (2)
declare
L = {NewLock}

lock L then
 sequence of ops 1
end

Thread 1

lock L then
 sequence of ops 2

end

Thread 2

S. Haridi and P. Van Roy 152

The program
declare
C = {NewCell 0}
L = {NewLock}

thread

 lock L then I in
 I = {Access C}
 {Assign C I+1}
 end

end
thread

 lock L then J in
 J = {Access C}

 {Assign C J+1}
 end

end

The final result of C is
always 2

Locks and Deadlock:
Dining Philosophers

C. Varela 153

Ph3

Ph0

Ph2

Ph1

ch0

ch1

ch2

ch3

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 154

Review of
concurrent programming

•  There are four basic approaches:
–  Sequential programming (no concurrency)
–  Declarative concurrency (streams in a functional language, Oz)
–  Message passing with active objects (Erlang, SALSA)
–  Atomic actions on shared state (Java)

•  The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

•  But, if you have the choice, which approach to use?
–  Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 155

Declarative Concurrency
•  This lecture is about declarative concurrency, programs

with no observable nondeterminism, the result is a function
•  Independent procedures that execute on their pace and may

communicate through shared dataflow variables

S. Haridi and P. Van Roy 156

Single-assignment Variables
•  Variables are short-cuts for values, they cannot be assigned

more than once
 declare

 V = 9999*9999
 {Browse V*V}

•  Variable identifiers: is what you type
•  Store variable: is part of the memory system
•  The declare statement creates a store variable and assigns

its memory address to the identifier ’V’ in the environment

S. Haridi and P. Van Roy 157

Dataflow

•  What happens when multiple threads try to
communicate?

•  A simple way is to make communicating
threads synchronize on the availability of data
(data-driven execution)

•  If an operation tries to use a variable that is not
yet bound it will wait

•  The variable is called a dataflow variable

+

* *

X Y Z U

S. Haridi and P. Van Roy 158

Dataflow (II)

•  Two important properties of dataflow
–  Calculations work correctly independent

of how they are partitioned between
threads (concurrent activities)

–  Calculations are patient, they do not
signal error; they wait for data
availability

•  The dataflow property of variables
makes sense when programs are
composed of multiple threads

declare X
thread

 {Delay 5000} X=99
end

{Browse ‘Start’} {Browse
X*X}

declare X
thread

 {Browse ‘Start’} {Browse
X*X}
end

{Delay 5000} X=99

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 159

The concurrent model

w = a
z = person(age: y)

x
y = 42

u

Single-assignment
store

Semantic
Stack 1

Semantic
Stack N

Multiple semantic
stacks (threads)

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 160

Concurrent declarative model

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition

 | local 〈x〉 in 〈s1〉 end declaration
 | proc {〈x〉 〈y1〉 … 〈yn〉 } 〈s1〉 end procedure introduction

 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | { 〈x〉 〈y1〉 … 〈yn〉 } procedure application

 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching
 | thread 〈s1〉 end thread creation

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 161

The concurrent model

Single-assignment
store

ST
thread 〈s1〉 end,E Top of Stack, Thread i

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 162

The concurrent model

Single-assignment
store

ST Top of Stack, Thread i 〈s1〉,E

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 163

Basic concepts
•  The model allows multiple statements to execute ”at the

same time”
•  Imagine that these threads really execute in parallel, each

has its own processor, but share the same memory
•  Reading and writing different variables can be done

simultaneously by different threads, as well as reading the
same variable

•  Writing the same variable is done sequentially
•  The above view is in fact equivalent to an interleaving

execution: a totally ordered sequence of computation steps,
where threads take turns doing one or more steps in
sequence

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 164

Nondeterminism
•  An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
•  Nondeterminism appears naturally when there is

concurrent access to shared state

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 165

Example of nondeterminism

time

Thread 1

x = 1
x
y = 5

store

time

Thread 2

x = 3

The thread that binds x first will continue,
the other thread will raise an exception

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 166

Nondeterminism
•  An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
•  Nondeterminism appears naturally when there is

concurrent access to shared state
•  In the concurrent declarative model when there is only one

binder for each dataflow variable or multiple compatible
bindings (e.g., to partial values), the nondeterminism is not
observable on the store (i.e. the store develops to the same
final results)

•  This means for correctness we can ignore the concurrency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 167

Scheduling
•  The choice of which thread to execute next and for how

long is done by a part of the system called the scheduler
•  A thread is runnable if its next statement to execute is not

blocked on a dataflow variable, otherwise the thread is
suspended

•  A scheduler is fair if it does not starve a runnable thread,
i.e. all runnable threads eventually execute

•  Fair scheduling makes it easy to reason about programs
and program composition

•  Otherwise some correct program (in isolation) may never
get processing time when composed with other programs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 168

