
C. Varela 1

Logic Programming
(PLP 11, CTM 9.2, 9.4, 12.1-12.2)

Constraint Satisfaction Problems,
Natural Language Parsing (Definite Clause Grammars)

Carlos Varela
Rensselaer Polytechnic Institute

November 19, 2019

Constraint Satisfaction Example*
•  Given six Italian words:

–  astante, astoria, baratto, cobalto, pistola, statale.

•  They are to be arranged, crossword puzzle fashion, in the
following grid:

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 2

Constraint Satisfaction Example(2)*
•  The following knowledge base represents a lexicon

containing these words:
 word(astante, a,s,t,a,n,t,e).
 word(astoria, a,s,t,o,r,i,a).
 word(baratto, b,a,r,a,t,t,o).
 word(cobalto, c,o,b,a,l,t,o).
 word(pistola, p,i,s,t,o,l,a).
 word(statale, s,t,a,t,a,l,e).

•  Write a predicate crossword/6 that tells us how to fill
in the puzzle. The first three arguments should be the
vertical words from left to right, and the last three
arguments the horizontal words from top to bottom.

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 3

Constraint Satisfaction Example(3)*
•  Try solving it yourself before looking at this solution!

crossword(V1,V2,V3,H1,H2,H3) :-
 word(V1,_,H1V1,_,H2V1,_,H3V1,_),

 word(V2,_,H1V2,_,H2V2,_,H3V2,_),

 word(V3,_,H1V3,_,H2V3,_,H3V3,_),
 word(H1,_,H1V1,_,H1V2,_,H1V3,_),

 word(H2,_,H2V1,_,H2V2,_,H2V3,_),
 word(H3,_,H3V1,_,H3V2,_,H3V3,_).

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 4

Constraint Satisfaction Example(Oz)
•  The following relation represents the lexicon:
fun {Word}

 choice astante#a#s#t#a#n#t#e

 [] astoria#a#s#t#o#r#i#a

 [] baratto#b#a#r#a#t#t#o

 [] cobalto#c#o#b#a#l#t#o
 [] pistola#p#i#s#t#o#l#a

 [] statale#s#t#a#t#a#l#e

 end

end

•  Write a predicate Crossword/1 that tells us how to fill
in the puzzle.

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 5

Constraint Satisfaction Example(Oz)
proc {Crossword S}
 H1V1 H2V1 H3V1 V1 H1

 H1V2 H2V2 H3V2 V2 H2

 H1V3 H2V3 H3V3 V3 H3

in

 S = [V1 V2 V3 H1 H2 H3]

 {Word V1#_#H1V1#_#H2V1#_#H3V1#_}

 {Word V2#_#H1V2#_#H2V2#_#H3V2#_}

 {Word V3#_#H1V3#_#H2V3#_#H3V3#_}
 {Word H1#_#H1V1#_#H1V2#_#H1V3#_}

 {Word H2#_#H2V1#_#H2V2#_#H2V3#_}

 {Word H3#_#H3V1#_#H3V2#_#H3V3#_}

end

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 6

Constraint Satisfaction Example:
One Solution at a Time (Oz)

Crossword is a relation that corresponds to a query, represented
as a one-argument procedure (or equivalent function).
Oz’s Search module can produce a lazy list of solutions:
•  especially useful when there are infinite answers, or when computation

of all answers would take too long.

Solutions can be accessed via a search engine object:
 % search engine
 E = {New Search.object script(Crossword)}

 % calculate and display one at a time
 {Browse {E next($)}}

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 7

Constraint Satisfaction Example:
One Solution or All Solutions (Oz)
The Crossword query relation can also be used directly by the
Search module:

 % Finding one solution
 {Browse {Search.base.one Crossword}}

 % Finding all solutions
 {Browse {Search.base.all Crossword}}

C. Varela, *Example from Learn Prolog Now! by Blackburn et al. (Exercise 2.4) 8

Generate and Test Example
•  We can use the relational computation model to generate

all digits:

fun {Digit}
 choice 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 end
end
{Browse {Search.base.all Digit}}
% displays [0 1 2 3 4 5 6 7 8 9]

C. Varela 9

Finding digit pairs that add to 10
•  Using generate and test to do combinatorial search:
fun {PairAdd10}
 D1 D2 in
 D1 = {Digit} % generate
 D2 = {Digit} % generate
 D1+D2 = 10 % test
 D1#D2
end
{Browse {Search.base.all PairAdd10}}
% displays [1#9 2#8 3#7 4#6 5#5 6#4 7#3 8#2 9#1]

C. Varela 10

Finding digit pairs that add to 10
(Prolog)

•  Using generate and test to do combinatorial search:
digit(D) :- between(0,9,D).

pairAdd10(D1,D2) :-

 digit(D1),

 digit(D2),
 D1 + D2 =:= 10.

allPairs(L) :-

 findall(p(D1,D2),pairAdd10(D1,D2),L).

C. Varela 11

Finding palindromes
•  Find all four-digit palindromes that are products of two-

digit numbers:
fun {Palindrome}
 X in
 X = (10*{Digit}+{Digit})*(10*{Digit}+{Digit}) % generate
 (X>=1000) = true % test
 (X div 1000) mod 10 = (X div 1) mod 10 % test
 (X div 100) mod 10 = (X div 10) mod 10 % test
 X
end
{Browse {Search.base.all Palindrome}} % 118 solutions

C. Varela 12

Finding palindromes (Prolog)
•  Find all four-digit palindromes that are products of two-

digit numbers:
palindrome(S) :-

 digit(D1), digit(D2), digit(D3), digit(D4), % generate
 S is (10*D1+D2)*(10*D3+D4),
 S >= 1000, % test
 mod(div(S,1000),10) =:= mod(S,10), % 1st = 4th
 mod(div(S,100),10) =:= mod(div(S,10),10). % 2nd = 3rd

allPalindromes(S,L) :- findall(P,palindrome(P),S),length(S,L).

C. Varela 13

Propagate and Search

•  The generate and test programming pattern can be very
inefficient (e.g., Palindrome program explores 10000
possibilities).

•  An alternative is to use a propagate and search technique.

Propagate and search filters possibilities during the generation
process, to prevent combinatorial explosion when possible.

C. Varela 14

Propagate and Search
Propagate and search approach is based on three key ideas:
•  Keep partial information, e.g., “in any solution, X is

greater than 100”.
•  Use local deduction, e.g., combining “X is less than Y”

and “X is greater than 100”, we can deduce “Y is greater
than 101” (assuming Y is an integer.)

•  Do controlled search. When no more deductions can be
done, then search. Divide original CSP problem P into two
new problems: (P ^ C) and (P ^ ¬C) and where C is a new
constraint. The solution to P is the union of the two new
sub-problems. Choice of C can significantly affect search
space.

C. Varela 15

Propagate and Search Example
•  Find two digits that add to 10, multiply to more than 24:
D1::0#9 D2::0#9 % initial constraints
{Browse D1} {Browse D2} % partial results
D1+D2 =: 10 % reduces search space from 100 to 81 possibilities

 % D1 and D2 cannot be 0.
D1*D2 >=: 24 % reduces search space to 9 possibilities
 % D1 and D2 must be between 4 and 6.
D1 <: D2 % reduces search space to 4 possibilities

 % D1 must be 4 or 5 and D2 must be 5 or 6.
 % It does not find unique solution D1=4 and D2=6

C. Varela 16

Propagate and Search Example(2)
•  Find a rectangle whose perimeter is 20, whose area is

greater than or equal to 24, and width less than height:
fun {Rectangle}
 W H in W::0#9 H::0#9
 W+H =: 10
 W*H >=: 24
 W <: H
 {FD.distribute naive rect(W H)}
 rect(W H)
end
{Browse {Search.base.all Rectangle}}
% displays [rect(4 6)]

C. Varela 17

Propagate and Search Example
(Prolog)

•  Find two digits that add to 10, multiply to more than 24:

:- use_module(library(clpfd)).
q(D1,D2) :-

 D1 in 0..9, D2 in 0..9, % initial constraints
 D1+D2 #= 10, % D1 and D2 cannot be 0.
 D1*D2 #>= 24, % D1 and D2 must be between 4 and 6.
 D1 #< D2. % D1 must be 4 or 5 and
 % D2 must be 5 or 6.
 % It does not find unique solution D1=4 and D2=6.