Example of runnable threads
proc {Loop P N}
 if N > 0 then
 {P} {Loop P N-1}
 else skip end
end
thread {Loop

 proc {$} {Show 1} end
 1000}

end
thread {Loop

 proc {$} {Show 2} end
 1000}

end

•  This program will interleave
the execution of two threads,
one printing 1, and the other

printing 2
•  We assume a fair scheduler

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 169

Dataflow computation
•  Threads suspend on data unavailability in

dataflow variables
•  The {Delay X} primitive makes the thread

suspends for X milliseconds, after that, the
thread is runnable

declare X
{Browse X}
local Y in

 thread {Delay 1000} Y = 10*10 end
 X = Y + 100*100

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 170

Illustrating dataflow computation

•  Enter incrementally the
values of X0 to X3

•  When X0 is bound the
thread will compute
Y0=X0+1, and will
suspend again until X1 is
bound

declare X0 X1 X2 X3
{Browse [X0 X1 X2 X3]}

thread
 Y0 Y1 Y2 Y3

in
 {Browse [Y0 Y1 Y2 Y3]}

 Y0 = X0 + 1
 Y1 = X1 + Y0
 Y2 = X2 + Y1
 Y3 = X3 + Y2

 {Browse completed}
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 171

Concurrent Map
fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then

thread {F X} end|{Map Xr F}
 end
end

•  This will fork a thread for each
individual element in the input
list

•  Each thread will run only if
both the element X and the
procedure F is known

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 172

Concurrent Map Function

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then thread {F X} end |{Map Xr F}
 end

end
•  What this looks like in the kernel language:
proc {Map Xs F Rs}

 case Xs
 of nil then Rs = nil
 [] X|Xr then R Rr in
 Rs = R|Rr
 thread {F X R} end
 {Map Xr F Rr}
 end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 173

How does it work?
•  If we enter the following statements:

declare F X Y Z
{Browse thread {Map X F} end}

•  A thread executing Map is created.
•  It will suspend immediately in the case-statement because

X is unbound.
•  If we thereafter enter the following statements:

X = 1|2|Y
fun {F X} X*X end

•  The main thread will traverse the list creating two threads
for the first two arguments of the list

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 174

How does it work?

•  The main thread will traverse the list creating two threads
for the first two arguments of the list:
 thread {F 1} end, and thread {F 2} end,

After entering:
 Y = 3|Z
Z = nil
 the program will complete the computation of the main
thread and the newly created thread thread {F 3} end,
resulting in the final list [1 4 9].

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 175

Simple concurrency with
dataflow

•  Declarative programs can be
easily made concurrent

•  Just use the thread statement
where concurrency is needed

fun {Fib X}
 if X=<2 then 1
 else
 thread {Fib X-1} end + {Fib X-2}
 end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 176

Understanding why
fun {Fib X}
 if X=<2 then 1
 else F1 F2 in
 F1 = thread {Fib X-1} end

 F2 = {Fib X-2}

 F1 + F2
end

end

Dataflow dependency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 177

Execution of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Fork a thread

Synchronize on
result

Running thread

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 178

Streams
•  A stream is a sequence of messages
•  A stream is a First-In First-Out (FIFO) channel
•  The producer augments the stream with new messages, and

the consumer reads the messages, one by one.

x5 x4 x3 x2 x1
producer consumer

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 179

Stream Communication I

•  The data-flow property of Oz easily enables writing
threads that communicate through streams in a producer-
consumer pattern.

•  A stream is a list that is created incrementally by one
thread (the producer) and subsequently consumed by one
or more threads (the consumers).

•  The consumers consume the same elements of the stream.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 180

Stream Communication II
•  Producer, produces incrementally the elements
•  Transducer(s), transform(s) the elements of the stream
•  Consumer, accumulates the results

producer transducer transducer consumer

thread 1 thread 2 thread 3 thread N

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 181

Stream communication patterns
•  The producer, transducers, and the consumer can, in

general, be described by certain program patterns
•  We show various patterns

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 182

Producer
fun {Producer State}
 if {More State} then
 X = {Produce State} in
 X | {Producer {Transform State}}

 else nil end
end
•  The definition of More, Produce, and Transform is

problem dependent
•  State could be multiple arguments
•  The above definition is not a complete program!

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 183

Example Producer
fun {Generate N Limit}
 if N=<Limit then
 N | {Generate N+1 Limit}
 else nil end
end

•  The State is the two arguments N and Limit
•  The predicate More is the condition N=<Limit
•  The Produce function is the identity function on N
•  The Transform function (N,Limit) ⇒ (N+1,Limit)

fun {Producer State}
 if {More State} then

 X = {Produce State} in
 X | {Producer {Transform State}}

 else nil end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 184

Consumer Pattern
fun {Consumer State InStream}
 case InStream
 of nil then {Final State}
 [] X | RestInStream then
 NextState = {Consume X State} in
 {Consumer NextState RestInStream}
 end
end
•  Final and Consume are problem dependent

The consumer suspends until
InStream is either a cons or a nil

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 185

Example Consumer

fun {Sum A Xs}
 case Xs
 of nil then A
 [] X|Xr then {Sum A+X Xr}
 end
end
•  The State is A
•  Final is just the identity function on State
•  Consume takes X and State ⇒ X + State

fun {Consumer State InStream}
 case InStream

 of nil then {Final State}
 [] X | RestInStream then

 NextState = {Consume X State} in
 {Consumer NextState RestInStream}

 end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 186

Transducer Pattern 1

fun {Transducer State InStream}
 case InStream
 of nil then nil
 [] X | RestInStream then
 NextState#TX = {Transform X State}
 TX | {Transducer NextState RestInStream}
 end
end
•  A transducer keeps its state in State, receives messages on