C. Varela 18

Propagate and Search Example(2)
•  Find a rectangle whose perimeter is 20, whose area is

greater than or equal to 24, and width less than height:
rectangle([W,H]) :-

 W in 0..9, H in 0..9,
 W+H #= 10,
 W*H #>= 24,
 W #< H.

rectangleSolve(rect(W,H)) :-
 rectangle([W,H]),
 label([W,H]).

?- rectangleSolve(S).
S = rect(4, 6).

C. Varela 19

Finding palindromes (revisited)
•  Find all four-digit palindromes that are products of two-

digit numbers:
fun {Palindrome}
 A B C X Y in
 A::1000#9999 B::0#99 C::0#99
 A =: B*C
 X::1#9 Y::0#9
 A =: X*1000+Y*100+Y*10+X
 {FD.distribute ff [X Y]}
 A
end
{Browse {Search.base.all Palindrome}} % 36 solutions

C. Varela 20

Finding palindromes (revisited in
Prolog)

•  Find all four-digit palindromes that are products of two-
digit numbers:

palindrome(A,B,C,X,Y) :-
 A in 1000..9999, B in 0..99, C in 0..99,
 A #= B * C,
 X in 1..9, Y in 0..9,
 A #= X*1000+Y*100+Y*10+X.

palindromeSolve(A) :-
 palindrome(A,_,_,X,Y),
 labeling([ff], [X,Y]).

C. Varela 21

C. Varela 22

Natural Language Parsing
(Example from "Learn Prolog Now!” Online Tutorial)

word(article,a).
word(article,every).
word(noun,criminal).
word(noun,'big kahuna burger').
word(verb,eats).
word(verb,likes).

sentence(Word1,Word2,Word3,Word4,Word5) :-

 word(article,Word1),
 word(noun,Word2),
 word(verb,Word3),
 word(article,Word4),
 word(noun,Word5).

C. Varela 23

Natural Language Parsing (Oz)
(Example from "Learn Prolog Now!” Online Tutorial)

fun {Word}
 choice
 article#a
 [] article#every
 [] noun#criminal
 [] noun#'big kahuna burger'
 [] verb#eats
 [] verb#likes
 end
end

proc {Sentence S}
 Word1 Word2 Word3 Word4 Word5
in
 S = [Word1 Word2 Word3 Word4 Word5]
 {Word article#Word1}
 {Word noun#Word2}
 {Word verb#Word3}
 {Word article#Word4}
 {Word noun#Word5}
end

C. Varela 24

Parsing natural language

•  Definite Clause Grammars (DCG) are useful for natural language
parsing.

•  Prolog can load DCG rules and convert them automatically to Prolog
parsing rules.

C. Varela 25

DCG Syntax
-->

 DCG operator, e.g.,

 sentence-->subject,verb,object.

 Each goal is assumed to refer to the head of a DCG rule.

{prolog_code}

 Include Prolog code in generated parser, e.g.,

 subject-->modifier,noun,{write(‘subject’)}.

[terminal_symbol]

 Terminal symbols of the grammar, e.g.,

 noun-->[cat].

C. Varela 26

Natural Language Parsing
(example rewritten using DCG)

sentence --> article, noun, verb, article, noun.

article --> [a] | [every].

noun --> [criminal] | ['big kahuna burger'].

verb --> [eats] | [likes].

C. Varela 27

Natural Language Parsing (2)
(example rewritten using DCG)

Let us look at Prolog’s generated Horn clause for the sentence non-
terminal:

?- listing(sentence).
sentence(A, F) :-

 article(A, B),
 noun(B, C),
 verb(C, D),
 article(D, E),
 noun(E, F).

A-F is a difference list. B, C, D, and E are accumulators. Possible usage:

?- sentence([a,criminal,likes,every,'big kahuna burger'],[]).
true

C. Varela 28

Natural Language Parsing (3)
(example rewritten using DCG)

Now, let us look at Prolog’s generated Horn clause for the verb non-
terminal:

?- listing(verb).
verb(A, B) :-

 (A=[eats|B]
 ; A=[likes|B]
).

A-B is a difference list. Possible usage:

?- verb([likes],[]).
true.

?- verb([likes,cats],[cats]).
true.

C. Varela 29

Natural Language Parsing in Oz

Let us look at an Oz relation for the sentence non-terminal:

proc {Sentence S Sn}
 S1 S2 S3 S4
in
 {Article S S1}
 {Noun S1 S2}
 {Verb S2 S3}
 {Article S3 S4}
 {Noun S4 Sn}
end

S-Sn is a difference list. S1, S2, S3, and S4 are accumulators. Possible usage:

proc {Query S} {Sentence S nil} end
{Browse {Search.base.all Query}}

C. Varela 30

Natural Language Parsing in Oz

Now, let us look at Oz relation for the verb non-terminal:

proc {Verb S Sn}
 choice
 S = eats|Sn
 [] S = likes|Sn
 end
end

S-Sn is a difference list. Possible usage:

{Browse {Search.base.all

 proc {$ V}
 {Verb V nil}
 end}}

C. Varela 31

Natural Language Parsing and
Information Extraction

sentence(V) --> subject, verb(V), subject.
sentence(V) --> subject, verb(V).

subject --> article, noun.

article --> [a] | [every].

noun --> [criminal]

 | ['big kahuna burger']
 | [dog].

verb(eats) --> [eats].
verb(likes) --> [likes].

C. Varela 32

Natural Language Parsing and
Information Extraction

Prolog’s generated Horn clauses for the sentence non-terminal:

?- listing(sentence).
sentence(B, A, E) :-

 subject(A, C),
 verb(B, C, D),
 subject(D, E).

sentence(B, A, D) :-
 subject(A, C),
 verb(B, C, D).

A-E and A-D are difference lists. B is the extracted information (which could
be a parse tree). C and D are accumulators. Possible usage:

?- sentence(Verb, [a,dog,eats],[]).
Verb = eats.

C. Varela 33

Natural Language Parsing and
Information Extraction

Now, let us look at Prolog’s generated Horn clause for the verb non-
terminal:

?- listing(verb).
verb(eats, [eats|A], A).
verb(likes, [likes|A], A).

Possible usage:

?- verb(Verb, [eats], []).
Verb = eats.

?- verb(Verb,S,T).
Verb = eats,
S = [eats|T] ;
Verb = likes,
S = [likes|T].

C. Varela 34

Natural Language Parsing and
Information Extraction in Oz

Let us look at an Oz relation for the sentence non-terminal:

proc {Sentence V S Sn}
 S1 S2
in
 choice
 {Subject S S1}
 {Verb V S1 S2}
 {Subject S2 Sn}
 []
 {Subject S S1}
 {Verb V S1 Sn}
 end
end
S-Sn is a difference list. S1, and S2 are accumulators.

Possible usage:

fun {Query}
 V S
in
 {Sentence V S nil}
 V#S
end
{Browse {Search.base.all Query}}

C. Varela 35

Natural Language Parsing and
Information Extraction in Oz

Now, let us look at Oz relation for the verb non-terminal:

proc {Verb V S Sn}
 choice
 V = eats
 S = eats|Sn
 [] V = likes
 S = likes|Sn
 end
end

S-Sn is a difference list. V is the extracted verb. Possible usage:

{Browse {Search.base.all

 proc {$ V}
 {Verb V _ _}
 end}}

C. Varela 36

Exercises

83. How would you translate DCG rules into Prolog/Oz

rules?
84. PLP Exercise 11.8 (pg 571).
85. PLP Exercise 11.14 (pg 572).
86. CTM Exercise 12.6.2 (pg 774).