InStream and sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 187

Transducer Pattern 2

fun {Transducer State InStream}
 case InStream
 of nil then nil
 [] X | RestInStream then

 if {Test X#State} then
 NextState#TX = {Transform X State}
 TX | {Transducer NextState RestInStream}

else {Transducer State RestInStream} end
 end
end
•  A transducer keeps its state in State, receives messages on InStream and

sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 188

Example Transducer

fun {Filter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{Filter Xr F}
 else {Filter Xr F} end
 end
end

Generate Filter

IsOdd

6 5 4 3 2 1 5 3 1

Filter is a transducer that
takes an Instream and incremently

produces an Outstream that satisfies
the predicate F

local Xs Ys in
 thread Xs = {Generate 1 100} end
 thread Ys = {Filter Xs IsOdd} end

 thread {Browse Ys} end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 189

Larger example:
The sieve of Eratosthenes

•  Produces prime numbers
•  It takes a stream 2...N, peals off 2 from the rest of the stream
•  Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys Zs

X|Zs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 190

Sieve
fun {Sieve Xs}
 case Xs
 of nil then nil
 [] X|Xr then Ys in
 thread Ys = {Filter Xr fun {$ Y} Y mod X \= 0 end} end
 X | {Sieve Ys}
 end
end
•  The program forks a filter thread on each sieve call

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 191

Example call
local Xs Ys in
 thread Xs = {Generate 2 100000} end
 thread Ys = {Sieve Xs} end
 thread for Y in Ys do {Show Y} end end
end

Filter 3 Sieve Filter 2 Filter 5

7 | 11 |...

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 192

Concurrent control abstraction
•  We have seen how threads are forked by ’thread ... end’
•  A natural question to ask is: how can we join threads?

fork

join

threads

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 193

Termination detection
•  This is a special case of detecting termination of multiple threads, and

making another thread wait on that event.

•  The general scheme is quite easy because of dataflow variables:

 thread 〈S1〉 X1 = unit end
 thread 〈S2〉 X2 = X1 end
 ...
 thread 〈Sn〉 Xn = Xn-1 end
 {Wait Xn}
 % Continue main thread

•  When all threads terminate the variables X1 … XN will be merged together
labeling a single box that contains the value unit.

•  {Wait XN} suspends the main thread until XN is bound.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 194

Concurrent Composition
conc S1 [] S2 [] … [] Sn end

{Conc [proc{$} S1 end

 proc{$} S2 end
 ...

 proc{$} Sn end] }
•  Takes a single argument that is a list of nullary procedures.

•  When it is executed, the procedures are forked
concurrently. The next statement is executed only when all
procedures in the list terminate.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 195

Conc
 local

 proc {Conc1 Ps I O}
 case Ps of P|Pr then
 M in
 thread {P} M = I end
 {Conc1 Pr M O}
 [] nil then O = I
 end
 end
in
 proc {Conc Ps}
 X in {Conc1 Ps unit X}
 {Wait X}

 end
end

This abstraction takes
a list of zero-argument

procedures and terminate
after all these threads have

terminated

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 196

Example
local
 proc {Ping N}
 for I in 1..N do

 {Delay 500} {Browse ping}
 end
 {Browse 'ping terminate'}
 end
 proc {Pong N}
 for I in 1..N do

 {Delay 600} {Browse pong}
 end
 {Browse 'pong terminate'}
 end
in end

local
....
in

 {Browse 'game started'}
 {Conc

 [proc {$} {Ping 1000} end
 proc {$} {Pong 1000} end]}

 {Browse ’game terminated’}
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 197

Futures
•  A future is a read-only capability of a single-assignment variable. For

example to create a future of the variable X we perform the operation !! to
create a future Y: Y = !!X

•  A thread trying to use the value of a future, e.g. using Y, will suspend until the
variable of the future, e.g. X, gets bound.

•  One way to execute a procedure lazily, i.e. in a demand-driven manner, is to
use the operation {ByNeed +P ?F}.

•  ByNeed takes a zero-argument function P, and returns a future F. When a
thread tries to access the value of F, the function {P} is called, and its result
is bound to F.

•  This allows us to perform demand-driven computations in a straightforward
manner.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 198

Example

•  declare Y
{ByNeed fun {$} 1 end Y}
{Browse Y}

•  we will observe that Y becomes a future, i.e. we will see Y<Future> in the
Browser.

•  If we try to access the value of Y, it will get bound to 1.

•  One way to access Y is by perform the operation {Wait Y} which triggers
the producing procedure.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 199

Summary of
concurrent programming

•  There are four basic approaches:
–  Sequential programming (no concurrency)
–  Declarative concurrency (streams in a functional language, Oz)
–  Message passing with active objects (Erlang, SALSA)
–  Atomic actions on shared state (Java)

•  The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

•  But, if you have the choice, which approach to use?
–  Use the simplest approach that does the job: sequential if that is ok,

else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

